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Abstract

In this study, we present models where participants strategically select their
risk levels and earn corresponding rewards, mirroring real-world competition
across various sectors. Our analysis starts with a normal form game involv-
ing two players in a continuous action space, confirming the existence and
uniqueness of a Nash equilibrium and providing an analytical solution. We
then extend this analysis to multi-player scenarios, introducing a new nu-
merical algorithm for its calculation. A key novelty of our work lies in using
regret minimization algorithms to solve continuous games through discretiza-
tion. This groundbreaking approach enables us to incorporate additional
real-world factors like market frictions and risk correlations among firms.
We also experimentally validate that the Nash equilibrium in our model also
serves as a correlated equilibrium. Our findings illuminate how market fric-
tions and risk correlations affect strategic risk-taking. We also explore how
policy measures can impact risk-taking and its associated rewards, with our
model providing broader applicability than the Diamond-Dybvig framework.
We make our methodology and code open-source1. Finally, we contribute
methodologically by advocating the use of algorithms in economics, shifting
focus from finite games to games with continuous action sets. Our study
provides a solid framework for analyzing strategic interactions in continuous
action games, emphasizing the importance of market frictions, risk correla-
tions, and policy measures in strategic risk-taking dynamics.
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1available at https://github.com/louisabraham/cfrgame
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1. Introduction

Risk-taking during competition is an everyday occurrence, spanning nu-
merous scenarios from financial markets to environmental policies. In these
settings, individuals and organizations must balance the lure of potential
rewards against the potential for negative outcomes such as bankruptcy or
ecological disasters. Understanding and predicting behaviors in these con-
texts is crucial for an array of parties, including policymakers, regulators,
and investors.

Game theory provides a compelling lens for analyzing these situations. It
helps model strategic interactions among players and outlines the incentives
prompting their actions. Our work focuses on normal form games - situa-
tions where each player selects a strategy and earns a payoff based on the
collective actions of all players. In this article, we explore continuous models
of competition, where players can choose their level of risk, receiving higher
rewards for taking on more risk.

Nash equilibrium is a key concept for our study. It’s a state of stability in
the game, where no player sees an advantage in deviating from their chosen
strategy. In a normal form game, a Nash equilibrium consists of strategies
where each player’s strategy is the best response to the strategies of others.
This concept is fundamental to game theory and has been widely used in
various fields like economics and political science to model strategic behavior
(Moulin, 1986; Varoufakis, 2008).

Our exploration starts with a straightforward normal form game involving
just two players. For this setup, we provide solid proof for both the existence
and uniqueness of a Nash equilibrium, and we go further by presenting an
analytical solution. This simple model serves as our fundamental building
block, a starting point that offers a solid base of understanding.

Subsequently, we enhance our model to incorporate the complexity of
multiple players. This extension allows us to probe deeper into the strategic
dynamics in more realistic, multi-actor competitive environments. Even with
the additional complexity, we manage to maintain the uniqueness of the Nash
equilibrium and solve the game analytically.

The third stage of our investigation introduces two vital real-world com-
ponents: market frictions and risk correlations among firms. We begin by
defining these elements in a two-player context, paving the way for more
complex scenarios.

The final phase of our study marks a significant departure from conven-
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tional approaches. Given the complexities introduced by market frictions
and risk correlations, we adopt a novel technique—using regret minimization
algorithms to discretize and solve our game. This innovation, which opens
new vistas in the study of strategic interactions, proves especially valuable in
the face of the potentially intractable analytical solutions that these intricate
scenarios might present.

Our experimental validation establishes that the Nash equilibria in our
model also function as correlated equilibria, endorsing the use of correlated
equilibria to model strategic behavior. To compute these equilibria, we em-
ploy an array of algorithms, prominently featuring regret matching and coun-
terfactual regret minimization, thus highlighting the expanding potential of
algorithmic solutions for tackling complex strategic interactions.

Next, we examine the impact of penalties and market frictions on strategic
behavior and results in our continuous model. We find that penalties reduce
both the average risk taken by players and their total rewards. Market fric-
tions, on the other hand, lower average risk but increase total rewards. These
frictions have a more significant effect on total rewards in high-penalty envi-
ronments. In especially inefficient markets with high market frictions, raising
penalties can promote cooperation and increase total rewards.

We also assess the effects of risk correlations among firms on strategic
behavior and performance. We find that players take more risks in negative
correlation situations, which boosts their payoff compared to a no-correlation
scenario. On the flip side, in positively correlated settings, risk-taking is re-
duced. The impact on performance varies, being negative in efficient markets
but potentially positive in less predictable markets.

Our model interestingly aligns with the Diamond-Dybvig framework,
where financial institutions can choose a parameter affecting their utility
function and their likelihood of bankruptcy. This parallel allows our model
to explore situations such as competition among banks over deposit contract
interest rates, akin to the dynamic modeled by Diamond and Dybvig. But
our model is distinct and more generalized, focusing not on specific financial
metrics, but on a broader notion of failure probability, enabling us to ex-
plore strategic competition dynamics in a broader array of scenarios beyond
baking.

Our findings offer valuable insights for policymakers, regulators, and in-
vestors who need to understand behavior in competitive, risk-laden situa-
tions. We highlight the significant influence of penalties and market frictions
on strategic behavior and outcomes, and show how risk correlations can con-
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siderably alter strategic behavior and performance in competitive dynamics.
By clarifying these elements, we contribute to the discussion on how to design
effective interventions and policies that encourage cooperation and improve
outcomes in competitive situations involving risk.

2. A simple model of competition for risk

2.1. Description

In this section, we introduce a simple model of competition for risk that
serves as a backbone for our study. We consider a situation where two actors,
denoted as Player 1 and Player 2, engage in competition by taking actions
that make them more attractive to customers but also increase their risk of
failure. For example, firms may choose to lower their prices to attract more
customers but in doing so, they increase the likelihood of not being able to
repay their loans. Similarly, insurance companies may lower their premiums
to attract more customers but this comes at the cost of a higher risk of failure.
Banks may increase their deposit rates to attract more customers but this
also increases their vulnerability to liquidity crises.

In our model, each player directly sets their failure probability, denoted
as rp. While this assumption may not be realistic in practice, we note that
in many situations, firms use models that map real-world actions, such as
setting prices or premiums, to failure probabilities. This mapping is often a
monotonous function that can be inverted to yield real-world actions from
failure probabilities, making our model practical. Based on the failure prob-
abilities set by each player, the players can randomly “lose” the game. In our
simple model, this translates into being applied a penalty, denoted as P . We
assume P > 0. We assume that the failure events are independent, meaning
that each player draws a uniform random variable fp from the interval [0, 1]
and fails if fp < rp. We will later introduce correlations between the vari-
ables fp to model real-life situations where correlations may be positive or
negative.

After the failure events are determined, the players that did not fail com-
pare their risk levels, and the player that played the highest risk level is
rewarded with a payoff, denoted as R. Since the game is unchanged when
scaling both P and R, we assume R = 1. In the case of ties between risk
levels, we consider several ways of resolving them, such as none of the players
receiving the reward, the reward being shared equally between them, or the
reward being randomly given to one of them.
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We note that, as shown later, the optimal strategies in our model are
modeled by real distributions, which means that the probability of ties is
zero. However, when we use discrete action sets to compute approximate
Nash equilibria, the action sets can overlap, and we implement the first two
variations of resolving ties (the last two are equivalent in expectation). This
simple model serves as a foundation for our study, and we will extend it by
introducing correlations between the players’ failure probabilities and market
frictions in subsequent sections. For two players, assuming r1 > r2, the
outcome matrix will be:

f1 ≥ r1 f1 < r1
f2 ≥ r2 R = 1, 0 −P, 1
f2 < r2 1,−P −P,−P

Each cell contains the rewards to each player. For example, in the upper
left cell, no failure happens. Since we assumed r1 > r2, player 1 gets R = 1
and player 2 gets 0.

