Modeling the Dynamics of Online News Reading Interests - Université Paris 1 Panthéon-Sorbonne
Pré-Publication, Document De Travail Année : 2023

Modeling the Dynamics of Online News Reading Interests

Benjamin Kille
  • Fonction : Auteur
  • PersonId : 1007239
Sahin Albayrak
  • Fonction : Auteur
  • PersonId : 1007241

Résumé

Online news readers exhibit a very dynamic behavior. News publishers have been investigating ways to predict such changes in order to adjust their recommendation strategies and beeer engage the readers. Existing research focuses on analyzing the evolution of reading interests associated with news categories. Compared to these, we study also how relations among news interests change in time. Observations over a 10-month period on a German news publisher indicate that overall, the relations amid news categories change, but stable periods spanning months are also found. e reasons of these changes and how news publishers could integrate this knowledge in their solutions are subject to further investigation.
Fichier principal
Vignette du fichier
Modeling HAL (1).pdf (990.07 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01516160 , version 1 (28-04-2017)
hal-01516160 , version 2 (06-02-2023)

Identifiants

  • HAL Id : hal-01516160 , version 2

Citer

Elena Viorica Epure, Benjamin Kille, Jon Espen Ingvaldsen, Rebecca Deneckere, Camille Salinesi, et al.. Modeling the Dynamics of Online News Reading Interests. 2023. ⟨hal-01516160v2⟩

Collections

UNIV-PARIS1 CRI
194 Consultations
607 Téléchargements

Partager

More