
HAL Id: hal-03968100
https://paris1.hal.science/hal-03968100v1

Submitted on 1 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The state of adoption and the challenges of systematic
variability management in industry

Thorsten Berger, Jan-Philipp Steghöfer, Tewfik Ziadi, Jacques Robin, Jabier
Martinez

To cite this version:
Thorsten Berger, Jan-Philipp Steghöfer, Tewfik Ziadi, Jacques Robin, Jabier Martinez. The state of
adoption and the challenges of systematic variability management in industry. Empirical Software
Engineering, 2020, 25 (3), pp.1755-1797. �10.1007/s10664-019-09787-6�. �hal-03968100�

https://paris1.hal.science/hal-03968100v1
https://hal.archives-ouvertes.fr


https://doi.org/10.1007/s10664-019-09787-6

The state of adoption and the challenges of systematic
variability management in industry

Thorsten Berger1 · Jan-Philipp Steghöfer1 ·Tewfik Ziadi2 · Jacques Robin3 ·
Jabier Martinez4

© The Author(s) 2020

Abstract
Handling large-scale software variability is still a challenge for many organizations. After
decades of research on variability management concepts, many industrial organizations have
introduced techniques known from research, but still lament that pure textbook approaches
are not applicable or efficient. For instance, software product line engineering—an approach
to systematically develop portfolios of products—is difficult to adopt given the high
upfront investments; and even when adopted, organizations are challenged by evolving their
complex product lines. Consequently, the research community now mainly focuses on re-
engineering and evolution techniques for product lines; yet, understanding the current state
of adoption and the industrial challenges for organizations is necessary to conceive effective
techniques. In this multiple-case study, we analyze the current adoption of variability man-
agement techniques in twelve medium- to large-scale industrial cases in domains such as
automotive, aerospace or railway systems. We identify the current state of variability man-
agement, emphasizing the techniques and concepts they adopted. We elicit the needs and
challenges expressed for these cases, triangulated with results from a literature review. We
believe our results help to understand the current state of adoption and shed light on gaps to
address in industrial practice.

Keywords Variability management · Software product lines · Multiple-case study ·
Challenges

1 Introduction

Companies often need to engineer a portfolio of software variants instead of one-size-
fits-all solutions. Creating variants allows tailoring systems towards varying stakeholder

Jabier Martinez contributed to this work during his PostDoc position at the Sorbonne University, France

Communicated by: Tao Yue

� Thorsten Berger
thorsten.berger@chalmers.se

Extended author information available on the last page of the article.

Empirical Software Engineering (2020) 25:1755–1797

Published online: 4 April 2020

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-019-09787-6&domain=pdf
mailto: thorsten.berger@chalmers.se


requirements—different functionalities, but also non-functional requirements, such as per-
formance or power consumption. Variant-rich systems are especially common in traditional
engineering domains including automotive, industrial automation, and telecommunication.
In addition, recent trends, such as the Internet of Things (IoT) (Atzori et al. 2010), cyber-
physical systems (Krüger et al. 2017; Romero et al. 2015) or robotics (Garcia et al. 2019),
further increase the need for customization.

Software product line engineering (SPLE) aims at effectively engineering a variant-rich
system—a software product line—in an application domain. SPLE advocates establishing
an integrated software platform from which individual variants can be derived, typically in
an automated, configuration-driven process. SPLE provides a range of dedicated concepts,
including processes, modeling techniques or design patterns, supported by commercial
and open-source tools, such as pure::variants (Beuche 2004), Gears (Krueger 2007) or
FeatureIDE (Kästner et al. 2009).

Recognizing the benefits, especially the radically decreased time-to-market for new vari-
ants, industry has adopted SPLE concepts (Jepsen and Beuche 2009; Flores et al. 2012;
Berger et al. 2013a; Mohagheghi and Conradi 2007; Chen and Ali Babar 2010; Bastos
et al. 2017; Thörn 2010) at different levels of maturity (Bosch 2002). Yet, many organiza-
tions still lament an adoption barrier. In fact, most organizations create variants in ad hoc
ways (Berger et al. 2013a), such as clone & own, which is simple and cheap (Dubinsky et al.
2013; Businge et al. 2018; Stanciulescu et al. 2015; Staples and Hill 2004), but does not
scale with the number of variants and then requires product-line migration efforts (Assunção
et al. 2017; Faust and Verhoef 2003a; Jepsen et al. 2007b; Debbiche et al. 2019; Akesson
et al. 2019; Fenske et al. 2014). When adopted, a product line can also limit flexibility, since
evolving the platform affects many variants (Melo et al. 2016). To improve this situation,
we need to improve our empirical understanding of the state of product-line adoption and
the needs for improvement in industrial practice.

Such an updated empirical understanding of industrial needs helps steering the scope of
research efforts. Consider the many SPLE concepts that have been conceived by researchers.
Already until 2011, a survey identified 91 variability management approaches (Chen and
Babar 2011), most of which rely on feature modeling to specify variability informa-
tion (Kang et al. 1990; Czarnecki et al. 2012; Acher et al. 2013a; Nesic et al. 2019).
Another trend was to build hundreds of dedicated analyses for product lines, typically by
lifting single-system analyses (e.g., model checking) (Midtgaard et al. 2014; Liebig et al.
2013; Sattler et al. 2018). A recent survey (Thüm et al. 2014) identified 123 analyses
from the literature, including lifted type-checking, static-analysis, and model-checking tech-
niques. Already eight years ago, a survey (Benavides et al. 2010) identified 30 different
feature-model analyses in 53 papers. Other analyses check the consistency between fea-
ture models and implementation artifacts or analyze code properties. Notably, more recent
work (Mukelabai et al. 2018b) shows that industrial needs substantially deviate from the
state of the art, while most analyses are not applicable in industrial contexts. Likewise,
traceability of features across a product line’s lifecycle is another challenge (Vale et al.
2017), where the state of the art and the state of the practice differ significantly, and the
low industrial relevance of solutions proposed in the literature prevents a wider adoption of
traceability for product lines in industry.

We present a study on the state of adoption of variability-management concepts and
remaining practical challenges in twelve industrial cases from different organizations engi-
neering variant-rich systems. We used document analysis, semi-structured interviews, and
focus groups on cases that cover a wide range of domains and development scales, from
a rather small web-application case to ultra-large software engineering for automotive or

Empirical Software Engineering (2020) 25:1755–17971756



industrial component production. In addition, we conducted a lightweight literature review
on relevant SPLE adoption case studies, experience reports, surveys, and meta-studies,
supporting the formulation and synthesis of challenges we present.

Our industrial cases primarily represent the development in a small part of a com-
pany, such as a single division or development team. We refer to these as use cases in
the remainder. We also investigated cases provided by tool vendors who are looking to
integrate product-line engineering concepts into their tools, referred to as tool cases. For
our study, we combined eliciting structured case descriptions with focus-group interviews
to identify the concepts that were adopted, as well as variability drivers and variable
assets.

We report our cases’ drivers of variability, the SPLE concepts they adopted, as well as
remaining challenges to be addressed by the research community and tool vendors.

We believe our results support practitioners and researchers. Practitioners can use our
results as a baseline to compare their own organization’s capabilities and understand which
concepts are at their disposal for future development. Researchers obtain the current state
of adoption of SPLE concepts in industry, as well as they learn about remaining challenges.

2 Background

We briefly discuss strategies and important concepts for engineering variant-rich systems,
gradually from ad hoc strategies to more advanced variant management strategies and
concepts, partly inspired by the levels proposed by Antkiewicz et al. (2014).

Clone & own An organization creates variants by copying and adapting existing variants to
new requirements. Assets are propagated in an ad hoc way among the variants. No platform
or any kind of systematic variability management exists. Clone & own is a simple and read-
ily available (Dubinsky et al. 2013; Duc et al. 2014; Businge et al. 2018; Stanciulescu et al.
2015) strategy for developing variants, but does not scale with the number of variants and
easily causes maintenance overheads.

Clone Management Enhancing the governance, an organization could adopt a clone-
management framework. Such frameworks (Rubin et al. 2012, 2013a, b; Pfofe et al. 2016;
Antkiewicz et al. 2014) have been proposed, but have not found any documented adoption.
They allow managing clones by using features as the main entities of reuse (instead of code
assets) and record meta-data about the clones.

Configuration An organization can introduce configuration mechanisms to reduce redun-
dancies. Such a mechanism is an implementation technique to realize calibration or
variation. In the latter case, it is commonly referred to as a variability mechanism (Van Gurp
et al. 2001; Berger et al. 2014c), ranging from simple conditional compilation (e.g., #ifdef)
via control-flow conditional statements (e.g., IF), build systems (Berger et al. 2010a; Diet-
rich et al. 2012), and component frameworks to so-called feature modules (Apel and Kästner
2009) or delta modules (Schaefer et al. 2010), or combinations thereof (Behringer et al.
2017; Mukelabai et al. 2018a). The configuration options (a.k.a., calibration parameters or
just parameters) and their constraints are typically declared in a model, such as a feature
model (explained shortly). Using such a model, an interactive configurator tool can support
the configuration process, guiding users by propagating choices or resolving configuration
conflicts.

Empirical Software Engineering (2020) 25:1755–1797 1757



Platform Further scaling the development, an organization can adopt an integrated plat-
form. There, instead of cloning, all variants are integrated into one software platform. By
exploiting the commonalities among the variants, redundancies are removed while variabil-
ity among the variants is represented by variation points within the platform. Variability is
typically described in terms of features declared in a feature model, as follows.

Feature Using the notion of feature is core to scaling the development, for instance, when
adopting a platform. A feature represents end-to-end functionality of a system (Berger et al.
2015). Features are intuitive entities that can be understood by different roles, including
marketing experts, project leads, and customers. Features abstractly represent assets and are
tracked, for instance, in a database or, more formally, in a feature model. Many features also
serve as a configuration option (a.k.a., optional feature).

FeatureModel Keeping an overview understanding of features, organizations should create
a feature model—an intuitive, tree-like representation of features and their constraints (Kang
et al. 1990; Czarnecki et al. 2012; Acher et al. 2013a; Nesic et al. 2019). The typical graphi-
cal notation is shown in Fig. 1, representing a small excerpt of the Linux kernel’s variability
model. For brevity, we refer to related work (Berger et al. 2010b, 2013b, 2014c) for an
introduction into feature models and this particular example.

SPLE Process For an organization to effectively engineer a platform, textbook SPLE meth-
ods (Apel et al. 2013; Pohl et al. 2005; Czarnecki and Eisenecker 2000) introduce two main
processes: domain engineering, which aims at engineering the platform, and application
engineering, which aims at deriving individual variants from the platform. Each process
comprises typical software-engineering tasks, such as requirements engineering, design,
implementation and quality assurance, with domain engineering also containing scoping
(determining and prioritizing platform features).

Product-Line Quality Assurance Enhancing the quality assurance, organizations can adopt
analyses of product lines (Thüm et al. 2014; Benavides et al. 2010; Mukelabai et al. 2018b),
which differ conceptually from single-system analyses. The latter, especially dynamic anal-
yses such as testing, can only be used for individual variants. While they can be beneficial to
optimize individual variants, single-system analyses are usually insufficient when a product-
line platform has been adopted and errors related to all possible variants should be found.
For instance, unwanted feature interactions can occur for certain variants based on the com-
bination of features in the variant. Applying single-system analyses for finding such errors
requires configuration sampling (Cohen et al. 2007; Perrouin et al. 2010).

Fig. 1 Feature model example (Berger et al. 2014c)

Empirical Software Engineering (2020) 25:1755–17971758



3 Methodology

Our study aims to “collect and summarize evidence from a large representative sample of
the overall population” (Molléri et al. 2016) and can therefore be constructed as a survey.
We follow the well-known guidelines by Kitchenham and Pfleeger (2002) to structure this
section, and we rely on the simplified 7-step process of Linåker et al. (2015).