2.2. Equivalence to a normal-form game

We can represent the game described above in the framework of extensive-
form games (Hart, 1992) by modeling the drawing of the random variables fp
using Chance nodes. Since the outcomes are subject to randomness, it is nat-
ural to assume that the actors operate under the expected utility hypothesis,
which implies that they possess a von Neumann–Morgenstern utility function
(Neumann et al., 1944). Consequently, we can define a normal-form game
with payoffs equal to the expected payoffs of the corresponding extensive-
form game. By doing so, we can leverage the theory of normal-form games
and apply various solution concepts, such as Nash equilibria, to analyze the
competition between the actors.

Proposition 2.1. The expected utilities up are computed as follows in the
2-player game:

u2(r1, r2) = u1(r2, r1) (symmetry)

u1(r1, r2) = r2(1− r1)R− r1P + [r1 > r2](1− r1)(1− r2)R

where [·] is the Iverson bracket.
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Proof. Player 1 can fail with probability r1, in which case they lose P . If
Player 2 loses and Player 1 does not, which happens with probability r2(1−
r1), Player 1 wins R. Finally, if none of the players fails, when r1 > r2, Player
1 can win R.

It is possible to encompass the shared payoff in case of ties by defining
the Iverson bracket to be 1

2
when r1 = r2. Figure 1 shows what the reward

function of Player 1 looks like when Player 2 adopts the fixed strategy r2 =
0.2.

Figure 1: Reward function

The discontinuity of our game is similar to two games: the War of At-
trition game from Smith (1974) and the visibility game from Lotker et al.
(2008). In the War of Attrition game, each player independently chooses a
time to quit the game. The player who stays in the game for the longest
time wins a prize. However, both players incur a cost that increases over
time while they are still in the game. In the visibility game, the payoff of
each player is the difference with the next player, or 1 for the player that
plays the largest move. A major difference between our game and those two
games is that we model the probability of failure. This means, for example,
that the player taking less risk can still win the reward if the first player fails.

However, the structure of our problem and the analytical solution of the
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Nash equilibrium are similar to Lotker et al. (2008). We name our game the
Competition for Risk game and will write it CfR in the rest of the article.

2.3. Nash equilibrium

A Nash equilibrium is a set of strategies, one for each player, such that no
player can improve their payoff by unilaterally changing their strategy, given
the strategies of the other players. In other words, each player’s strategy
is the best response to the strategies chosen by the other players. Nash
equilibria are important because they provide a way to predict the outcome
of a game if each player acts rationally and selfishly. They can also help
explain why certain outcomes occur in real-world situations.

In our model of competition for risk, finding Nash equilibria can help us
understand how firms, banks, and insurance companies behave when they
compete for prices and take different levels of risk. By analyzing the Nash
equilibria of our model, we can predict how different players will act and what
the resulting outcomes will be. Moreover, we can compare the efficiency of
different equilibria and use them as a benchmark to evaluate the performance
of different strategies.

As in the game of Lotker et al. (2008), we can prove that there is no pure
Nash equilibrium, that is, a deterministic optimal strategy.

Theorem 2.2. The CfR game does not admit any pure Nash equilibrium.

Proof. Suppose the existence of an equilibrium s1, s2. Suppose that s1 > s2.
Then Player 1 can improve their payoff by playing s1 − ε since they still get
the reward and take less risk. By symmetry, this implies that s1 = s2. If
s1 < 1, then player 1 can improve their situation by playing s1+ ε since they
get R (or R

2
if the reward is shared). If s1 = 1 then the payoff is −P < 0 with

probability 1 so it is better to play 0 which gives payoff 0 with probability
1.

Definition 2.1. A strategy s (a couple of strategies) is Pareto optimal if
there is no other strategy s′ such that ∀p, up(s) ≤ up(s

′) and ∃p, up(s) <
up(s

′). It is ε-Pareto optimal if there is no strategy s′ such that ∀p, up(s) ≤
up(s

′) and ∃p, up(s) + ε < up(s
′).

Remark. If the reward is shared in case of tie, the pure strategy (0, 0) gives
reward R

2
to each player. This strategy is Pareto-optimal.
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Theorem 2.3. For every ε, there is a ε-Pareto optimal strategy that gives
R−ε
2

to each player.

Proof. Let us consider the joint mixed strategy where each player plays uni-
formly at random in the interval [0, 2ε]. The payoff is

E[u1] = E [r2(1− r1)R− r1P + [r1 > r2](1− r1)(1− r2)R]

= ε(1− ε)R− εP +
(1− ε)2

2
R

→ε→0
R

2

so by taking ε small enough we can get as close to R
2
as we want.

If each player gets payoff R−ε
2
then no player can get ε without degrading

the other’s performance else the total payoff would be more than R.

However, the ε-Pareto strategy is highly concentrated around 0, incen-
tivizing players to deviate and increase their chances of winning R without
taking on additional risk. Thus, this strategy fails to form a Nash equilib-
rium.

Fortunately, the CfR game possesses a unique Nash equilibrium, a pow-
erful property that showcases the strength of our approach. Moreover, this
equilibrium is symmetric.

For finite games, Nash (1950) proved the existence of mixed Nash equi-
libria, while Glicksberg’s theorem (Glicksberg, 1952) extended this result to
continuous reward functions. Dasgupta and Maskin (1986) established con-
ditions under which discontinuous games can possess Nash equilibria and
symmetric games can admit symmetric equilibria.

The uniqueness of the Nash equilibrium is a highly desirable property,
with most models using concave reward functions to ensure it. Therefore, it
is noteworthy that the CfR game exhibits a unique Nash equilibrium.

We recall Theorem 2.1 from Lotker et al. (2008):

Theorem 2.4. Let (f1, . . . , fn) be a Nash equilibrium point, with expected
payoff u∗

i to Player i at the equilibrium point. Let ui(x) (as an abuse of
notation) denote the expected payoff for Player i when he plays the pure
strategy x and all other players play their equilibrium mixed strategy. Then
ui(x) ≤ u∗

i for all x ∈ [0, 1], and furthermore, there exists a set Z of measure
0 such that ui(x) = u∗

i for all x ∈ support(fi) \ Z.
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This theorem means that at the Nash equilibrium, almost any move that
is in the support of a player’s strategy should give them the same (maximal)
payoff. This theorem is crucial to find the equilibrium in the CfR game.

Theorem 2.5. Up to a set of measure zero, the CfR game admits a unique
Nash equilibrium. This equilibrium is symmetric and its distribution is f(x) =[
x < 1−

√
k−1
k+1

]
k−1

(1−x)3
with k :=

√
(P + 1)2 + 1. The the average move is

r̄ = k − (P + 1) and the utility of each player is u∗ = r̄.

Proof. See Appendix A for a full proof. For a less rigorous treatment, refer
to the proof of the more general Theorem 3.1.

At P = 1, the cutoff value is 1 −
√√

5−1√
5+1

= 2 − ϕ ≈ 0.382 with ϕ the

Golden ratio. We plot the distribution in Figure 2.

Figure 2: Nash equilibrium

The behavior of the cutoff rmax is displayed in Figure 3. Unsurprisingly,
when P → ∞, the penalty becomes much larger than the reward and the
players play closer to 0.

The case when P → 0 is more surprising: the maximal cutoff value at

P = 0 is h = 1 −
√ √

2√
2+2
≈ 0.356. This is because even if the penalty is 0,

the players cannot get the reward if they “lose”, which prevents them from
taking too much risk. We plot the distribution in Figure 2.

3. Generalization to multiple players

Quite naturally, we wonder what the Nash equilibrium looks like for mul-
tiple players. The visibility game of Lotker et al. (2008) probably does not
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Figure 3: The cutoff goes to zero when P →∞.

admit an analytical solution and they instead give an algorithm to produce
approximate solutions. We show that the CfR game for multiple players ad-
mits a unique symmetric equilibrium and present a new numerical algorithm
to compute it. We finally study the asymptotic behavior of the equilibrium.

3.1. Nash equilibrium

Interestingly, our Correlation for Risk game admits an analytical solution
even for multiple players. More precisely:

Theorem 3.1. There is a unique symmetric Nash equilibrium for in the CfR
game with n players defined by

f(x) =
P + w

(n− 1)(1− x)2+
1

n−1 (Px+ w)1−
1

n−1

for some constants rmax and w := r̄n−1 (the probability of winning when
taking no risk) such that ∫ rmax

0

f(x)dx = 1∫ rmax

0

xf(x)dx = r̄
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Proof. We adapt the proof of Theorem 2.5 and start by assuming the exis-
tence of a symmetric mixed equilibrium defined by the probability density f .
First we derive a nice expression for u(x), defined as the utility of one player
choosing move x while the others play according to f . For all x ∈ support(f):

u(x) = −xP + (1− x)

(∫ x

0

f(y)dy +

∫ 1

x

yf(y)dy

)n−1

This equation is quite natural: the player loses P with probability x. If
they survive, with probability 1 − x, they need the n − 1 other players to
either play a lower value or play a higher value and fail. We can suppose
as previously that 0 is in the support to subtract u(0). We write r̄ for the
expectation of the action r under f .(

r̄n−1 + xP

1− x

) 1
n−1

=

∫ x

0

f(y)dy +

∫ 1

x

yf(y)dy

We define w := r̄n−1 to be the probability of winning when taking no risk,
we derivate and divide by 1− x to obtain:

f(x) =
P + w

(n− 1)(1− x)2+
1

n−1 (Px+ w)1−
1

n−1

Finally we can solve
∫ rmax

0
f(x)dx = 1 and

∫ rmax

0
xf(x)dx = r̄. We relegate

the description of the numerical estimation of rmax and w to Appendix B.

We display the behavior of the solution for multiple players in Figure 4.

3.2. Asymptotic behavior

We are interested in studying the equilibrium when the number of players
goes to infinity. For fixed P , we have the following:

Proposition 3.2. When n→∞, lim rmax = 1
1+P

and r̄ ∼ 1
nP

Proof. We verify experimentally that rmax is never close to 0 or 1 and that
r̄ → 0. Equation B.1 gives

w + nP (1− rmax) + Prmax

n(1− rmax)(P + w)
n−1

√
Prmax + w

1− rmax

= 1 +
w + nP

n(P + w)
r̄

n−1

√
Prmax + w

1− rmax

→ 1
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Figure 4: We observe a clear difference between the cases P = 0 (no penalty) and P = 1
(presence of a penalty). In both cases, the cutoff increases. However, the average risk
seems to decrease sharply when there is a nonzero penalty with a mode at r = 0.

Equation B.2 gives

w − nw(1− rmax) + Prmax

n(1− rmax)(P + w)
n−1

√
Prmax + w

1− rmax

= r̄
w + nP

n(P + w)
w

P
+

rmax

n(1− rmax)
∼ rmax

n(1− rmax)
∼ r̄

using w = r̄n−1 = o(r̄).
n−1

√
Prmax+w
1−rmax

→ 1 implies rmax

1−rmax
→ 1

P
and rmax → 1

1+P
.

Finally, r̄ ∼ 1
nP

.

We illustrate this behavior in Figure 5.
A common concept in game theory is the price of anarchy PoA (Kout-

soupias and Papadimitriou, 1999). The price of anarchy is the ratio between
the Pareto optimum and the Nash equilibrium. It is easy to generalize The-
orem 2.3 for multiple players and show that the reward can be split almost
perfectly to obtain a Pareto optimal utility R

n
. The utility of our symmetric

equilibrium is Rr̄n−1 = Rr̄n−1 = Rw. Hence, PoA = 1/nw. We will instead
compute the efficiency E = 1

PoA
= nw ∈ [0, 1].

We observe that when P = 1
ne with e ≥ 0, the efficiency E = nw of the

Nash equilibrium goes to 0 if e ≤ 1 and it goes to 1 if e > 1. We plot the
behavior of E in Figure 6. We interpret this as an indication that resources,
here modeled by the ratio 1

P
= R

P
of rewards to penalties, need to scale faster
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Figure 5: The plot of rmax to log(P ) is very similar to the function 1
1+exp(·) . This is

because rmax ∼ 1
1+P .

than the number of players for them to adopt an efficient behavior. Scarcity
of resources creates an inefficient Nash equilibrium.

4. Extensions of the Competition for Risk Game

4.1. Market frictions

One limitation of our model is the assumption that the utility functions
are discontinuous at a certain threshold. While this is appropriate for certain
scenarios such as call for bids, it may not hold in other real-life situations that
involve noisy evaluations or aggregate many individual choices. To address
this limitation, we propose replacing the threshold [r1 > r2] with a smooth
choice model using the logistic function, στ (r1 − r2), where στ is the scaled
sigmoid:

στ (x) :=
1

1 + exp
(
−x

τ

)
Recall that the failure events are fp < rp. For a game between two players,

the outcome matrix can be represented as follows:
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Figure 6: The efficiency clearly goes to 0 even when e = 1. When e > 1, it seems that
E → 1. Values for greater values of n suffer of numerical precision issues as logw → 0.

f1 ≥ r1 f1 < r1
f2 ≥ r2 R στ (r1 − r2), R στ (r2 − r1) −P,R
f2 < r2 R,−P −P,−P

Proposition 4.1. The expected utilities up for the 2-player game with fric-
tions are computed as follows:

u2(r1, r2) = u1(r2, r1) (symmetry)

u1(r1, r2) = r2(1− r1)R− r1P + (1− r1)(1− r2)στ (r1 − r2)R

As τ → 0, στ approaches the Heaviside step function and market frictions
disappear.

4.2. Correlation between risks

In the real world, risks are often correlated, which is not accounted for
in our current model. To incorporate correlation between risks, we can in-
troduce joint distributions for the failure events fp, which occur according to
latent variables.

In our model, we assume that fp follows a uniform distribution. To intro-
duce correlation between f1 and f2, we use the well-known NORTA (NORmal
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To Anything) method (Cario and Nelson, 1997). This method allows us to
create a joint distribution (f1, f2) such that the marginals are uniform dis-
tributions and the Pearson correlation between f1 and f2 can be set to any
arbitrary value.

Following NORTA, we define fp = Φ(zp), where Φ is the cumulative
distribution function of the Normal distribution, and(

z1
z2

)
∼ N (µ,Σ)

with µ =

(
0
0

)
and Σ =

(
1 ρ(z1, z2)

ρ(z1, z2) 1

)
. Here, ρ is the Pearson correla-

tion coefficient between z1 and z2, which determines the correlation between
f1 and f2. As shown in Cario and Nelson (1997), specifying a correlation
between zp or fp is equivalent to specifying ρ(f1, f2). Specifically, we have

ρ(f1, f2) =
6

π
sin−1

(
ρ(z1, z2)

2

)
Hence, we use ρ to denote ρ(z1, z2) throughout the rest of the document.
This model is well-suited to real-world scenarios, such as financial portfo-
lios, where zp can represent the returns on investments. In such cases, joint
distributions of portfolios are typically modeled as multivariate normal dis-
tributions, and rp corresponds to the Value at Risk vp = Φ−1(rp) through
the bijective function Φ, such that the failure event zp < vp is equivalent to
fp < rp.