3.1 Aims and objectives

As laid out in Section 1, the motivation for our study was to understand which variability
management concepts are adopted in substantial industrial cases, and the challenges that
industrial practitioners perceive in their daily work, determining the concepts that are still
needed. Coming from an academic perspective, we also aimed to identify in how far the
academic literature on SPLE takes industrial circumstances into account and to what extent
the solutions offered by academia correspond to the practical challenges. Our discussions
with practitioners, and our lightweight literature review, supported our view that there is a
disconnect between SPLE practice and theory. We formulated three research questions:

RQ1: What are drivers for variability in our cases?
RQ2: Which SPLE concepts are adopted in our cases?
RQ3: What concepts are missing for our cases and for cases previously reported in the

literature?

3.2 Planning, scheduling, and designing the study

Based on the research questions, we planned a descriptive study using qualitative data. The
study was planned to be conducted in several iterations where data was collected repeatedly,
then analyzed, and finally followed up. The data collection itself ran during 2018. In addi-
tion, we conducted a lightweight literature review on industrial case studies and experience
reports on adopting SPLE, to triangulate with the challenges from our twelve cases.

Our personal network gave us access to companies that engineer variant-rich systems and
intend to invest into improving their engineering. We therefore employed purposive sam-
pling, in particular expert sampling (Etikan et al. 2016) in which we identified those experts
that deal with the problems we set out to investigate. We created a list of potential candi-
dates and narrowed it down by excluding those with insufficient resources to participate.
We also selected companies that would provide a specific viewpoint and tried to achieve
heterogeneity both in terms of company size, age, and size of the system, and implementa-
tion technology. We also achieved a good geographical distribution by including companies
from five different countries in the European Union.

The final list consisted of twelve companies, nine of which create a variant-rich system
and three of which are tool vendors selling software-engineering tools that want to integrate
variability mechanisms into their existing tools. For assuring anonymity, we report the cases
we studied and only provide high-level information about the different companies, and the
meetings we had with them.

3.3 Data collection

The primary data collection method was a case description provided by the companies that
describes the case for product line engineering. It relied on a template that included the

Empirical Software Engineering (2020) 25:1755–1797 1759



product and market context, the technology context, a description of existing processes and
automation techniques, goals, and key performance indicators, the variability management
practices currently in use, and the principal assets, their reuse and management. The tem-
plate was piloted with one of the organizations and subsequently refined. The organizations
involved in this study iteratively improved the case descriptions to homogenize them and to
ensure that relevant information was included.

Based on the description, we conducted a preliminary analysis to identify open questions.
This resulted in an interview guide for each of the cases that was used in semi-structured
interviews or in small focus groups. While the interviews were conducted with experts from
individual companies, the focus groups included representatives from several companies.
We chose to use the latter format when cases were similar to each other and we needed to
understand the differences and similarities better, and when resources allowed such a meet-
ing. Each of these occasions included one or two researchers and at least two industrial
participants. In all cases, the industrial participants were engineers working actively with
software product lines. Each interview or focus group lasted between 30 and 60 minutes
and was conducted by the researchers in person. Data was collected in the form of exten-
sive notes and shared among all authors. The semi-structured format allowed us to explore
additional aspects that were not covered in the original case descriptions. Specifically, we
had the following number of small focus-group meetings or interviews: power electronics (3
meetings, 4 participants), traffic control (1 meeting, 1 participant), chip modeling (2 meet-
ings, 3 participants), modeling platform (2 meetings, 2 participants), railway (8 meetings,
3 participants), aerospace (3 meetings, 4 participants), truck manufacturing (2 meetings, 3
participants), web application (1 meeting, 2 participants), automotive firmware (2 meetings,
3 participants), requirements engineering (1 meeting, 1 participant).

On two occasions, we held larger focus group meetings with a majority of the involved
researchers and companies. This assured that we met representatives of all companies at
least once. We discussed adopted concepts and needs, providing another opportunity to
explore differences and similarities.

We also conducted a lightweight literature study where we collected and inspected meta-
studies, surveys, exploratory studies, industrial case studies, and experience reports. Even
though, we know from experience that the large majority of these publications focus on
praising the benefits of SPLE (e.g., cost savings and shorter time to markets) while not pro-
viding sufficiently detailed data on the adopted concepts and on challenges (i.e., remaining
challenges for SPLE research, as opposed to those that were solved in the case study), we
decided to systematically collect those publications and triangulate our synthesized chal-
lenges with those from these cases. To collect publications, we used our own expertise as
well as we consulted the SPLE community’s “Hall of Fame,”1 a book with a collection of
successful SPLE cases (van der Linden et al. 2007), and the Software Engineering Institute’s
catalog of case studies (Software Engineering Institute 2008).

3.4 Data Analysis

We analyzed the data in several iterations. The first iteration based on the use case descrip-
tions was mainly targeted at identifying which aspects of the current product line approach
in the cases remained unclear—to be able to follow-up with our industrial contacts. For
this purpose, we transformed each use case into a narrative as presented in Section 6. This

1http://www.splc.net/fame.html

Empirical Software Engineering (2020) 25:1755–17971760

http://www.splc.net/fame.html


allowed us to structure the information and find aspects that needed clarification. We then
derived questions for semi-structured interviews and small focus groups from this. The
results also guided the discussion in the larger focus groups. We met regularly to discuss the
open questions and to gain an overall understanding of the issues.

We then merged information from the interviews and the small and large focus groups in
the common narrative. In addition, we performed coding on the available data. The codes
focused on the current practices and the challenges stated by the companies. We pre-defined
codes based on variability management concepts and known challenges from the litera-
ture, and complemented these with emergent codes that were based on the first analysis
round and the information from the interviews and focus groups. Once a stable set of codes
emerged, we conducted a coding workshop to harmonize and refine the codes. Again, all
information available at this point was used to validate the codes, to join codes with a high
degree of similarity, and to refine the codes, in particular with respect to their concrete for-
mulation. If questions arose during the data analysis or the researchers disagreed on the
data, we used personal contacts within the organizations to clarify issues quickly before
misunderstandings could arise or bias could manifest.

Once the concepts were identified and the authors agreed on the adopted concepts, we
forwarded the information to our contacts for member checking. We also asked clarifying
questions about the overall study and the long-term perspective of the cases.

For the literature review, we analyzed the collected publications by reading through the
paper, specifically searching for challenges related to variability management concepts that
were not solved within the respective case. We mapped those challenges to our challenges,
enriching the challenge descriptions. Of course, the validity of reporting challenges from
other cases, most of which are at least one or two decades old, is lower than the chal-
lenges we extracted from our companies. Still, they substantially enhance the relevance and
richness of our reported challenges.

4 Literature review

In our lightweight literature review we identified the following related meta-studies,
surveys, case studies, and experience reports.

4.1 Meta studies

Marimuthu and Chandrasekaran (2017) conduct a tertiary study of systematic studies on
variability management. They provide detailed bibliometrics, but do not extract any chal-
lenges that might be reported in their identified studies. Bastos et al. (2017) investigate
product-line adoption in small and medium-scale companies via a multi-method approach
comprised of a mapping study, a case study, and a survey among experts. They mainly elicit
success factors and practices, but no challenges. Chen et al. (2009) conduct a literature
review on variability management and, among other results, list the challenges evolution
(“systematic approach to provide a comprehensive support for variability evolution is not
available”), scalability of techniques, as well as testing and quality assurance in general. In
another study, Chen and Babar (2011) study the state of evaluation of variability manage-
ment techniques, concluding the lack of proper evaluations as a challenge that researchers
should address. Finally, Mohagheghi and Conradi (2007) conduct a literature study on
the benefits of software reuse (not limited to reuse via variability management), emphasi-
zing that: “For industry, evaluating reuse of COTS or OSS components, integrating reuse

Empirical Software Engineering (2020) 25:1755–1797 1761



activities in software processes, better data collection and evaluating return on investment
are major challenges.”

4.2 Exploratory studies

Chen and Ali Babar (2010) present an exploratory study relying on focus-group research
investigating the perceived challenges of variability management using eleven participants
from organizations that do consulting or in-house SPLE. With respect to variability mod-
eling, the focus group reports, among others, the following challenges: visualization of
features, evolution and maintenance of models (in particular dependency management), and
variability modeling being not very user-friendly. In general, the study questions academic
techniques. It also points out challenges when migrating to SPLE (cf. Section 7.3), specif-
ically that clone detection techniques are not applicable to multiple systems. Furthermore,
while structural variability is well supported, behavioral and timing aspects are not.

4.3 Surveys

A survey of variability modeling in industrial practice by Berger et al. (2013a) lists spe-
cific challenges for variability modeling, including visualization, model evolution, and
traceability. Thörn (2010) survey variability management in small and medium-scale com-
panies in Sweden; however, the reported challenges are rather general and not specific to
variability-management concepts.

4.4 Experience reports and case studies

Over the last decades, practitioners and researchers have published a large number of case
studies and experience reports, the majority between the end of the 1990s and the beginning
of the 2000s. We now list all cases we identified. When available, we provide all references
that describe the case in detail. However, some cases were described in the respective source
only, not as part of a publication on its own.

All the cases in the book of van der Linden et al. (2007) describe successful adoptions of
product lines, where usually the typical concepts are adopted (platform, feature modeling,
automated product derivation, automated testing); for each, the obstacles and limitations
in SPLE are also described. We inspected all the cases: AKVAsmart, Bosch (Tischer et al.
2011; Steger et al. 2004; Thiel et al. 2001), DNV Software, MarketMaker (Verlage and Kies-
gen 2005), Nokia Mobile Phones, Nokia Networks, Philips Consumer Electronics Software
for Televisions, Philips Medical Systems, Siemens Medical Solutions, and Telvent. Further-
more, the book also referenced the following cases, each of which we inspected as well:
Salion (Buhrdorf et al. 2003; Clements and Northrop 2002), Testo (Schmid et al. 2005), Axis
and Ericsson (Svahnberg and Bosch 1999), Axis and Securitas (Bosch 1999a, b), and RPG
Games (Zhang and Jarzabek 2005)

From the SPLE community’s “Hall of Fame”2 we identified and inspected: Boe-
ing (Sharp 1998), CelsiusTech Systems AB (Bass et al. 2003; Brownsword and Clements
1996), Cummins (Clements and Northrop 2001b), Ericsson Telecommunications Switches,
Fiscan Security Inspection Systems (Li and Chang 2009), Hewlett Packard’s printer

2http://www.splc.net/fame.html

Empirical Software Engineering (2020) 25:1755–17971762

http://www.splc.net/fame.html


firmwar Owen (Toft et al. 2000), HomeAway (Krueger et al. 2008), Lockheed Martin,
LSI Logic (Hetrick et al. 2006), Lucent, Siemens Healthcare (Bartholdt and Becker 2011),
Toshiba (Matsumoto 2007), U.S. Army (Lanman et al. 2013), U.S. Naval Research Lab-
oratory (Bass et al. 2003), General Motors (Flores et al. 2012), and Danfoss (Jepsen and
Beuche 2009; Jepsen et al. 2007b; Fogdal et al. 2016). The cases Salion, Bosch, Market-
Maker, Nokia, and Philips (Medical Systems and Software for Television Sets) were already
contained in the book of van der van der Linden et al. (2007), explained above.