Proposition 4.2. The expected utilities up for the 2-player game with fric-
tions and correlated risks are computed as follows:

u2(r1, r2) = u1(r2, r1) (symmetry) (1)

u1(r1, r2) = (r2 − r̃)R− r1P + (1− r1 − r2 + r̃)στ (r1 − r2)R (2)

where r̃ := Φρ(Φ
−1(r1),Φ

−1(r2)) is the probability of joint failure, with

Φρ(v1, v2) =
1

2π
√

1− ρ2

∫ v1

−∞

∫ v2

−∞
exp

(
−x2 − 2ρxy + y2

2(1− ρ)2

)
dy dx

the cumulative distribution of the bivariate normal distribution with correla-
tion ρ.
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In the absence of noise, when ρ = ±1, it is also possible to calculate the
Nash equilibrium analytically:

Theorem 4.3. For ρ = 1, the equilibrium is given by:

p(x) =
1 + P

1− x

[
x < 1− exp

(
− 1

P + 1

)]
We have

r̄ = 1− (P + 1)

(
1− exp

(
− 1

P + 1

))
For ρ = −1, the equilibrium is given by:

p(x) =
P

(1− 2x)3/2

[
x <

1

2
− P 2

2(P + 1)2

]
We have

r̄ =
1

2P + 2

Proof. See Appendix C.

5. Computing approximate Nash equilibrium

5.1. Approximations to games and equilibria

In this section, we define some key concepts and metrics related to games
and equilibria.

For a given game with n players, we use ui(σ) to denote the reward of
player i when all players follow the strategy σ = (σ1, . . . , σn)

2. A strategy σ
is said to be a Nash equilibrium if it satisfies the following condition for all
players i and all alternative strategies σ′

i ∈ Σi:

ui(σ) ≥ ui(σ
′
i, σ−i)

where σ−i is the strategy of all players but i, and Σi is the set of actions
available to player i.

A game is said to be continuous if the action space Σi is compact and
ui is continuous. In such games, it is possible to approximate the Nash
equilibria using a sequence of games over a reduced finite support, which leads

2This σ is not to be confused with the scaled sigmoid στ defined earlier.
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to Glicksberg’s theorem, without relying on Kakutani’s theorem (Myerson,
1997).

In our CfR game, which has a few points of discontinuity, it is also possible
to approximate the Nash equilibria using a similar method. However, we do
not provide a proof of this here, as the introduction of frictions makes our
game continuous anyway.

To measure the closeness of a strategy σ to a Nash equilibrium, we use
the NashConv metric (Lanctot et al., 2017):

NashConv(σ) =
n∑

i=1

max
si∈Σi

ui(si, σ−i)− ui(σ)

Note that this metric only considers pure strategies si ∈ Σi, due to the
linearity of the payoff function for mixed strategies.

The NashConv metric satisfies NashConv(σ) ≥ 0, with equality hold-
ing only for a Nash equilibrium. This implies that NashConv(σ) corre-
sponds to the notion of ε-Nash equilibrium, where a ε-Nash equilibrium σ
has NashConv(σ) = nε.

For a finite action space, NashConv is easy to compute since Σi is
finite. However, for a continuous action space, no such metric is known.
Nonetheless, we can approximate NashConv by taking the maximum over
a finite sample of points from Σi. This sample can be chosen randomly, or if
Σi is an interval or a product of intervals of R, we can use a grid.

In our CfR game, the action space is [0, 1]. Here, we use quasi-random
numbers to measure the closeness to a Nash equilibrium, inspired by the
literature on hyperparameter sampling (Bousquet et al., 2017) and the effi-
ciency of quasi-Monte-Carlo methods (Sobol’, 1990). Specifically, we define
the QuasiNashConv metric as:

QuasiNashConv(σ,m) =
n∑

i=1

max
si∈Sobol(m)

ui(si, σ−i)− ui(σ)

where Sobol(m) is a set ofm quasi random numbers drawn using Sobol’s
method (Sobol’, 1967).

5.2. Correlated Equilibria

A Nash equilibrium is a set of strategies where no player can improve
their payoff by unilaterally changing their strategy, assuming that all other
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players’ strategies remain unchanged. However, in some games, players may
benefit from coordinating their actions in ways not captured by traditional
Nash equilibrium. This is where the concept of correlated equilibrium comes
in.

A correlated Nash equilibrium is a set of correlated strategies where no
player can improve their expected payoff by unilaterally changing their strat-
egy, given that they observe the correlation signal. This correlation signal is
not necessarily a message or communication between the players, but rather
a shared random variable that affects each player’s strategy consistently.

Definition 5.1. A correlated Nash equilibrium is a joint distribution σ over
all moves Σ1 × Σ2 × . . . × Σn such that for any player i and any strategy
modification ϕ : Σi → Σi,

ui(σi, σ−i) ≥ ui(ϕ(σi), σ−i)

Thus, a Nash equilibrium can be viewed as a correlated Nash equilibrium
that can be decomposed into independent strategies for each player. It is
evident that any Nash equilibrium is a correlated Nash equilibrium.

Correlated equilibria are more suitable for the real world because they
allow for a broader range of possible outcomes that can arise through coor-
dination among the players, without necessarily requiring communication or
binding agreements between them.

In many real-world scenarios, it is challenging or impossible for players to
communicate and make binding agreements, or they may not have complete
information about the strategies of the other players. Correlated equilibria
provide a way for players to achieve coordination and cooperation without
requiring such communication or information, by relying on shared random
variables that affect each player’s strategies consistently.

Finally, correlated equilibria can also capture situations where players
have some degree of trust or social norms that encourage them to coordinate
their actions in a specific way. For instance, in a repeated game where players
interact with each other over a long period, they may develop a sense of
reciprocity or reputation that encourages them to follow a certain coordinated
strategy.

5.3. Finding Correlated Equilibria with Linear Solvers

Correlated equilibria are of interest because they can be computed more
easily for a finite action set.

18



A joint strategy can be represented by a mapping of probabilities:

Prσ(s1, s2, . . . , sn) := Pr[σ = (s1, s2, . . . , sn)]

for all joint actions (s1, s2, . . . , sn). Therefore, the equation from Definition
5.1 is linear in these probabilities. An additional equation is that probabilities
must sum to 1, and all probabilities are constrained to be positive. For two
players, the equations are:

∀(s1, s′1),
∑
s2

Prσ(s1, s2)u1(s1, s2) ≥
∑
s2

Prσ(s1, s2)u1(s
′
1, s2)

∀(s2, s′2),
∑
s1

Prσ(s1, s2)u1(s1, s2) ≥
∑
s1

Prσ(s1, s2)u1(s1, s
′
2)

∀(s1, s2),Prσ(s1, s2) ≥ 0

∑
s1,s2

Prσ(s1, s2) = 1

The set of correlated equilibria is thus a convex polytope P . It is possible
to find the boundary in any direction using a linear programming solver.

It is also possible to check that the correlated equilibrium is unique and
is a Nash equilibrium by trying to maximize and minimize each variable over
the polytope. If the maximum and minimum are equal for each variable, then
the polytope only contains one point. Another method described in Appa
(2002) checks the uniqueness of a solution to a linear program by solving
a new linear program. However, that method requires a reformulation of
the linear program as max cx s.t. Ax = b, x ≥ 0, which is cumbersome in
our case. We propose a simple randomized method (algorithm 5.3) that can
produce confidence intervals for any confidence level (or p-value).

Theorem 5.1. Given a polytope P defined by constraints c1, . . . , cm

Pr [SumDiamSquared(K, c1, . . . , cm) < ε] ≤ Fχ2

(
ε

diam(P )
, K

)
with Fχ2(·, K) the cumulative distribution function of the χ2 distribution

with K degrees of freedom.
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Algorithm 1 Confidence interval on diam(P )

Input: Iterations K, constraints c1, . . . , cm defining a polytope P in Rn

function SumDiamSquared(K, c1, . . . , cm)
for i← 1, . . . , K do

Sample vj ∼ N (0, 1) for j = 1, . . . , n
ai ← LinProg(v, c) ▷ min

x∈P
v · x

bi ← LinProg(−v, c) ▷ max
x∈P

v · x
di ← bi − ai

end for
return

∑
i d

2
i

end function
Input: p-value p
function MaxDiameter(p,K, c1, . . . , cm)

ε← SumDiamSquared(K, c1, . . . , cm)
q ← Chi2.ppf(p,K)
d← ε/q
return d

end function

We used the HiGHS solver (Huangfu and Hall, 2018) to solve the linear
optimization subproblems (calls to LinProg). In numerical experiments, we
use K = 5, confidence p = 0.95, and report

dmax := MaxDiameter(p,K, c1, . . . , cm) =
SumDiamSquared(K, c1, . . . , cm)

Qχ2 (1− p,K)

where Qχ2(·, K) is the quantile function of the χ2 distribution withK degrees
of freedom. When the polytope describe probability distributions, we have
the bound dmax ≤ 2.

Finally, we make the following trivial remark:

Proposition 5.2. A correlated equilibrium σ is a Nash equilibrium iff the
matrix (Prσ(i, j))i,j has rank 1.

This gives us another numerical method to check that a correlated equi-
librium is a Nash equilibrium: compute the second highest eigenvalue and
check that it is 0. In numerical experiments, we define λ1 and λ2 as the
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highest and second highest eigenvalues and report the value

λ :=
λ2

λ1

5.4. Related works solving continuous games

Our exploration of regret-minimization algorithms in the context of con-
tinuous games has led us to a wide range of approaches. From these, a few
distinct groups emerge, each characterized by their unique methods, assump-
tions, and requirements.

One group includes the work of Perkins and Leslie (2014), Ganzfried
(2021), and Kroupa and Votroubek (2023). Perkins and Leslie (2014) ex-
tended stochastic fictitious play to the continuous action space framework,
showing convergence to an equilibrium point in two-player zero-sum games.
However, this method assumes specific linear or quadratic utility functions,
which limits its applicability to a narrow set of games. Similarly, Ganzfried
(2021) proposed a novel algorithm for approximating Nash equilibria in con-
tinuous games, yet the scalability of their method is a concern due to the
storage of all previous moves and the use of mixed integer linear programs for
best response computation. Lastly, Kroupa and Votroubek (2023) presented
an iterative strategy generation technique for finding mixed strategy equilib-
ria in multiplayer general-sum continuous games, but this method requires
an oracle for best response computation, a requirement that may not be met
in all practical scenarios.

Another group consists of Raghunathan et al. (2019) and Dou et al.
(2019). Raghunathan et al. (2019) introduced the Gradient-based Nikaido-
Isoda function, a merit function providing error bounds to a stationary Nash
point. They showed that gradient descent converges sublinearly to a first-
order stationary point of this function, making it a potential method for
steady convergence towards equilibrium. Extending this work, Dou et al.
(2019) offered a deep learning-based approach for approximating Nash equi-
libria in continuous games, allowing the finding of mixed equilibria. They
utilized the pushforward measure technique to represent mixed strategies in
continuous spaces and applied gradient descent for convergence to a station-
ary Nash equilibrium. However, we found this method to be slow and unable
to converge in our game.

The third group encompasses the works of Bichler et al. (2021) and Martin
and Sandholm (2022). Bichler et al. (2021) proposed using artificial neural
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networks to learn equilibria in symmetric auction games through gradient
dynamics in self-play. This work was later extended by Martin and Sandholm
(2022), who used the same pushforward trick as Dou et al. (2019), adding
random noise as input. They applied zeroth-order optimization techniques
to compute approximate Nash equilibria in continuous-action games without
access to gradients. However, we found that the success of this method is
very sensitive to hyperparameters, and its dynamics can be unstable.

5.5. Applying regret-minimization algorithms to continuous games

Our study delves into the application of regret-minimization algorithms
to continuous games, a distinct approach given that it does not demand
any differentiability assumptions on the reward function. This approach
pivots around algorithms known for identifying correlated equilibria, such as
regret matching (Hart and Mas-Colell, 1997, 2001a,b), Counterfactual Regret
Minimization (CFR) (Neller and Lanctot, 2013), and stochastic fictitious play
(Fudenberg and Kreps, 1993).

Regret matching is a notable algorithm in the realm of game theory for
finding correlated equilibria. It operates by having each player select a distri-
bution of moves at each step of the algorithm, wherein this selection is geared
towards maximizing their expected utility, given the past moves of their op-
ponent. When run for an ample number of iterations, the distributions arrive
at a convergence, forming a correlated equilibrium.

Building on this, we bring into play the CFR algorithm. This algorithm
accumulates the expected regrets of each action played by a player at every
information set. It then updates the regrets based on the counterfactual
outcomes of the game - that is, what the result would have been if a different
action had been taken. As these regrets are iteratively updated and actions
chosen based on these revised regrets, CFR converges to a Nash equilibrium
in extensive form games. In our normal form game, we incorporate CFR as
a deterministic variant of Regret Matching.

Further enriching our methodology is stochastic fictitious play, another
variant of regret matching. It involves the computation of probability distri-
butions using the softmax function. We also test this variant along with CFR
in our experiments, thereby evaluating their performance in approximating
the Nash equilibrium of our game.

To approximate the CfR game, we resort to a finite grid of actions, which
are evenly distributed within the interval [0, 1] for both players. In doing
so, we differentiate between two settings, governed by a boolean variable,
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shift. When shift = false, both players are offered the same set of ac-
tions. However, when shift = true, the two players are presented with
non-intersecting sets of actions, with each action in the interval [0, 1] alter-
nately attributed to each player.

Despite the fact that the action set of the resulting approximate Nash
equilibrium is necessarily a subset of a predefined finite action set, our method
brings a fresh perspective to the field, with its emphasis on regret minimiza-
tion for both players and the removal of any differentiability assumption on
the reward function. Through this research, we hope to enrich our under-
standing of the behavior of continuous games and lay a sturdy foundation
for future exploration and improvements in this domain.

6. Experimental results

We employ a Numba (Lam et al., 2015) implementation of the numerical
method proposed by Genz (2004) to compute the bivariate normal probability
in the utility function, which is the computational bottleneck in equation 1.

Our experiments show that the Nash equilibrium in finite approximations
of the CfR game can be obtained by computing a correlated Nash equilibrium.
Moreover, we prove that either the correlated equilibrium is unique or the
correlated equilibrium maximizing the total reward is a Nash equilibrium.

We present the results of our experiments with different values of P , τ ,
and ρ, as well as different numbers of actions, in Figure 7, where we plot the
maximum distance dmax and the parameter λ computed according to Section
5.3 with shift = true. We also present the results with shift = false in
Section Appendix E.

We implement and evaluate all algorithms to solve a discrete version of
our game where the action space is reduced to a grid, with and without a
shift. We then report the value of NashConv QuasiNashConv as defined
in Section 5.1. We display the solution found by Regret Matching in Figure 8
and check that it matches the actual solution from Figure 2. We observe on
Figure 9 that vanilla Regret Matching outperforms all methods. In general,
Regret Matching performs much better than CFR, even when using less
actions, using softmax is detrimental, and shifting the action space does not
seem to impact performance much. CFR runs faster as it does not involve any
random sampling. Therefore, we use vanilla Regret Matching with shifting
in the rest of the experiments for the sake of simplicity. Figure 10 shows that
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Figure 7: Our experiments with different values of P , τ , and ρ, as well as different numbers
of actions, for the setting with shift = true show that, for almost all values of the
parameters, dmax is numerically zero. We cross out cases where the solver failed to find
a solution, most probably due to rounding errors which caused the small solution set to
disappear. In the few cases where dmax was not observed to be zero, λ is clearly zero,
indicating that the best correlated equilibrium is a Nash equilibrium.

the number of sampled actions is the main factor that drives the quality of
solutions.