We inspected all cases of the Software Engineering Institute’s catalog of case stud-
ies (Software Engineering Institute 2008): US Army’s Common Avionics Architecture Sys-
tem (CAAS) (Clements and Bergey 2005), CCT (Control Channel Toolkit) (Clements et al.
2001a), Naval Underwater Warfare Center (Cohen et al. 2002, 2004a, b), Argon (Bergey
et al. 2004), ABB (Ganz and Layes 1998; Rösel 1998; Pohl et al. 2005; Stoll et al.
2009), Deutsche Bank (Faust and Verhoef 2003b), Dialect Solutions (Staples and Hill
2004), E-COM (Liang et al. 2005), Ericsson (Mohagheghi and Conradi 2008; Andersson
and Bosch 2005), Enea (Andersson and Bosch 2005), Eurocopter (Dordowsky and Hipp
2009; Hess and Dordowsky 2008), Hitachi (Takebe et al. 2009), LG (Pohl et al. 2005),
Lufthansa (Chastek et al. 2011), MSI (Sellier et al. 2007), NASA (Ganesan et al. 2009),
NASA JPL (Gannod et al. 2001), Nortel (Dikel et al. 1997), ORisk Consulting (Quilty and
Cinneide 2011), Overwatch Textron Systems (Jensen 2007a), Ricoh (Kolb et al. 2005),
Rockwell Collins (Faulk 2001), Rolls-Royce (Habli and Kelly 2007), TomTom (Slegers
2009), and Wikon (Pech et al. 2009). The cases CelsiusTech, Salion (Clements and Northrop
2002), Axis (Bosch 2000), Boeing, Cummins, Danfoss, and DNV Software were already
contained in one of the other sources above.

Finally, we also included some cases that we know, from our experience, are neither con-
tained in the book of van der Linden et al., the SPLE community’s “Hall of Fame” nor the
Software Engineering Institute’s catalog. These were: six German SMEs (including Mar-
ketMaker from above) (John et al. 2001), a telecommunication system known as Terrestrial
Trunked Radio (TETRA) (Pohjalainen 2011), Volvo Cars and Scania (Eklund and Gustavs-
son 2013; Gustavsson and Eklund 2010), Audi (Hardung et al. 2004), and Daimler (Dziobek
et al. 2008; Bayer et al. 2006).

4.5 Summary

While we will report the identified challenges from the literature together with our chal-
lenges in Section 7, we learned that the majority of publications does not report challenges
that pertain specifically to variability management or that have not been resolved in the
course of the respective case. Most case studies report practices or lessons learned that con-
tributed to the success, but not challenges. Especially, all are about successful adoption,
and primarily report about the perceived benefits (some also quantified) that SPLE brought.
Negative experiences, shortcomings of tooling, or actual challenges for the SPLE commu-
nity are largely missing. For most of the case studies and experience reports, we conjecture
that these are biased, since the case study authors primarily want to show success stories
instead of problems and failed attempts. As such, most of these publications primarily report
on the benefits that were achieved, as well as they report success factors experienced as
deemed relevant for SPLE. When reporting about the specific product line, the predominant
focus is on the product-line architecture, followed by organizational and process aspects.
Interestingly, some publications even have “challenges” in the title, but those challenges are
usually experiences and hindrances that the organization faced before adopting SPLE or
that occurred during the case and that were addressed.

Empirical Software Engineering (2020) 25:1755–1797 1763



Furthermore, it is apparent that some challenges mentioned in previous case studies
have been addressed nowadays. For instance, for Bosch (Tischer et al. 2011; Steger et al.
2004) and MarketMaker (Verlage and Kiesgen 2005), the publications emphasize the lack of
proper, industry-strength SPLE tooling, including feature modeling, as the main challenge,
which is addressed with commercial and open-source tools nowadays. Also, Chen and Ali
Babar (2010) report that variability modeling is not very user-friendly, which can be seen
as a solved challenge with the commercial and open-source feature-modeling tooling that
exists nowadays.

Finally, we also observed that the extent and level of detail in which challenges relevant
for SPLE researchers are reported is not sufficient. Some authors provide information about
adopted concepts, for instance, as van der Linden et al. (2007) point out for their collec-
tion of cases: “Most architectures are based on a platform, supporting the requirements of
present and future products. Often there are several similar products that are combined in
the product line to improve the benefit of reuse. The development of a common, variable
platform is often considered as the basis for introducing the product line in the organisa-
tion. Plug-in mechanisms and the definition of the right interfaces seem to be crucial.” The
majority of publications does not provide a finer level of details.

5 Variability drivers and variable artifacts in our cases

We begin the report on our results by discussing the factors driving the variability in our
cases in Section 5.1. These variability drivers affect various types of artifacts, which we
discuss in Section 5.2. This data has been derived from the data we collected in the case
descriptions, interviews, and focus groups.

5.1 Primary variability drivers

For our cases, a number of different variability drivers was reported, as shown in Table 1.
The most prominent drivers are markets and hardware. Being able to place products on
different markets with different regulations and to ensure that the products are able to adopt
to new market needs is crucial. Hardware is a relevant driver, since many of our cases
concern systems, and the software needs to be able to work with a variety of different
target hardware. In many cases, it is the customer who can select certain hardware, and the
software needs to be able to run on the hardware configuration chosen by the customer. This
is one form of end-user customization, another important variability driver.

An increase in variability through a number of forces was also reported. One case of
firmware for power electronics, for instance, sees an increased need for variability driven
by the more wide-spread use of different types of multi-core processors in their products
(hardware) and increased industrial digitalization (markets, operating environments). The
importance of the market and its growth as the prime driver of variability is also men-
tioned for the automotive firmware and traffic control cases. The latter also emphasizes that

Empirical Software Engineering (2020) 25:1755–17971764



Table 1 Variability drivers and variable artifacts as reported by the different cases

1the need for simulations substantially increases variability, since models represent environments or hardware
at different levels of fidelity
2functional requirements, such as processing power or connectivity, and non-functional requirements, such as
power consumption and safety as well as intellectual property (IP) cores
3XML files as source for code generator
4proprietary DSML instances
5documentation, language files, resources
6OSGi bundles
7meta-models and UML profiles
8software, hardware, and simulation models
9documentation
10design variants as proprietary DSML instances (graphs) in XML files
11proprietary DSML instances based on the IP-XACT standard (IEEE1685), with some in-house extensions
for modeling registers and memory

innovation is an important driver for variability: the company needs to be able to deliver
innovative solutions while at the same time be able to maintain the existing products in
the portfolio. For our modeling platform case, the organization explained that the prod-
uct needs to compete with software-as-a-service (SaaS) offers, where customization is
seen as an advantage. Furthermore, IoT is a new, core driver of variability, as promi-
nently mentioned for the cases power electronics (more precisely, Industrial IoT) and chip
modeling.

Another interesting driver is simulation. In our aerospace case, a simulator resembles the
real aircraft, but has more variability through the use of models at different levels of fidelity.
For instance, verifying a specific sub-system might require a detailed high-fidelity model,
while for real-time simulation, the model needs to be replaced with a lower-fidelity model
(which might use interpolation) due to limits in computation capability.

Empirical Software Engineering (2020) 25:1755–1797 1765



5.2 Variable artifact types

Not surprisingly, the most frequently mentioned variable artifact is source code as shown
in Table 1. Many companies use conditional compilation with preprocessor directives to
include variability information in the source code. Custom descriptors are also relatively
common, for instance, as the foundation for code generation. These are often expressed
using domain-specific languages. We found little evidence for variability in tests and
requirements. Only one company explicitly reports to use components as variable assets, but
we expect that there are many companies that do this implicitly.

A use case that is a bit neglected in research is variability in models used for code gen-
eration. Five of our subjects write application logic in Simulink and then generate code.
Apparently, common variability-management techniques on the code level are not applica-
ble; instead, variability modeling concepts, especially variation-point support is needed in
the models and needs to be supported by the modeling tools.

6 Adoption of variability management concepts in our cases

We now introduce our use and tool cases by describing core characteristics and the adopted
variability management concepts. An overview can be found in Table 2, which also shows
the near-term adoption goals. The particular challenges faced by the organizations will be
presented thereafter, in Section 7. Each case description follows a common format: context,
variability drivers, variability strategy, additional capabilities (e.g., traceability or testing),
and product derivation.

6.1 Power electronics use case

This case concerns the production of, among others, motor controllers (drives) for electric
motors. Around 300 million drives are in industrial use worldwide and used in mining, ski
lifts, big industry automation processes, and turbines (e.g., solar and wind turbines). The
development is characterized as agile through clone & own.

The diversity in hardware and usage scenarios is the primary driver of variability. In
addition, country-specific regulations contribute to the number of required variants. The
company expects a further increase in variability through trends such as multi-core process-
ing and increased industrial digitalization, as well as adding more software features to the
drives.

This use case primarily relies on clone&own. Yet, configuration mechanisms in individ-
ual variants also exist. The drive software is written in C/C++ and a substantial part of the
code is generated from XML files with an in-house generator. The source code contains pre-
processor statements controlled by configuration options. Automatic testing of individual
variants is in place through a continuous integration system using Jenkins with automated,
nightly tests. The connection between customer adaptations and features is tracked in a
database to ensure long-term maintainability. Likewise, rationales for variability decisions
are recorded.

Empirical Software Engineering (2020) 25:1755–17971766



Table 2 Adopted product-line engineering concepts and near-term adoption goals

•adopted

rudimentarily adopted
◦adoption goal
1on product-line level
2or feature-like entities
3on variant level
3tool vendor, applies to usage of tool
4e.g., spreadsheet
6declared over assets
10a platform of models
11tool vendor, applies to usage of tool
13Eclipse features; very high level
14also unified to some extent
15for in-component/in-module configuration
16constraints checking
18Systems-On-Chip specific quality attributes such as heat dissipation or power consumption

Empirical Software Engineering (2020) 25:1755–1797 1767



The specific variants are built through a Python-based build system that allows compo-
nent selection.

6.2 Truckmanufacturing use case

This case comprises the software development of a large truck manufacturer. All of its
products (80,000 trucks per year) come from the same platform.

Almost every product shipped has a unique configuration. The main differentiator of the
brand on the global market is full product customizability.

The truck manufacturing case relies on an integrated platform to manage variability
and employs separate domain and application engineering. All configuration options are
realised with configurable values (i.e., without #ifdef or similar constructs).

Features are maintained in a feature database that contains traceability links to the code.
Assets (different levels of specifications and source code) are stored in separate databases.
Consistency is checked when a system is made ready for release.

On release, all relevant information about a system, including trace links and variability
information (presence conditions) are released to the product data management (PDM) sys-
tem. When deriving a product from the PDM, a specialized configurator selects the relevant
components and derives source code parameters to generate the source code variant that
implements the desired functionality using the possible values for configuration parameters
and the constraints as input.

6.3 Aerospace use case

This case is related to the development of an aircraft simulator for a full, configurable
aircraft. Both the simulator and the aircraft software can be seen as product lines.

Variability is driven by differences in equipment and software between aircrafts. Assets
are primarily developed for the aircraft product line and then propagated to the simulator
product line via clone&own of the entire product line. For the simulator, multiple variants
target different scenarios ranging from simple computer-screen-based simulators to realistic
simulator with actual cockpit hardware. We focus on the simulator.

The simulator is an integrated platform with features that can be mandatory, optional, or a
special type of optional features that need to be deletable without a trace to protect customer
interests. Each of the latter is completely modularized, meaning that the complete module
can be left out and that none of these features is cross-cutting. Another type of feature,
so called “role change equipment,” are customer-configurable features that are placehold-
ers for future development. This means that configurations can be partial and are selected
with component/module selection at checkout time. The organization maintains an informal

Empirical Software Engineering (2020) 25:1755–17971768



feature model as a spreadsheet with a hierarchy, but no explicitly modeled dependencies,
as well as manifest files describing components. In addition, calibration parameters refine
components.

To derive a product, these parameters are set at build time. Preprocessor directives are
prohibited.

6.4 Automotive firmware use case

This case concerns a complex product line for electronic control units (ECUs). Around
2,000 variants are delivered per year; each deliverable is a distinct configuration. Each vari-
ant can comprise over 100 function packages and up to 2,000 functional components; the
latter are updated regularly (every three months).