For our experiments on equilibria in various settings, we use 500 actions
and 2000 iterations (hence 106 steps) of vanilla Regret Matching with shift-
ing. Our efficient implementation computes the equilibrium in just a few
seconds, allowing us to explore the effects of penalties, market frictions, and
correlation on risk-taking behavior and performance, as well as to evaluate
the effectiveness of various interventions and policies in a competitive envi-
ronment.

Our results demonstrate that penalties and market frictions have a signif-
icant impact on the strategic behavior of actors in competition. Specifically,
we find that penalties P decrease both the average risk taken r̄ by the play-
ers and their total reward u, while market frictions τ not only decrease the
average risk taken but also increase the total reward. We also find that
market frictions have a greater impact on the total reward in high-penalty
environments. In particular, in particularly inefficient markets with high τ ,
increasing penalties can improve cooperation and the total reward, as illus-
trated in Figure 11.

The correlation between firm risks also has a significant impact on risk-
taking behavior and performance. Specifically, players take more risks in
environments of negative correlation, which can improve their payoff, while
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Figure 8: Approximate and analytical solutions for P = 1, ρ = 0, τ = 0. Actions were
discretized to a grid of 212 with shift = true. The approximate solution was computed
by 104 iterations of regret matching.

Figure 9: We evaluate the performance of different algorithms in finding the Nash equi-
librium of the CfR game in the standard setting with P = R = 1, τ = 0, and ρ = 0,
without sharing. We reduce the game to a grid of a = 212 actions, and evaluate the
QuasiNashConv metric on 215 points. The algorithms are run for 104 iterations, where
an iteration is defined as an update to the strategy. For CFR, an iteration involves up-
dating the regrets based on the counterfactual outcomes of the game, while for regret
matching, an iteration is defined as a steps of the sampling, play, and update process.
Both CFR and regret matching do O(a2) operations per iteration. We do not include the
computation of the utility matrix in the computation time.
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Figure 10: We evaluate the performance of the vanilla regret matching algorithm in finding
the Nash equilibrium of the CfR game in the standard setting with P = R = 1, τ = 0,
and ρ = 0, without sharing. The quality of the resulting equilibrium depends mainly on
the number of actions a. We run the algorithm for t iterations, where the time complexity
of the algorithm is O(ta2) and the memory complexity is O(a2) as it requires computing
the reward matrix. We evaluate the QuasiNashConv metric on 8a points.

Figure 11: The two figures depict the relationship between the total reward u and the
average risk taken r̄ under different penalty P and market friction τ settings. The left
figure shows constant P level lines, while the right figure shows constant τ level lines. We
observe a linear relationship between u and r̄ when changing τ at constant P . We find
that this behavior holds for all values of ρ. Interestingly, there seems to exist a linear
relationship between r̄ and u when changing τ for fixed levels of P .
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they take less risks in environments of positive correlation. The impact of
correlation on performance is negative in efficient markets, but it can become
positive in noisy markets, as illustrated in Figure 12. These findings provide
valuable insights into the complex interplay between market structure, risk-
taking behavior, and performance in a competitive environment.

Figure 12: We plot the average risk taken r̄ and the total utility u as functions of the
correlation ρ between firm risks.

7. Economic Policy Implications and Real-World Case Studies

In this section, we aim to connect the insights gleaned from our model
with broader economic literature and real-world policy implications. Drawing
on established economic theories, particularly the Diamond-Dybvig model,
we offer a new perspective on how financial institutions manage risk and
competition. Further, we delve into how our model’s findings can inform
current policy debates, such as the regulation of financial advisory commis-
sions in the European Union and contract transferability among life insurers
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in France. Through this discussion, we illustrate the practical applicabil-
ity and potential impact of our theoretical framework on shaping economic
policies and practices.

7.1. Ties with the Diamond-Dybvig model

The Diamond-Dybvig model (Diamond and Dybvig, 1983) plays a central
role in our understanding of financial intermediaries, especially banks. This
seminal model represents a situation where banks provide liquidity transfor-
mation services. In a nutshell, it portrays a setting in which depositors need
to decide whether to withdraw their money early (impatient depositors) or
keep their money in the bank until a later period (patient depositors). Banks
offer a contract that allows depositors to withdraw their money early, but at
a lower return than if they wait until the end. This can lead to a bank run
if too many depositors decide to withdraw their money early.

By allowing financial institutions in our model to “choose” a parameter
that influences both a utility function and their likelihood of bankruptcy,
our approach shares similarities with the Diamond-Dybvig framework. This
feature makes our model particularly useful for studying phenomena such
as competition among banks over deposit contract interest rates, a scenario
that mirrors the dynamic modeled by Diamond and Dybvig.

Despite its parallels with the Diamond-Dybvig framework, our model
is distinct, original, and more expansive in scope. It is unconcerned with
specific financial metrics or measures, making it more generalizable across
different settings. Instead, our model pivots around the broadly applicable
concept of “failure probability”. This fundamental characteristic allows us to
abstract away from the complexities of real-world financial instruments and
focus on the core strategic interactions of players. By viewing the competition
through the lens of failure probability, we can derive insights that are not
confined to specific financial instruments or markets, but instead provide
a versatile theoretical tool that can be applied across various sectors and
scenarios. This innovative feature enhances the relevance and applicability
of our model in analyzing strategic risk-taking behavior.

Under certain circumstances, as we show in our study, market frictions,
such as customers not optimizing their choice of bank, can increase bank
profitability. Although this finding may seem intuitive, our formal model
provides a rigorous foundation for this result, focusing not on explicit interest
rates but rather on failure probabilities.
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Interestingly, our results also shed light on the implications of risk cor-
relation for the equilibrium. In cases where the failure events are negatively
correlated, market frictions appear to have little effect on the equilibrium.
In contrast, when risks are positively correlated – mirroring the reality of
endogenously generated financial risks tied to financial markets – a lack of
market friction can spur banks to take on greater risk. This suggests that the
optimal situation for both customers and banks arises when the correlation
between endogenous risks is zero or negative. Under these conditions, lower
frictions can benefit customers without harming banks. On the other hand,
if risks are positively correlated, market frictions can harm customers while
benefiting banks, creating an incentive for banks to increase these frictions
(e.g., by fostering customer loyalty or withholding information).

Moreover, the impact of failure penalties (or the absence of a safety
net) can exacerbate this dynamic, suggesting that regulators could miti-
gate perverse incentives by reducing the penalty parameter P in a positively
correlated environment, such as through bailouts or other protective mea-
sures (e.g., deposit insurance, liquidity provision, and bank resolution mech-
anisms). This perspective aligns with a strand of literature that extrapolates
from the Diamond-Dybvig model to inform policy making (Bhattacharya
et al., 1985; Ennis and Keister, 2009).

7.2. Practical applications in current policy debates

Outside of the banking sector, our framework has implications for other
policy debates. In the European Union, for instance, the Financial Ser-
vices Commissioner, Mairead McGuinness, recently proposed banning “in-
ducements” – commissions paid by banks or insurers to financial advisors
who sell their products (Jones, 2023). Proponents argue this would enhance
transparency and reduce costs. Critics, however, fear it could inhibit access
to financial advice. Within our model, increasing transparency equates to
reducing the friction parameter τ , which alters the equilibrium, potentially
heightening risk for financial institutions but also augmenting returns for
consumers. Our findings indicate that regulators might safeguard consumers
and influence prices simply by mandating transparency. However, we caution
that the impact of such a policy on market frictions is uncertain, as it could
inadvertently limit access to information via advisors.