Variability arises from the need to customize ECUs to different vehicle types and
customers. An integrated platform was defined to reduce time-to-market of variants for cus-
tomers. It is combined with a limited version of clone&own, since developers can choose to
create a new branch for a new feature based on guidelines that take longevity and complexity
of the feature into account. Packages are developed as part of the platform (domain engi-
neering), but variant- and customer-specific packages can exist (application engineering).
The functional components can be configured via static parameters, which are feature-like
entities used within variation points relying on conditional compilation (e.g., with #ifdefs).

These parameters are arranged in a relatively flat hierarchy stored in a distributed feature
database and allow feature-to-code traceability. Rationales are recorded by tracing feature
information to requirements. An informal feature model maps the high-level features and
the static parameters. Constraints are defined over the static parameters. Interestingly, these
parameters represent both variations and versions, since some of them map to pre-processor
macros, and the version-control system directly supports checking out variants. As such,
variability and version management are to some extent unified (like in variation control
systems Linsbauer et al. 2017; Stanciulescu et al. 2016; Berger et al. 2019a).

Also, dynamic (calibration) parameters for late binding exist, some of which can be
defined by the customers after delivery. These parameters, including preconditions, are
stored in separate databases upon which experts configure customer adaptations using
in-house tools. Configurations are recorded in a special database.

Various analyses are run on the distributed feature database, including internal fea-
ture consistency checking. An SPLE tool is increasingly used to complement the existing
cross-database consistency analyzes with rules and predicates. Single-system performance
analysis is done for the products shipped to customers.

6.5 Railway use case

This case concerns the development of signalling systems for urban transport networks for
many cities in the world. Each city has specific needs for the signalling system, which is
reflected in the variants.

The specific signalling system for each city is created from a different city’s variant using
clone & own by creating branches in the software repository. The variants are composed

Empirical Software Engineering (2020) 25:1755–1797 1769



by component selection, where components represent modules for different sensors and
functionality. In addition, each variant also contains a set of internal configuration options
based on C preprocessor directives.

The software was refactored and broadly re-architected at least in one branch. Due to
development constraints (e.g., time, budget, separate responsibilities), the company never
had time to integrate these branches. Customer adaptations are tracked, since each client is
represented by a specific branch.

6.6 Web application use case

This case focuses on the creation of web applications that, among others, allow companies
to manage media campaigns. Each client receives a customized variant.

Different variants are created with clone & own. Each application consists of frontend
and backend code and most variability is in the user-facing frontend part of the system,
realized using JavaScript and AngularJS. Features are recorded in a highly informal fea-
ture model. Otherwise, the company relies on the knowledge of an expert engineer who
knows the distribution of features across branches. The system is implemented using differ-
ent services where a final product is a composition of different services from a core library,
product-specific code, and third-party services. The core services can be adapted with cal-
ibration parameters in configuration files to achieve specific behavior for each product.
Component selection is performed on the service level.

This architecture allows customer adaptations through the services and provides limited
traceability between features and code, since features are mapped to services.

6.7 Modeling platform use case

This case concerns a commercial model-driven engineering tool for business architects, sys-
tem architects, and developers. The tool is component-based and either comes pre-packaged
for one of these target audiences or can be assembled based on customer wishes. It is also
possible that specific features are developed for a certain customer. Additionally, different
license schemes can be employed (e.g., commercial and open source versions), and six dif-
ferent operating systems versions are supported, further driving variability. There are twelve
solutions, with two major releases per year, that include more than 50 modules and three
meta-models. More than 30 modules with variations can be obtained from a store to fit spe-
cific needs. The store also contains scripts and model components for different versions of
the platform.

Empirical Software Engineering (2020) 25:1755–17971770



To this end, an integrated software platform based on Eclipse plug-ins is used. All
provided solutions share a common set of modules. Because features are localized in spe-
cific plug-ins, feature-to-code traceability is available. Currently, the variability in terms of
packaging is not managed in a tool-supported way.

Variants are composed by component selection, relying on the Eclipse P2 packaging
system, which considers constraints between features and plugins, and uses a limited fea-
ture model. The configurator defines which modules are part of a package and has limited
support to set configuration options for the individual plug-ins.

6.8 Imaging technology use case

This case comprises camera software that is packaged for individual customers based on
customer requirements. This packaging includes configuring sensor parameters, prototyp-
ing and testing different sensor configurations, integrating onto the hardware for sensor
validation and exporting sensor configuration parameters for use in a production software
system.

An integrated platform along with a home-grown configurator tool is used to create these
packages. Assets are currently managed via repositories (e.g., Git) and file-based storage. To
create a product, module selection is used to package the correct firmware and driver soft-
ware. In addition, calibration parameters are used to define the correct sensor and software
configuration.

6.9 Traffic control use case

This case concerns the development of several generations of integrated road traffic control
and surveillance solutions, including custom sensors along with embedded software. Back-
end software is produced to process the data sent by these sensors. Different variants of the
product are created for different customers and different regional markets, in particular if
certification is necessary.

Ad hoc reuse via clone&own is present, relying on branching in the version-control
system, which the company considers bad practice and strives for an integrated platform. If
a software needs certification it can become a permanent branch in the software repository.
Calibration parameters are used to configure the software for specific sensors. Some of

Empirical Software Engineering (2020) 25:1755–1797 1771



these are considered features exposed and sold to customers. Component selection happens
at compile time where source code modules are statically linked or at runtime via dynamic
linking.

6.10 Requirements engineering tool case

This case is our first tool case, concerning a tool for improving the quality of requirements.
It allows defining an ontology of the application domain. Based on the ontology, clients
can write semi-natural language requirements. The company also develops pattern-based
extractors to populate the ontology from semi-structured documents (conceptually similar to
techniques that offer languages for defining patterns that can be used to extract requirements
from semi-structured documents Rauf et al. 2011). The clients of requirements engineering
produce safety-critical software-intensive systems mostly in the transportation and defense
industries.

Currently, the tool customers apply clone&own of the requirements specification. The
tool does not offer variability features out-of-the-box. However, one stated use-case is the
extraction of variability information — including a vocabulary and ontology of variability
and assets — from requirements about an existing product-line platform. In other words,
the requirements describe variation points and variants using dedicated terminology to be
extracted by pattern-based extractors.

6.11 Hardwaremodeling tool case

This case concerns the development of a tool that allows to assemble system models (e.g.,
about automotive suspensions) from pre-defined building blocks and simulate them. The
tool interfaces with other tools such as the company’s own product-lifecycle management
tool. The variability in the considered models concerns the blocks that vary, e.g., among
automotive suspensions.

The current tool uses an ad hoc representation of variability only visible in terms of
component selection inside the architecture models. The modeling language allows realizing
variability encoding (von Rhein et al. 2016), that is, using built-in conditionals relying on
configuration options, which enables this component selection. The tool is already able to
explore the design space by creating all possible architecture models that are supported by
the selected components. Nevertheless, the current tool chain does not support product line
concepts explicitly. In particular, the concept of feature is not supported and variability is
only managed within the design space without any knowledge about the problem space.

Empirical Software Engineering (2020) 25:1755–17971772



6.12 Chipmodeling tool case

This case concerns a tool for designing Systems-on-Chips (SoC) and the reusable hard-
ware component designs from which these SoCs are assembled. These designs are passed
to machines that produce the corresponding integrated circuits. The company believes
that emerging applications with huge growth potential, such as SoC for IoT will lead to
a combinatorial explosion of variants, with features being related via complex trade-off
constraints.

The variants differ by: their provided functions, execution performance of functions,
packaging of SoC inside a circuit, power consumption, safety level (typically determined
by standards), and life-cycle durations.

The modeling tool is based on the IP-XACT standard (IEEE 1685) and extensions for
modeling registers and memory. The integrated software platform currently does not support
any specific variability management facilities, nor is it seamlessly integrated with an SPLE
tool. Consequently, the tool users are currently restricted to clone&own, specifically, using
branching and merging facilities of the tool’s built-in version-control facilities. Also, there
is no centralized variability representation.

7 Variability management challenges

We now synthesize and discuss the challenges faced among our cases. We observed that
our cases cover a wide range of maturity levels with respect to the adoption of variability
management concepts. Consequently, we structure the challenges according to these matu-
rity levels, providing the context in which the challenge occurs and in which it should be
addressed by researchers or tool builders.

We first present two general challenges that affect any maturity level. We then discuss
those related to support for clone management, which are encountered in organizations that
use clone & own as their main technique to derive new products. We then identify challenges
that occur when migrating to an integrated platform, that is, when clone & own starts to
be complemented by feature and asset management. Next, we discuss challenges that exist
once migration is more or less complete and working with an integrated platform becomes
the focus of work, followed by challenges that appear when the product line is modernized
and evolved.

7.1 General challenges

Challenge 1, Model-Driven Engineering A common challenge we observed for any matu-
rity level is model-driven engineering (MDE) and code generation. While source code is still
the most frequently mentioned variable artifact (cf. Section 5.2), we observed that often code
is generated from domain-specific languages (DSLs). While the relation between DSLs
and SPLE has been studied (Völter and Visser 2011), the DSLs used in our cases do not sup-
port SPLE concepts. As seen in our power electronics, aerospace, and truck manufacturing

Empirical Software Engineering (2020) 25:1755–1797 1773



cases, embedded systems organizations often rely on MDE using Simulink with code gener-
ation. Such a setup challenges not only handling cloned variants (e.g., when trying to trace
features), but also adopting, working with, and evolving an integrated platform (Kolassa
et al. 2015). This observation is substantiated by our three tool cases striving to integrate
variability mechanisms into the modeling tools.

Furthermore, the experience reports on Danfoss (Fogdal et al. 2016), General
Motors (Flores et al. 2012), and CCT (Clements et al. 2001a) also mention this challenge.
They request a better integration of SPLE concepts, specifically variability mechanisms,
with modeling tools. Notably, the experience report on Daimler (Dziobek et al. 2008)
focuses on handling variability in Simulink models, specifically, it describes how to rep-
resent variation points in models. Nokia Networks (van der Linden et al. 2007) laments
missing support for reusing systems engineering assets, which is in line with the experienced
needs of customers of our our two tool cases chip modeling (Section 6.12) and hardware
modeling (Section 6.11).

Challenge 2, Tool Integration These elaborations from our cases and the literature illus-
trate a more general problem: tool integration. Since variability is a cross-cutting concern,
variability-related tooling usually needs to be integrated with other engineering tools as
named, for instance by our automotive firmware and aerospace cases that exhibit over-
all high maturity. This tool integration challenge was also expressed in the literature for
Danfoss (Fogdal et al. 2016), General Motors (Flores et al. 2012), Siemens Medical Solu-
tions (van der Linden et al. 2007), Fiscan (Li and Chang 2009), Argon (Bergey et al.
2004), and CCT (Clements et al. 2001a), who not only request integrated tool chains, but
more mature variability-related tooling in general. General Motors (Flores et al. 2012) sug-
gests to integrate SPLE concepts with product lifecycle management (PLM) concepts.
Argon (Bergey et al. 2004) requests the integration of variability in version-control sys-
tems. In summary, this challenge is further supported by a recent study on product-line
analyzes (Mukelabai et al. 2018b), which found that adopting such is, among others, a
tool-integration problem.

7.2 Clonemanagement

As seen in Table 2, seven of our use cases exercise clone & own for managing variants—
while for two of our tool cases, the customers’ variant management also relies on
clone & own. The other tool vendor’s modeling tool (cf. Section 6.11) offers variabil-
ity encoding (von Rhein et al. 2016) using built-in conditionals relying on configuration
options. While clone & own is the most common strategy for engineering variants, we
observed substantial awareness among our subjects of the problems connected to it.

Challenge 3, Visualize and Track Variability A need expressed by all cases is keeping an
overview understanding of cloned variants, since understanding the content and purpose of
individual variants is challenging without more abstract representations of the codebases.

Feature-Orientation Adding the notion of features and feature locations to clone & own
would enhance the practice. When features are present, then stakeholders can know what is
in the branches, as opposed to trying to understand the difference between variants through
assets differences, which is challenging. In addition to recording features, recording their
location, for instance, through lightweight code annotations (Ji et al. 2015; Andam et al.
2017; Abukwaik et al. 2018; Entekhabi et al. 2019; Krueger et al. 2019b) also helps with

Empirical Software Engineering (2020) 25:1755–17971774



maintenance. As such, this challenge is about keeping clone & own, but giving developers
more control and overview understanding, which will help with maintenance (e.g., devel-
opers know the, potentially scattered (Passos et al. 2015, 2018), locations of a feature when
cloning it to another variant).

In addition, better visualization and support for code propagation, ideally based on fea-
tures, is needed. Especially for the power electronics case, better support for localization
and propagation of features across cloned variants is requested. In summary, introducing
some notion of feature-orientation to facilitate a more abstract understanding (abstracting
over code-level structures) of variants, is an expressed need for our cases.

The existing case studies on Axis and Securitas (Bosch 1999a, b) emphasize the lack of
architectural abstractions (features) in programming languages, as well as the exploratory
study of Chen and Ali Babar (2010) confirming this challenge.

Record and Analyze Variability Decisions Several of our cases stated that they need a way
to record and later analyze variability decisions (railway, imaging technology, and traffic
control case), such as rationales for introducing variability. It was also stated that recording
information about refactorings would be helpful, preferably using embedded annotations (Ji
et al. 2015; Andam et al. 2017; Abukwaik et al. 2018; Seiler and Paech 2017; Krueger et al.
2018a, 2019a). The recording should explicitly relate refactorings to either the introduction
of new functionality (features) or to maintenance. This information otherwise needs to be
recovered when later propagating code across variants or migrating towards a platform (e.g.,
when assessing architectural mismatches). Specifically, for the railway and traffic control
case, there is a need to reconstruct the architectural and functional evolution of the prod-
uct line. While architectural evolution is mainly represented by typical refactorings (for
the railway case, eight typical refactorings from Fowler (1999) are mentioned), functional
evolution (i.e., the implementation of new functionality, bug fixes, and so on), needs to be
distinguished.

Challenge 4, Cloning in Combination with Variability An interesting observation is that
none of our subjects exercises pure clone & own, but that variants already use variation
points. This challenge is also mentioned in existing experience reports about Dan-
foss (Fogdal et al. 2016), AKVAsmart (van der Linden et al. 2007), Philips Consumer
Electronics Software for Televisions (van der Linden et al. 2007), Philips Medical Sys-
tems (van der Linden et al. 2007), and Dialect Solutions (Staples and Hill 2004), as well as
the case studies on Axis and Ericsson (Svahnberg and Bosch 1999). Interestingly, Staples
and Hill (2004) point out for Dialect Solutions, and Fogdal et al. (2016) for Danfoss, that
using variability mechanisms also avoids merge conflicts during clone & own and allows
more isolated feature development.

Limitations of Clone-Management Techniques This challenge complicates using clone-
management frameworks proposed in the literature (Pfofe et al. 2016; Rubin et al. 2012,
2013a, b; Antkiewicz et al. 2014) and techniques for integrating variants (Fischer et al. 2014;
Martinez et al. 2015), since existing variability needs to be taken into account.

In fact, as explained for the railway case (cf. Section 6.5), the integration is done by
experts who should rather realize new functionality instead of recovering information about
variability in cloned variants and re-engineering code. Furthermore, most of our use cases
applying clone & own also have an integrated platform, that is, a project with common
assets. We are only aware of one work in this direction (Lillack et al. 2019), which should
further be complemented with methodologies and tools.

Empirical Software Engineering (2020) 25:1755–1797 1775



Clone Management of Whole Product Lines Approaches to enable product lines of prod-
uct lines have been investigated in the literature (Kästner et al. 2012; Rosenmüller and
Siegmund 2010; Krueger 2006). However, what our cases require is clone management at
the product-line level. A previous experience report on Philips Medical Systems (van der
Linden et al. 2007) also emphasizes the reuse of components across product lines.

Our aerospace case exercises clone & own for two highly complex product lines. The
primary product line controls a real aircraft, and the cloned product line the simula-
tor. The case strives to improve the—currently manual and laborious—synchronization
between aircraft and the simulator product line. Specifically, it requests guidance for creat-
ing variability models (e.g., whether one or separate, but largely redundant models should
be created; how they should be decomposed to reflect the architecture) and modeling
constraints. This should help defining an aircraft or a simulator configuration, including
matching an aircraft configuration to a suitable simulator configuration for a particular test
activity.

7.3 Migration to an integrated platform

Our three use cases that want to establish an integrated platform, as well as the customers
of our two tool cases that aim to establish a platform, practice clone & own. Recall the core
motivation for our railway case to free experienced developers from performing migrations
(cf. Section 6.5). As such, migrations should be semi-automated, supporting less experi-
enced developers or enabling domain experts performing it. We observed the following
challenges.

Challenge 5, PlatformMigration Process and Tools For two of our use cases (power elec-
tronics and railway), the need for a dedicated migration process was expressed. Such a
process should be lightweight and should guide engineers through the whole migration.
Almost all of our use cases expressed the need for commonality and variability analysis.
Furthermore, such a process should guide through the identification and location of fea-
tures (potentially integrated with manual feature-location techniques Krüger et al. 2018b)
or through creating the target architecture (potentially supported by feature-model compo-
sition techniques (Acher et al. 2010)). According to our railway and aerospace cases, such a
process should also support engineers in creating variation points with an appropriate vari-
ability mechanism (cf. Section 2), in other words, prescribing the introduction of variation
points. This challenge is also mentioned by previous experience reports on Bosch (Tischer
et al. 2011), MSI (Sellier et al. 2007), and Siemens Healthcare (Bartholdt and Becker 2011),
both requesting a process for incremental migration, the latter even during running projects,
without disrupting the development.

Diffing of Cloned Variants We observed the need for higher-level diffing support for
cloned variants. Specifically, as pointed out for our railway case, there should be means to
express historical additions, suppressions, and modifications at the highest level of abstrac-
tion, specifically distinguishing architectural and functional evolutions. As such, practically
usable, dedicated diffing techniques, which support existing variation points (e.g., #ifdef),
are needed, potentially building upon recent techniques such as intention-based clone
integration (Lillack et al. 2019). Enhanced visualization capabilities should also support
highly scattered features (Passos et al. 2015, 2018), as explained for the web application
and power electronics case. Furthermore, the visualization should be guided by extracting

Empirical Software Engineering (2020) 25:1755–17971776



the structure of the underlying configuration management base (including branching and
revision structures), as pointed out for our railway case.

Notably, this challenge is also expressed for Ricoh (Kolb et al. 2005), and the exploratory
study of Chen and Ali Babar (2010) reports that clone detection techniques are not
applicable to software variants.

From a tool-vendor perspective, expressed for the chip modeling case, the organization
strives to provide automated commonality and variability analyses to customers of the tool,
so that existing cloned models can be migrated. As such, the challenge is to adopt automated
analyses conceived by researchers, ideally adhering to standards, which are almost non-
existent for variability management.

Asset Integration at Code and Model Level Integrating assets into a platform is challeng-
ing. Such an integration differs from integrating assets during clone & own in the sense
that platform integration needs to consider many more variants—those derived from the
platform—which might make it more challenging. Understanding and characterizing both
kinds of integration is subject to future work. For our cases, better merge-refactoring
techniques taking existing variability (e.g., #ifdef in the cloned variants) into account are
necessary. For instance, our railway case needs such techniques for automatically proposing
integration strategies for features from variants, that is, focusing on identifying functional
(feature-based) evolution from the branching history, ignoring refactorings and other non-
functional evolutions. Finally, asset integration is challenged (Challenge 1) when MDE
techniques or code generation are used (e.g., in the power electronics case). This requires
focusing on the migration (i.e., integration) of models, while not ignoring customized code.

Training, Certification, and Budgeting Other issues to be addressed by a process are to:
(i) establish a common understanding among the stakeholders about product-line engineer-
ing concepts (requirements engineering case), calling for training support in a migration
process, to (ii) establish certification support, as requested by an experience report on Rolls-
Royce (Habli and Kelly 2007), and (iii) as expressed for our relatively small web application
case, there is no dedicated budget to develop the platform, so assisting in budgeting is a
challenge a platform migration process should support.

Definition of a Target Architecture A core issue when adopting an integrated platform is
architectural degradation, and therefore architectural mismatches among the cloned vari-
ants, which need to be resolved. Architectures of the cloned variants need to be compared
and a target architecture (Sinkala et al. 2018; Acher et al. 2011b) defined, which is expressed
as a core challenge (e.g., for our railway case).

Specifically, expressed for the imaging technology case, the target architecture should
be layered and modularized, to be maintainable. The goal is to enable fully automated vari-
ant derivation without programming effort (i.e., developing adaptations). Another challenge
expressed is to create documentation (or generate such) about the architecture itself (chip
modeling case), and about using such an architecture for variant derivation in parallel.

In our literature survey we found that most of the case studies focus on describing the
architecture of the resulting product line. For instance, for RPG Games (Zhang and Jarz-
abek 2005), the authors discuss the architecture development and necessary adaptations
of cloned variants (e.g., changes of variable types and refactorings) to obtain a common
product-line architecture. Recently, Debbiche et al. (2019) and Akesson et al. (2019) pro-
vide datasets and experiences migrating cloned Java and Android game variants to such a
common architecture.

Empirical Software Engineering (2020) 25:1755–1797 1777



Challenge 6, Migration Decision Support A migration process should also provide deci-
sion support about the migration itself, based on the expected costs and benefits (Ali et al.
2009; Krüger et al. 2016). Specifically, for our power electronics case, the suggestion was
made to enhance feature identification and location with indicators about the cost of the
extraction and re-engineering of relevant assets for making them reusable or integrating into
a platform.

Cost/Benefit Estimation The need for effective cost/ benefit estimation is further sup-
ported by existing experience reports on Deutsche Bank (Faust and Verhoef 2003b), on
Philips Medical Systems (van der Linden et al. 2007), on Hitachi (Takebe et al. 2009), on
Ericsson (Mohagheghi and Conradi 2008; Andersson and Bosch 2005), on Axis and Eric-
sson (Svahnberg and Bosch 1999), as well as on Axis and Securitas (Bosch 1999a, b).
Specifically, for Philips Medical Systems (van der Linden et al. 2007), clone & own some-
times appeared to be beneficial (close to the break-even point), which led to tensions to
develop outside the platform. Axis and Ericsson (Svahnberg and Bosch 1999) also need cost
estimation for decision making. They explain it for the case that when a new product is
added, sometimes rewriting the components instead of adapting them is easier, depending
on the extent of the changes. The challenge is also described in other case studies on Axis
and Securitas (Bosch 1999a, b), among others, demanding decision making support for:
“Deciding to include or exclude a product in the product-line [...] Guidelines or methods for
making more objective decisions would be valuable to technical managers.”

Measurement The pre-requisite for cost/benefit estimation are effective techniques to
measure the costs and benefits of reuse. Previous experience reports on Bosch (Thiel et al.
2001), Testo (Schmid et al. 2005), Argon (Bergey et al. 2004), Overwatch Textron Sys-
tems (Jensen 2007a), Wikon (Pech et al. 2009), and CCT (Clements et al. 2001a) emphasize
such a measurement technique as an important challenge. Generally, in a case study on
Axis (Bosch 1999a), the lack of economic models is lamented.

Challenge 7, Continuous Integration Six of our cases (web application, traffic control,
aerospace, automotive firmware, railway) explicitly point out the need for supporting con-
tinuous integration. Most of them have sets of automated unit tests (grown incrementally,
typically with the discovery of bugs), UI tests, and integration tests. We found typi-
cal tools used for continuous integration, such as Jenkins, Maven, BuildBot, Git, and
Jira. While some approaches to automate, e.g., interaction testing in continuous inte-
gration exists (Johansen et al. 2012), the larger challenge is to obtain a feature-oriented
and configurable architecture that supports continuous integration, ideally with the tools
mentioned.