Furthermore, in France, a legislative proposal by MPs Husson and Mont-
golfier (Husson and de Montgolfier, 2023) seeks to enhance the transferability
of contracts between life insurers, effectively reducing market frictions. Our
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framework suggests that, in response, insurers could take on more risk due
to increased competition. However, the relationship between risk and inter-
est rates may also change, as performance becomes costlier in terms of risk
when the duration of contracts decreases because of enhanced transferability.
Consequently, while our model predicts an uptick in the risks assumed by
insurers, the ultimate benefit to savers remains ambiguous.

8. Conclusion

In this study, we thoroughly examined competition models where partic-
ipants strategically choose their risk levels, with those who take on more risk
potentially outperforming their competitors.

We devised and tested multiple algorithms to solve our game in its dis-
crete form, with vanilla Regret Matching proving to be the most effective.
We utilized this efficient implementation to delve into the impacts of penal-
ties, market frictions, and risk correlations on strategic behavior and overall
performance. Additionally, we scrutinized the effectiveness of diverse inter-
ventions and policies within this competitive landscape.

Our research revealed that market frictions tend to lower the average risk
taken while boosting the total reward. Moreover, we found that enhancing
failure penalties can foster cooperation and augment the total reward, par-
ticularly in inefficient markets. Our exploration also showed that negative
correlations among failure events stimulate risk-taking, while positive corre-
lations may discourage it in efficient markets but potentially encourage it in
less predictable, noisy markets.

One noteworthy aspect of our study is its parallel with the Diamond-
Dybvig framework. Our model, similar to Diamond-Dybvig, examines how
financial institutions select parameters influencing their utility functions and
likelihood of failure. However, our model is more generalized, focusing on
universally applicable notions of failure probabilities, thereby enabling us to
study the dynamics of strategic competition in a broader array of scenarios.

We also showcased the adaptability of our model for policy exploration.
By imposing policy measures such as transparency requirements or facilitat-
ing contract transferability, we demonstrated how policy changes can influ-
ence the equilibrium of risk-taking and consequently, the rewards.

Our findings offer substantial insights for economics, finance, and poli-
cymaking. By understanding how market frictions and penalties influence
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competition, firms and governments can make more informed strategic de-
cisions leading to more efficient markets. Moreover, our use of algorithmic
solvers for games with continuous action sets illustrates the potential for
handling more intricate models lacking closed-form solutions.

In conclusion, our work provides a robust framework for modeling and
analyzing strategic interactions in continuous action games, extending its
implications far beyond to enrich economic research and practice.
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Appendix A. Proof of Theorem 2.5

We follow broadly the same scheme as Theorem 3.6 of Lotker et al. (2008),
mutatis mutandis since the equations are different. Their proof proceeds by
supposing the existence of a Nash equilibrium and deriving properties to
characterize it. Contrary to what they claim, we can prove the existence of
a Nash equilibrium without any computation using Dasgupta and Maskin
(1986). Let (f1, f2) be the density functions of Player 1 and 2 in a Nash
equilibrium. We note S1, S2 their support.

Proposition A.1. For almost all x ∈ S1, f2(x) ∼ 1
(1−x)3

and conversely.

Proof. Let us simplify the notations by noting a ∼ f1 and b ∼ f2 the random
moves of players 1 and 2. We note u∗

1 the utility of Player 1 and b̄ the
expectation of b. Then, by Theorem 2.4, for almost all a ∈ S1,

u∗
1 = u1(a) = Eb[u1(a, b)]

= Eb [Rb(1− a)− aP + [a > b](1− a)(1− b)R]

= Rb̄(1− a)− aP + (1− a)

∫ a

0

(1− b)Rf2(b)db∫ a

0

(1− b)Rf2(b)db =
u∗
1 + aP

1− a
+Rb̄

We derivate to obtain f2(a) =
u∗
1+P

R(1−a)3
.
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Proposition A.2. With the exception of a set measure zero, S1 = S2.

Proof. We apply the previous result that implies x ∈ S1 =⇒ f2(x) ̸= 0.

Proposition A.3. inf S1 = inf S2 = 0

Proof. Suppose inf S1 = inf S2 = l > 0. By Theorem 2.4, u1(l) = u∗
1 =

maxx u1(x). But u1(0) > u1(l) since playing 0 decreases the risk of Player
1 without compromising its chances to get the reward. By contradiction,
inf S1 = inf S2 = 0.

Proposition A.4. For all intervals [x1, x2] with 0 < x1 < x2 < supS1 we
have that

∫ x2

x1
f1(x)dx > 0

Proof. Suppose that there is an interval [x1, x2] such that
∫ x2

x1
f1(x)dx = 0.

Assume that this interval is maximal so that x1, x2 ∈ S1. We also have that∫ x2

x1
f2(x)dx = 0 since S1 = S2. Hence Player 2 never plays between x1 and

x2 and this implies that u1(x1) > u1(x2) since Player 1 can decrease their
risk without compromising its chances to get the reward. This contradicts
the fact that u1(x1) = u1(x2) since they are both in the support of the Nash
equilibrium.

Proposition A.5. There is no point x with positive probability.

Proof. Suppose the existence of a point x with positive probability (which
means that f1(x) is a Dirac. Since we determined the expression of f1(x)
for almost every x, there is a ε > 0 such that there is no other point with
positive probability in [x, x + ε]. Hence, there is 0 < ε′ < ε such that
u2(x + ε′) > u2(x) since any positive ε′ improves the probability of winning
the reward by P[Player 1 plays x] and the risk increment goes to 0 with
ε′.

Theorem 2.5. Up to a set of measure zero, the CfR game admits a unique
Nash equilibrium. This equilibrium is symmetric and its distribution is f(x) =[
x < 1−

√
k−1
k+1

]
k−1

(1−x)3
with k :=

√
(P + 1)2 + 1. The the average move is

r̄ = k − (P + 1) and the utility of each player is u∗ = r̄.

Proof. Up to a set of measure 0 and on which the probability is 0, we have
determined the expression of f1 and f2 above up to a constant. This means
that f1 = f2 = f . We still have to find the constant and the upper limit of
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the support. Let us reiterate the calculations, this time using the fact that
0 ∈ S with S the support of f . This means that for any a ∈ S:

0 = u1(a)− u1(0)

= Eb[u1(a, b)− u1(0, b)]

= Eb [Rb(1− a)− aP + [a > b](1− a)(1− b)R−Rb]

= −aRb̄− aP + (1− a)

∫ a

0

R(1− b)f(b)db

∫ a

0

R(1− b)f(b)db = (Rb̄+ P )
a

1− a

We derivate to obtain:

f(a) =

(
b̄+

P

R

)
1

(1− a)3

We now have two unknowns and two unknowns:{
h := supS such that

∫ h

0
f(x)dx = 1

b̄ =
∫ h

0
xf(x)dx

We define P := P
R
.∫ h

0

f(x)dx =
b̄+ P

2

(
1

(h− 1)2
− 1

)
= 1

∫ h

0

xf(x)dx = b̄ =
b̄+ P

2

h2

(h− 1)2

We get

b̄ =
h2

1− (h− 1)2

2
(h− 1)2

1− (h− 1)2
− P =

h2

1− (h− 1)2

2(h− 1)2 − P + P (h− 1)2 − h2 = 0

(P + 1)h2 − (2P + 4)h+ 2 = 0
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Hence, h = 2+P±
√
P 2+2P+2

1+P

Since h < 1, we get

h =
2 + P −

√
P 2 + 2P + 2

1 + P

= 1−
√

(P + 1)2 + 1− 1

1 + P

We remark that (
√

(P + 1)2 + 1 + 1)(
√
(P + 1)2 + 1− 1) = (P + 1)2

Hence h = 1−
√√

(P+1)2+1−1√
(P+1)2+1+1

b̄+ P =
2

1
(h−1)2

− 1

=
2√

(P+1)2+1+1√
(P+1)2+1−1

− 1

=
√
(P + 1)2 + 1− 1

Finally, f(x) =
[
x < 1−

√
k−1
k+1

]
k−1

(1−x)3
with k :=

√
(P + 1)2 + 1

From the expressions above, we get b̄ = k − 1− P and u∗ = Rb̄.