This challenge is implicitly expressed in the cases for Philips Consumer Electronics Soft-
ware for Televisions (van der Linden et al. 2007), for Overwatch Textron Systems (Jensen
2007a), and for CelsiusTech (Bass et al. 2003; Brownsword and Clements 1996), where
balancing between domain and application engineering is a core challenge, striving to bring-
ing both closer together. In addition, CCT (Clements et al. 2001a) demands a process for
integration testing.

7.4 Working with an integrated platform

We observed the following challenges expressed for our use cases and tool cases when
dealing with an integrated platform.

Empirical Software Engineering (2020) 25:1755–17971778



Challenge 8, Representation of Variability A need expressed by all cases is a central-
ized (and ideally unified Berger et al. 2019a) representation of variability. For instance, for
the aerospace and automotive firmware cases, an overall view providing a unified descrip-
tion of the variability was demanded, ideally in the form of a feature model declared in an
established SPLE tool. Specifically, in one of these two cases, the variability information is
scattered across different representations, including a distributed feature database and con-
figuration files, preventing a coherent view of all relevant product line information. Also
recall that many different types of artifacts (e.g., requirements, architecture, design mod-
els, source code) are used in the cases (cf. Section 5.2), and that each artifact type has its
own technical representation of variation points, which challenges obtaining a global view
of variability. This challenge is closely related to Challenges 1 and 2, requiring variability
support in modeling languages, tool integrations, and traceability support.

Missing Standards Standardisation efforts in the direction to provide unified represen-
tations for variability and variation points exist, such as CVL (Haugen et al. 2013a) and
VEL (Schulze and Hellebrand 2015). However, CVL was never adopted as a standard and
VEL is explicitly aimed at providing an exchange language between tools rather than a
fully integrated variability representation to be edited directly. Recently, a new initiative3

was launched, aiming again at establishing a common feature modeling language, support-
ing common, community-agreed usage scenarios for such a language (Berger and Collet
2019b).

Representation of Behavioral Variability Furthermore, the cases from the literature
CCT (Clements et al. 2001a), ENEA (Andersson and Bosch 2005), and the study of Chen
and Ali Babar (2010) request the support for quality properties when representing variabil-
ity. Specifically, “structural variability is well supported, behavioral and timing aspects are
not” (Chen and Ali Babar 2010).

Representation of Topological Variability We observed the need for representing topo-
logical variability in the five cases that use design models (hardware modeling, modeling
platform, chip modeling, aerospace, and power electronics). These are often XML-based
domain-specific modeling languages (DSMLs) using graphs as their underlying structure.
As opposed to feature-oriented (switch on/off features) variability, topological variability
requires dedicated modeling languages. Typically, organizations create their own domain-
specific languages (DSLs) for this reason, given limitations of established variability
modeling languages (Berger et al. 2014d; Fantechi 2013; Behjati et al. 2014). A challenge
is that topological variability can hardly be expressed using variability annotations and
preprocessors, but typically requires more flexible code generators.

Representation of User-Interface Variability An interesting need was explained for the
web application case, where the prime driver of variability is the customization of user
interfaces. The current web frameworks do not offer any facilities for customization, so the
company needs to rely on clone & own. UI variability has several peculiarities compared
to traditional source code, as UIs encapsulate human computer interaction (HCI) assets
(e.g., dialog models, context models, and aesthetic concerns). This challenge is related to
Challenge 1 (MDE and code generation), given that abstract HCI models are sometimes

3https://modevar.github.io

Empirical Software Engineering (2020) 25:1755–1797 1779

https://modevar.github.io


used before the generation of concrete HCI implementations in target languages (Martinez
et al. 2017). Also note that web applications as cases are rather rare among the existing
literature. Exceptions are HomeAway (Krueger et al. 2008) and MarketMaker (Verlage and
Kiesgen 2005); however, none of the publications describes the realization of variability in
the web-based user interfaces of these web applications.

Challenge 9, Feature Modeling In the light of obtaining a unified representation of vari-
ability, almost all of our subjects (9 of 12) strive to adopt feature modeling. For the power
electronics case, a feature model would aim at visualizing the variant space and keeping the
variants manageable. For the automotive firmware case, a feature model would be the basis
for a configurator with intelligent configuration facilities, which should support product
derivation using defaults, choice propagation, and conflict resolution—easing the config-
uration (and avoiding having to decide all features) Likewise, for the modeling platform
case, an improved product derivation through an intelligent configurator tool is needed. In
the imaging technology case, a more intuitive representation of configuration knowledge is
needed, where even configuration profiles (partial configurations) or a feature hierarchy is
seen as beneficial. In fact, as explained for the automotive firmware case, the feature hier-
archy is considered the most valuable information. Furthermore, the experience report by
Audi (Hardung et al. 2004) also requests modeling guidelines. A first step in this direction
are probably the feature modeling principles of Nesic et al. (2019).

Feature-Modeling Process As such, a feature modeling process is needed, that supports
obtaining a feature model from a diverse set of variability information sources (Bécan et al.
2016; Davril et al. 2013; Krueger et al. 2019a), integrated with feature-model management,
merging, and synthesis techniques (Acher et al. 2010, 2013a, b, She et al. 2011, 2014). Our
cases express that functional evolution is well reflected in commit messages (e.g., bug fix
information, new feature implementations, new branches), which confirms some insights
that commit messages are a good source for feature identification (Krueger et al. 2018a,
2019a; Zhou et al. 2018).

Variation-Point Methodology Another issue pertaining to such a process is a variation-
point methodology (expressed for the aerospace case). It should guide, upon the decision
to introduce a feature (originating from some scoping process), the flow of variation points
into requirements, code, models, and other affected artifact types.

Feature-Oriented Authorization For the chip modeling, aerospace, and requirements
engineering case, the need for user access control and authorization mechanisms was explic-
itly mentioned. Users have different access rights for different parts (features) of the product
line. Especially the aerospace case needs to control visibility of variation points, where cer-
tain variation points or variants even need to be completely invisible (i.e., no trace should be
visible that a variation point exists) for unauthorized personnel. Unfortunately, beyond work
by Fægri and Hallsteinsen (2006), this challenge has not yet been recognized or received
attention in the research community.

Feature-Oriented Views and Synchronization For nine of our twelve cases, the need for
better visualizations, especially establishing feature-oriented views (Acher et al. 2011a;
Andam et al. 2017; Montalvillo and Dı́az 2015, 2017; Passos et al. 2013; Martinez et al.
2014), was expressed. In one of our cases it is

Empirical Software Engineering (2020) 25:1755–17971780



planned to reverse-engineer feature constraints from the codebase and distributed feature
databases, including identifying the model hierarchy (Nadi et al. 2014, 2015), and to syn-
thesize a feature model. This challenge is also reported by the exploratory study of Chen
and Ali Babar (2010), and by the survey of Berger et al. (2013a).

An additional issue arising (related to Challenge 1 below) is that materialized views need
to be continuously synchronized with the information sources, including feature databases,
which cannot be abandoned. In other words, feature models as views degrade and need to
be re-synthesized or synchronized continuously, as expressed for the automotive firmware
case.

Challenge 10, Quality Assurance Our cases expressed various challenges with respect
to assuring the quality of their variants or platforms. While most responses were rather
vague (e.g., the power electronics case: combine testing and SPLE to reduce efforts),
since the cases strive to adopt more systematic variability management in the first place,
they expressed challenges with respect to assuring the consistency of assets, more effec-
tive validation techniques, and the verification of platforms or many variants. Also note
that dedicated studies on product-line analyses in industrial practice exist (Mukelabai et al.
2018b).

Consistency Analyses Recall that many cases strive to adopt feature models or have at least
an informal, but structured feature model (cf. Table 2). When asked about analyses, they also
confirmed that they would like to use feature-model analyses to assure their consistency,
especially in relation to the other assets (including code and requirements with functional or
quality properties), and under the continuous increase of concurrently maintained variants.

A further requested consistency-related analysis is dead-code analysis (automo-
tive firmware case), and our requirements engineering case suggests a metrics-based
approach (El-Sharkawy et al. 2019; Berger and Guo 2014a) for completeness, correctness,
and consistency of requirements.

Validation and Verification The following two cases explicitly expressed the need for
assuring properties for all possible variants (a.k.a., variability-aware analysis Midtgaard
et al., 2014; Liebig et al. 2013).

The truck manufacturing case requests safety verification for the widest possible number
of variants with a scalable compositional verification approach. Such a compositional ver-
ification should verify each lowest-level component individually, then reuse the results for
verifying component combinations, showing that functional or quality properties are ful-
filled for large sets of configurations that cannot be tested exhaustively. To this end, source
code needs to be annotated with formal specifications, which in turn needs a clear picture
of the product lines, especially configuration constraints. In the truck manufacturing case,
this requires consolidating information scattered across various databases before.

For our chip modeling case, a challenge is to extend the modeling tool with verification
capabilities for complex properties covering, for instance, market data to physical con-
straints concerning heat dissipation or power consumption. Then all variants should comply
with the quality attribute specified for the platform (which is a model).

Given the static nature of variability-aware analyses, we can see future research direction
in effectively combining validation and verification techniques, making both variability-
aware for product lines.

Empirical Software Engineering (2020) 25:1755–1797 1781



7.5 Product line evolution andmodernization

Once an integrated platform has been established and a certain maturity has been achieved
in working with it, the focus shifts towards its modernization and evolution. Our model-
ing platform case constantly aims at a more systematic management of existing variability.
The automotive firmware case, on the other hand, seeks to eliminate redundancy in an
already very advanced product line. In the automotive firmware, hardware modeling, and
modeling platform case, the developers strive to constantly identify new and changed fea-
ture constraints to enhance configuration processes and, therefore, improve the platform’s
maturity.

In general, better support for evolving software product lines is already requested in the
literature, specifically in the studies of Chen et al. (2010, 2011) (especially evolution of
variability models, including dependency management), the survey (Berger et al. 2013a)
(model evolution), as well as for the cases Danfoss (Fogdal et al. 2016) (evolution of archi-
tectures and interfaces, and evolving towards a software ecosystem, explained shortly), Axis
and Securitas (Bosch 1999a, b) (information distribution, asset version management, asset
dependency management, and reuse of assets in different contexts), Nokia Networks (van
der Linden et al. 2007) (backwards compatibility of assets, and quick changes in technology
that need to be incorporated into the product line), Nokia Mobile Phones (van der Linden
et al. 2007) (continuous architecture conformance checking), and Volvo Cars and Sca-
nia (Eklund and Gustavsson 2013; Gustavsson and Eklund 2010). The latter even explain:
“We have not found any literature describing how product lines are maintained; most of
those we found described the transition to a software product line and those challenges.”
Valuable guidelines are provided by Svahnberg and Bosch (1999), but thorough support is
still needed. Our cases face the following challenges.

Challenge 11, Artifact Synchronization The synchronization of different platform arti-
facts, including code and feature model, was emphasized for half of our cases (railway,
aerospace, modeling platform, web application, automotive firmware, and chip modeling).
A question that arises is how to keep the feature model in sync, for instance, whether
incremental updates or a frequent re-synthesis should be done. Co-evolution scenarios in
SPLE have been studied (Hellebrand et al. 2017; Schulze et al. 2016), but have not yet been
adopted in industry.

The synchronization challenge is, not surprisingly, further complicated by Challenge
1 (MDE), when models constitute the primary variable artifacts. A specific challenge
expressed for the chip modeling and modeling platform case is co-evolution of the
variability-aware language of the model and the product line (i.e., the feature model).

Finally, for our aerospace case, the organization expressed the need for a better coor-
dination among teams developing new features on branches (i.e., project management and
integration management).