Appendix B. Estimation of rmax and w in the multiplayer setting

We recall the equations:

f(x) =
P + w

(n− 1)(1− x)2+
1

n−1 (Px+ w)1−
1

n−1

∫ rmax

0

f(x)dx = 1∫ rmax

0

xf(x)dx = r̄

with
w := r̄n−1
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We could estimate the integrals by numerical integration. However r̄
becomes smaller when increasing n, which causes f to have a peak at 0 and
renders the integral estimates unreliable. Computations 3 give us∫

f(x) =
w + nP (1− x) + Cx

n(1− x)(P + w)
n−1

√
Cx+ w

1− x∫
xf(x) =

w − nw(1− x) + Cx

n(1− x)(P + w)
n−1

√
Cx+ w

1− x

Hence

w + nP (1− rmax) + Prmax

n(1− rmax)(P + w)
n−1

√
Prmax + w

1− rmax

− w + nP

n(P + w)
n−1
√
w = 1 (B.1)

w − nw(1− rmax) + Prmax

n(1− rmax)(P + w)
n−1

√
Prmax + w

1− rmax

− w − nw

n(P + w)
n−1
√
w = n−1

√
w

(B.2)
The value of integrals are increasing in rmax since f(x) is positive, hence

for any value of w we can find the corresponding value of rmax by binary
search using (B.1). Then we are left with finding the value of w using (B.2) .

We observe experimentally that the function w →
∫ rmax(w)

0
xf(x)dx− n−1

√
w

seems to have only one root and that it is positive before that root and
negative after that root. We therefore use binary search.

Equation (B.2) also defines w as a fixed point and the iterative algorithm

w ←
(∫ rmax(w)

0
xf(x)

)n−1

also converges, although it seems to sometimes

loop between a few close values because of numerical errors.
We remark that w goes very quickly to 0 as n increases. This causes

numeric errors in the computations of the primitives at 0 that we fix by
storing logw instead of w. For the same reason, we compute the integrals in
log space.

Equation (B.2) is more interesting as the indefinite integral F (rmax)
can be negative. Depending on the sign, we store either logF (rmax) or
log−F (rmax).

3We used Wolfram Alpha with ReplaceAll[Integrate[(1/(1 - x)) D[((w + x

P)/(1 - x))^(1/(n - 1)), x], x], n -> 42] for various values of n, found a pattern
and checked that the derivatives match.
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Finally, we apply the Log-Sum-Exp Trick to compute the value of the
integral in log space. The final algorithm to find w and rmax takes less than
1 ms on a laptop for any value of the parameters.

Appendix C. Proof of Theorem 4.3

Theorem 4.3. For ρ = 1, the equilibrium is given by:

p(x) =
1 + P

1− x

[
x < 1− exp

(
− 1

P + 1

)]
We have

r̄ = 1− (P + 1)

(
1− exp

(
− 1

P + 1

))
For ρ = −1, the equilibrium is given by:

p(x) =
P

(1− 2x)3/2

[
x <

1

2
− P 2

2(P + 1)2

]
We have

r̄ =
1

2P + 2

Proof. We reuse the proof of Appendix A, only modifying the calculations.
We note a and b the actions of the players, aka their individual probability
of failure noted r1 and r2 above and note c their joint probability of failure
noted r̃ above. c is a function c(a, b, ρ). We note p the probability distribution
corresponding to the Nash equilibrium. In both cases, we have the equality∫ 1

0

p(b)c db+ aP =

∫ a

0

p(b)(1− a− b+ c) db

When ρ = 1, c = min(a, b)∫ a

0

p(b)b db+ a

∫ 1

a

p(b) db+ aP =

∫ a

0

p(b)(1− a) db

We derivate wrt a:

ap(a) +

∫ 1

a

p(b) db− ap(a) + P = p(a)(1− a)−
∫ a

0

p(b) db
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p(x) =
1 + P

1− x

We solve
∫ rmax

0
p(x) dx = 1 as log(1− rmax) = − 1

P+1
, thus

rmax = 1− exp

(
− 1

P + 1

)
Finally, a simple computation gives

r̄ = 1− (P + 1)

(
1− exp

(
− 1

P + 1

))
When ρ = −1, c = max(0, a + b − 1). In other terms, c = 0 if b < 1 − a

and c = a+ b− 1 if b > 1− a.
We first treat a > 1

2
, aka a > 1−a, to show by contradiction that p(a) = 0.∫ 1

1−a

p(b)(a+ b− 1) db+ aP =

∫ 1−a

0

p(b)(1− a− b) db

aP =

∫ 1

0

p(b)(1− a− b) db = 1− r̄ − a

This is impossible, thus p(a) = 0 for a > 1/2.
We now suppose a < 1− a:∫ 1

1−a

p(b)(a+ b− 1) db+ aP =

∫ a

0

p(b)(1− a− b) db∫ 1

1−a
p(b)(a+ b− 1) db = 0 since 1− a > 1

2
. We derivate twice to get:

(1− 2a)p(a) =

∫ a

0

p(b) db+ P

1− 2a)p′(a)− 3p(a) = 0

The first equation gives p(0) = P . Combined with the second differential
equation, we get:

p(x) =
P

(1− 2x)3/2
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Similarly, we solve

rmax =
1

2
− P 2

2(P + 1)2

r̄ =
1

2P + 2

Appendix D. Proof of Theorem 5.1

Theorem 5.1. Given a polytope P defined by constraints c1, . . . , cm

Pr [SumDiamSquared(K, c1, . . . , cm) < ε] ≤ Fχ2

(
ε

diam(P )
, K

)
with Fχ2(·, K) the cumulative distribution function of the χ2 distribution

with K degrees of freedom.

Proof. We suppose that the diameter d is obtained in some unit direction a⃗:

max
x∈P

a · x−min
x∈P

a · x = d

We define D the line

[
argmin

x∈P
a · x, argmax

x∈P
a · x

]
. Then, for any v,

max
x∈P

v · x−min
x∈P

v · x ≥ max
x∈D

v · x−min
x∈D

v · x = d× |v · a|

Hence,

Pr

[
max
x∈P

v · x−min
x∈P

v · x < ε

]
≤ Pr

[
|v · a| < ε

d

]
If v is a vector of iid standard Gaussian variables, v · a ∼ N (0, 1) and

(v·a)2 follows a χ2 distribution with 1 degree of freedom. The sum of multiple
iterations will follow:

Pr

[
K∑
i

(max
x∈P

vi · x−min
x∈P

vi · x)2 < ε

]
≤ Pr

[
K∑
i

z2i <
ε

d

]
where zi ∼ N (0, 1) are independent normal variables.
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∑K
i z2i follows a χ

2 distribution withK degrees of freedom. With Fχ2(x,K)
the cumulative distribution function, we get:

Pr

[
K∑
i

(max
x∈P

vi · x−min
x∈P

vi · x)2 < ε

]
≤ Fχ2

(ε
d
,K

)

Appendix E. Linear equilibrium in finite approximations with shift = false
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