Challenge 12, End-User and After-Market Traceability A challenge explicitly mentioned
for two of the cases (aerospace, automotive firmware) is the need to trace customer adap-
tations on the after-market, as well as the general use of software assets. The experience
reports by Danfoss (Fogdal et al. 2016), Nokia Networks (van der Linden et al. 2007), Naval
Underwater Warfare Center (Cohen et al. 2002, 2004a, b), and PHILIPS Medical Sys-
tems (van der Linden et al. 2007), as well as the survey of Berger et al. (2013a), also mention
this challenge. The former explains: “Frequency converters can collect a lot of data. [...] This

Empirical Software Engineering (2020) 25:1755–17971782



information can be used for predictive maintenance purposes, not only for the frequency
converter but also for the machine.” Fogdal et al. (2016)

Our cases explain that it needs to be clear which specific configurations the customers use
in order to offer dedicated support and keep the software up-to-date. As such, organizations
have a need to keep track of product variations that have been delivered to customers in their
own portfolio. Of course, the question arises how to efficiently store and efficiently keep
such customer configuration databases updated.

Addressing this challenge would require continuous measurement, perhaps building
upon monitoring support (Rabiser et al. 2019), which needs to be extended and integrated
with variability management concepts.

Challenge 13, Dynamic Product-Line Platform An improvement goal expressed for our
aerospace case is to conceive its next-generation product-line architecture, which specifi-
cally aims at adopting dynamic variability. This challenge is also pointed out in existing
experience reports on Enea (Andersson and Bosch 2005) and on Danfoss (Fogdal et al.
2016).

The challenge is to adopt more modern variability mechanisms (supporting late dynamic
binding) to support reconfiguration in the aircraft simulator environment. In fact, the
organization expresses the need to adopt an ecosystem platform and strategy (to include
contributions from suppliers as well as COTS components) with respective variability mech-
anisms (Berger et al. 2014c; Seidl et al. 2017). As such, the challenge is not only to migrate
to an architecture supporting dynamic variability, but also foster inter-organizational reuse
by allowing to extend variation points dynamically with third-party contributions.

8 Threats to validity

We now consider threats on the construct, internal, and external validity of our multiple-
case study, as well as its reliability. We also discuss our mitigation strategies using the
categorization by Yin (2003) as a guideline.

Construct Validity The initial data used in this paper is taken from semi-structured use case
descriptions. Even though, the companies involved in the study refined these descriptions
several times to harmonize them, these descriptions still show diversity in terms of level
of detail and relevance. We addressed this threat by following up with the companies in
semi-structured interviews and focus groups. This gives us high confidence in the data we
collected and used for analysis and also helped us avoid any bias by triangulating the differ-
ent data sources. To further avoid bias, we continuously discussed the material and ensured
that each piece of information was interpreted by at least two of the authors. The additional
member checking of the analyzed results confirms the correctness.

Not all subjects that participated in this study were familiar with the established termi-
nology in the SPLE literature. That meant that we needed to map the terminology used in the
use case description to the terminology used in this paper. To avoid any bias in this regard
and limit the freedom of interpretation of the researchers, critical concepts were member
checked before interacting with the companies.

Internal Validity To ensure that we could establish valid cause and effect relationships, we
compared our findings across our cases and synthesized our results from the overall pic-
ture that emerged from a joint analysis, thus following the recommendations in Miles et al.

Empirical Software Engineering (2020) 25:1755–1797 1783



(1994). The individuals we interviewed were highly skilled engineers that are currently
working with variability and have reflected on their work with variants. We also made exten-
sive use of cross-checking between the different cases and different investigators to ensure
that findings are correct (Yin 2003). In addition, during the focus groups and interviews with
the case companies, we started the data analysis by preliminary explanation-building (Yin
2003) together with the experts from the companies, a process that was later completed by
the researchers. The results were then submitted to the case companies for member checking
and subsequent refinement.

External Validity It is the nature of a study that includes multiple cases that it offers better
generalizability than studies of a single case. We followed the process of analytical general-
ization to abstract beyond the specificities of the individual cases and identified underlying
issues that are generic enough to affect a large class of cases. The fact that we found several
instances for almost all of the challenges we identified provides confidence that our find-
ings are applicable beyond the twelve cases in this study. In addition, our triangulation with
the results of our lightweight literature review enhances the validity of the challenges we
identified and formulated.

We used a purposive sample of companies that have expertise in software product lines
when selecting our cases. We argue that this is an advantage: the cases we included under-
stand the need to manage variability and have encountered the challenges we report on
first hand. Thus, we gathered a more detailed and nuanced picture than if we had included
cases with less maturity. Our sample supports the aims of the paper which is to show the
level of adoption and the challenges for variability management in cases with a certain
maturity. Since we selected mature organizations, our cases are, however, skewed towards
rather large companies. Only large organizations can maintain relatively large product lines
and achieve a high level of sophistication in working with them. We would expect that
smaller organizations with smaller product lines will not encounter all challenges mentioned
here with the same severity, but that many of them will still encounter issues on a smaller
scale.

In addition, the sample contains companies from five European countries. Geographic
distribution is a relevant factor since organizational culture is determined by the coun-
try the organization resides in Lok and Crawford (2004) and organizational culture in turn
affects product line adoption (Böckle et al. 2002). However, we cannot control for cultural
differences in other continents. In principle, companies in South America, Asia, or else-
where could behave differently and thus exhibit different challenges. On the other hand,
our challenges are related to very technical aspects, mainly architecture and process in the
BAPO framework (van der Linden 2002; Obbink et al. 2000), as opposed to business and
organization, which indicates that similar engineering companies face the same or very sim-
ilar challenges. Replicating our study to confirm or refute individual challenges would be
valuable future work.

We also aimed for diversity in terms of the domains in which the organizations are active.
By combining nine cases that rely on variability to develop their products and three tool
providers, we also integrate two different perspectives on product-line engineering. In addi-
tion, we also combine six companies that create physical systems that include hardware and
software (e.g., aerospace and power electronics) and six companies that create only soft-
ware (e.g., modeling platform and imaging technology) of which three are tool providers.
Systems engineering companies like the ones we surveyed represent a large share of the
value creation and the R&D investment within the European Union (POTTERS and Nicola
2018). As such, we address a highly relevant market segment.

Empirical Software Engineering (2020) 25:1755–17971784



Reliability The research methodology has been jointly developed by the authors and refined
over several iterations, often using feedback from the study participants. However, in order
to use the resources made available to us by the case companies to maximum effect, we
often used rather informal information channels with a fast response rate for clarifications,
e.g., phone calls that were not recorded. That means that some of the findings are based
on notes by an individual researcher and not on mechanical recordings. We have addressed
this by triangulation with more formal techniques and by member checking. In addition,
we have shared all collected information between all involved researchers. We have also
recorded all steps we took in a case study protocol (Yin 2003), an abbreviated version of
which is presented in Section 3.

9 Conclusion

We presented a multiple-case study on the adoption and challenges of systematic variabil-
ity management in industrial practice, organized in a common framework. Our twelve cases
comprised nine use cases, where SPLE concepts are adopted for developing an organiza-
tion’s systems, and three tool cases, representing modeling tools for software and hardware,
where the vendor sees a need for adopting SPLE concepts in the tools—enhancing variant-
engineering practices among customers. Given that most experience reports (van der Linden
et al. 2007) are more than a decade old and very diverse in terms of details reported, we
provided an up-to-date snapshot on as many as twelve cases. With a specific focus on the
adoption of concepts organized in a common framework, our work is also the first that
systematically elicited this state of adoption from a range of companies—a surprisingly
challenging task, given that we needed many iterations to understand the development and
thereby also which concepts are used.

Variability Drivers Not surprisingly, hardware is still one of the most significant drivers,
directly followed by market pressure for customization. What appears to gain increas-
ing relevance are Industry 4.0 and digitalization, challenging variability management even
more.

Adoption of SPLE Concepts Not surprisingly, our subjects from the automotive domain
are most advanced in terms of adopting SPLE concepts. This highlights the importance
of existing experience reports from this domain (Flores et al. 2012; Tischer et al. 2011;
Gustavsson and Eklund 2010; Hardung et al. 2004; Dziobek et al. 2008; Thiel et al. 2001;
Bayer et al. 2006). Yet, what this domain is still lacking is a well-unified management
of variability, given a diversity of different asset types we observed, including features,
configuration options, calibration parameters, components, and coarse-grained packages.
All cases understand the benefit of features and strive to adopt them. It is a bit surprising that
the concept of features is not well adopted. Perhaps, lifting programmers’ work practices
from low-level components to the domain-level is more challenging than expected. In fact,
developers are not used to working on different abstraction levels (Berger et al. 2014b).
Our automotive cases are a bit closer to adopting features, given the complexity of their
variability. Yet, they do not use feature models or common SPLE tooling.

We observed a preliminary adoption of off-the-shelf SPLE tools in the domain, but since
the adoption is still limited, the needs and requirements in this domain seem to not yet been
fully understood and met.

Empirical Software Engineering (2020) 25:1755–1797 1785



While we omitted detailed information about the case companies for anonymity rea-
sons, we can see an increased adoption of concepts in the large cases. Yet, our study again
shows the need for adoption also in smaller companies, including those in the web appli-
cation domain. Experience reports and surveys on adoption in such smaller companies
(Verlage and Kiesgen 2005; Thörn and Gustafsson 2008, 2010) and strategies for incremen-
tal adoption of concepts (Antkiewicz et al. 2014) are certainly relevant to consider in future
research.

Challenges We observe that the adoption of SPLE concepts is still a tool-integration prob-
lem, given all the different types of artifacts and existing tooling, which engineers are
familiar with and that is core to the development. How this situation can be improved,
and whether there are research questions (as opposed to it being just an engineering prob-
lem that tool integrators need to solve), are interesting questions to be answered in the
future. Some steps in this direction were taken with the publicly available Common Vari-
ability Language proposal (Haugen et al. 2013b), the Variability Exchange Language (VEL
2018), the recent initiative for a common feature-modeling language (cf. Challenge 8 in
Section 7.4), or a recent Dagstuhl seminar on unifying versioning and variability con-
cepts (Berger et al. 2019a). However, more agreement and adoption will be needed to
consider it. Among the most requested needs by our practitioners are a better representa-
tion and visualization of variability, process support for conducting the migration, support
for continuous integration, and traceability throughout the lifecycle including the aftermar-
ket. Surprisingly, product-line analysis for validation or verification played a rather minor
role in the results of our literature review and among the challenges faced by our cases,
perhaps since more systematic variability management needs to be adopted in the first
place.

Future Work Finally, beyond the scope of this study, it would be valuable future work to
identify and justify research directions that are addressed in the research community, but that
are not worth investigating based on empirical evidence. Such studies probably would need
to focus on particular sub-directions in product-line research, and might be hotly contested
among the community, but would apparently be very useful to scope future research to focus
on relevant challenges.

Acknowledgments We thank all practitioners who participated in the focus group discussions, as well as
we thank the anonymous reviewers for very valuable comments to improve the paper. This work is supported
by Vinnova Sweden, Fond Unique Interministériel (FUI) France, and the Swedish Research Council.

Funding Information Open access funding provided by University of Gothenburg.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Empirical Software Engineering (2020) 25:1755–17971786

http://creativecommons.org/licenses/by/4.0/


References

Abukwaik H, Burger A, Andam B, Berger T (2018) Semi-automated feature traceability with embedded
annotations. In: ICSME, NIER Track

Acher M, Collet P, Lahire P, France R (2010) Composing feature models. In: Proceedings of the Second
International Conference on Software Language Engineering, SLE’09

Acher M, Collet P, Lahire P, France R (2011a) Slicing feature models. In: Proceedings of the 2011 26th
IEEE/ACM International Conference on Automated Software Engineering. IEEE Computer Society

Acher M, Cleve A, Collet P, Merle P, Duchien L, Lahire P (2011b) Reverse engineering architectural feature
models. In: Proceedings of the 5th European Conference on Software Architecture, ECSA’11

Acher M, Collet P, Lahire P, France R (2013a) FAMILIAR:, A domain-specific language for large scale man-
agement of feature models. Sci Comput Program 78(6):657–681. https://doi.org/10.1016/j.scico.2012.
12.004

Acher M, Baudry B, Heymans P, Cleve A, Hainaut JL (2013b) Support for reverse engineering and main-
taining feature models. In: Proceedings of the Seventh International Workshop on Variability Modelling
of Software-intensive Systems, pp 20

Akesson J, Nilsson S, Krüger J, Berger T (2019) Migrating the android apo-games into an annotation-based
software product line. In: SPLC

Ali MS, Babar MA, Schmid K (2009) A comparative survey of economic models for software product
lines. In: 35Th euromicro conference on software engineering and advanced applications, SEAA 2009,
proceedings. IEEE Computer Society, Patras, pp 275–278. https://doi.org/10.1109/SEAA.2009.89

Andam B, Burger A, Berger T, Chaudron M (2017) FLOrIDA: Feature LOcation DAshboard for Extracting
and Visualizing Feature Traces. In: Vamos

Andersson J, Bosch J (2005) Development and use of dynamic product-line architectures. IEE Proc-Softw
152(1):15–28

Antkiewicz M, Ji W, Berger T, Czarnecki K, Schmorleiz T, Lämmel R., Stanciulescu S, Wasowski A, Schäfer
I (2014) Flexible product line engineering with a virtual platform. In: ICSE

Apel S, Kästner C (2009) An overview of feature-oriented software development. J Obj Technol 8(5):49–84
Apel S, Batory D, Kästner C, Saake G (2013) Feature- oriented software product lines. Springer, Berlin
Assunção WKG, Lopez-Herrejon RE, Linsbauer L, Vergilio SR, Egyed A (2017) Reengineering legacy

applications into software product lines: a systematic mapping. Empir Softw Eng 22(6):2972–3016
Atzori L, Iera A, Morabito G (2010) The internet of things: a survey. Comput Netw 54(15):2787–2805
Bartholdt J, Becker D (2011) Re-engineering of a hierarchical product line. In: Proceedings of the 2011

15th International Software Product Line Conference, SPLC ’11. IEEE Computer Society, Washington,
pp 232–240. https://doi.org/10.1109/SPLC.2011.16

Bass L, Clements P, Kazman R (2003) Software architecture in practice. Addison-Wesley Professional
Bastos JF, da Mota Silveira Neto PA, O’Leary P, de Almeida ES, de Lemos Meira SR (2017) Software prod-

uct lines adoption in small organizations. J Syst Softw 131(Supplement C):112 – 128. https://doi.org/10.
1016/j.jss.2017.05.052. http://www.sciencedirect.com/science/article/pii/S0164121217300997

Bayer J, Forster T, Lehner T, Giese C, Schnieders A, Weiland J (2006) Process family engineering in
automotive control systems: a case study. In: GPCE

Bécan G, Acher M, Baudry B, Nasr SB (2016) Breathing ontological knowledge into feature model synthesis:
an empirical study. Empir Softw Eng 21(4):1794–1841

Behjati R, Nejati S, Briand LC (2014) Architecture- level configuration of large-scale embedded software
systems. ACM Trans Softw Eng Methodol 23(3):25:1–25:43

Behringer B, Palz J, Berger T (2017) Peopl: Projectional editing of product lines. In: 2017 IEEE/ACM 39Th
international conference on software engineering (ICSE), pp 563–574. https://doi.org/10.1109/ICSE.
2017.58

Benavides D, Segura S, Ruiz-Cortés A (2010) Automated analysis of feature models 20 years later: a
literature review. Inf Syst 35(6):615–636

Berger T, She S, Lotufo R, Czarnecki K, Wasowski A (2010a) Feature-to-code mapping in two large product
lines. In: SPLC

Berger T, She S, Lotufo R, Wasowski A, Czarnecki K (2010b) Variability modeling in the real: a perspective
from the operating systems domain. In: ASE

Berger T, Rublack R, Nair D, Atlee JM, Becker M, Czarnecki K, Wasowski A (2013a) A survey of variability
modeling in industrial practice. In: Vamos

Berger T, She S, Lotufo R, Wasowski A, Czarnecki K (2013b) A study of variability models and languages
in the systems software domain. IEEE Trans Softw Eng 39(12):1611–1640

Berger T, Guo J (2014a) Towards system analysis with variability model metrics. In: Vamos

Empirical Software Engineering (2020) 25:1755–1797 1787

https://doi.org/10.1016/j.scico.2012.12.004
https://doi.org/10.1016/j.scico.2012.12.004
https://doi.org/10.1109/SEAA.2009.89
https://doi.org/10.1109/SPLC.2011.16
https://doi.org/10.1016/j.jss.2017.05.052
https://doi.org/10.1016/j.jss.2017.05.052
http://www.sciencedirect.com/science/article/pii/S01641212173 00997
https://doi.org/10.1109/ICSE.2017.58
https://doi.org/10.1109/ICSE.2017.58


Berger T, Nair D, Rublack R, Atlee JM, Czarnecki K, Wasowski A (2014b) Three cases of feature-based
variability modeling in industry. In: MODELS

Berger T, Pfeiffer RH, Tartler R, Dienst S, Czarnecki K, Wasowski A, She S (2014c) Variability Mechanisms
in Software Ecosystems. Inf Softw Technol 56(11):1520–1535

Berger T, Stanciulescu S, Ogaard O, Haugen O, Larsen B, Wasowski A (2014d) To connect or not to connect:
Experiences from modeling topological variability. In: SPLC

Berger T, Lettner D, Rubin J, Grünbacher P, Silva A, Becker M, Chechik M, Czarnecki K (2015) What is a
feature? A qualitative study of features in industrial software product lines. In: SPLC

Berger T, Chechik M, Kehrer T, Wimmer M (2019a) Software evolution in time and space: Unifying version
and variability management (dagstuhl seminar 19191). In: Dagstuhl reports. Schloss dagstuhl – leibniz-
zentrum fuer informatik

Berger T, Collet P (2019b) Usage scenarios for a common feature modeling language. In: First international
workshop on languages for modelling variability (MODEVAR)

Bergey J, Cohen S, Jones L, Smith D (2004) Software product lines: Experiences from the sixth dod software
product line workshop. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst

Beuche D (2004) pure::variants Eclipse Plugin. User Guide. pure-systems GmbH. Available from http://web.
pure-systems.com/fileadmin/downloads/pv userguide.pdf

Böckle G, Munoz JB, Knauber P, Krueger C, do Prado Leite, JCS, van der Linden F, Northrop L, Stark M,
Weiss DM (2002) Adopting and institutionalizing a product line culture. In: Chastek GJ (ed) Software
product lines. Springer, Berlin, pp 49–59

Bosch J (1999a) Evolution and composition of reusable assets in product-line architectures: A case study. In:
Proceedings of the TC2 First Working IFIP Conference on Software Architecture (WICSA1), WICSA1.
Kluwer, B.V., Deventer, The Netherlands, pp 321–340. http://dl.acm.org/citation.cfm?id=646545.
696377

Bosch J (1999b) Product-line architectures in industry: a case study. In: Proceedings of the 21st International
Conference on Software Engineering, ICSE ’99. ACM, New York, pp 544–554. https://doi.org/10.1145/
302405.302690

Bosch J (2000) Design and Use of Software Architectures: Adopting and Evolving a Product-line Approach.
ACM Press/Addison-Wesley Publishing Co., New York

Bosch J (2002) Maturity and evolution in software product lines: approaches, artefacts and organization. In:
SPLC

Brownsword L, Clements P (1996) A case study in successful product line development. Technical report,
Software Engineering Institute Carnegie Mellon University

Buhrdorf R, Churchett D, Krueger C (2003) Salion’s experience with a reactive software product line
approach. In: International workshop on software product-family engineering. Springer, pp 317–322

Businge J, Moses O, Nadi S, Bainomugisha E, Berger T (2018) Clone-based variability management in the
android ecosystem. In: ICSME

Chastek G, Donohoe P, McGregor JD, Muthig D (2011) Engineering a production method for a software
product line. In: Proceedings of the 2011 15th International Software Product Line Conference, SPLC
’11. IEEE Computer Society, Washington, pp 277–286. https://doi.org/10.1109/SPLC.2011.46

Clements P, Cohen S, Donohoe P, Northrop L (2001a) Control channel toolkit: a software product line case
study. Technical report, Software Engineering Institute Carnegie Mellon University

Clements P, Northrop L (2001b) Software product lines: Practices and patterns. Addison-Wesley
Clements P, Northrop LM (2002) Salion, inc.: a software product line case study. Technical report, Carnegie-

Mellon Univ Pittsburgh Pa Software Engineering Inst
Clements P, Bergey J (2005) The us army’s common avionics architecture system (caas) product line: A case

study. Technical report, Software Engineering Institute Carnegie Mellon University
Chen L, Ali Babar M, Ali N (2009) Variability management in software product lines: a systematic review.

In: SPLC’09
Chen L, Ali Babar M (2010) Variability management in software product lines: an investigation of

contemporary industrial challenges. In: SPLC’10
Chen L, Babar MA (2011) A systematic review of evaluation of variability management approaches in

software product lines. Inf Softw Technol 53(4):344–362
Cohen S, Dunn E, Soule A (2002) Successful product line development and sustainment: a dod case study.

Technical report, Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst
Cohen S, Zubrow D, Dunn E (2004a) Acquisition pilot: Product line acquisition and measurement at nuwc.

Technical report, Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst
Cohen S, Zubrow D, Dunn E (2004b) Case study: a measurement program for product lines. Technical report,

Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst

Empirical Software Engineering (2020) 25:1755–17971788

http://web.pure-systems.com/fileadmin/downloads/pv_userguide.pdf
http://web.pure-systems.com/fileadmin/downloads/pv_userguide.pdf
http://dl.acm.org/citation.cfm?id=646545.696377
http://dl.acm.org/citation.cfm?id=646545.696377
https://doi.org/10.1145/302405.302690
https://doi.org/10.1145/302405.302690
https://doi.org/10.1109/SPLC.2011.46


Cohen MB, Dwyer MB, Shi J (2007) Interaction testing of highly-configurable systems in the presence of
constraints. In: ISSTA

Czarnecki K, Eisenecker UW (2000) Generative programming: methods, Tools, and Applications. Addison-
Wesley, Boston

Czarnecki K, Grünbacher P, Rabiser R, Schmid K, Wasowski A (2012) Cool features and tough decisions: a
comparison of variability modeling approaches. In: Vamos

Davril JM, Delfosse E, Hariri N, Acher M, Cleland-Huang J, Heymans P (2013) Feature model extraction
from large collections of informal product descriptions. In: Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering. ACM, pp 290–300

Debbiche J, Lignell O, Krüger J, Berger T (2019) Migrating the java-based apo-games into a composition-
based software product line. In: SPLC

Dietrich C, Tartler R, Schröder-Preikschat W, Lohmann D (2012) A robust approach for variability extraction
from the linux build system. In: Proceedings of the 16th International Software Product Line Conference
- Volume 1, SPLC ’12. ACM, New York, pp 21–30. https://doi.org/10.1145/2362536.2362544

Dikel D, Kane D, Ornburn S, Loftus W, Wilson J (1997) Applying software product-line architecture.
Computer 30(8):49–55. https://doi.org/10.1109/2.607064

Dordowsky F, Hipp W (2009) Adopting software product line principles to manage software variants in
a complex avionics system. In: Proceedings of the 13th International Software Product Line Confer-
ence, SPLC ’09. Carnegie Mellon University, Pittsburgh, pp 265–274. http://dl.acm.org/citation.cfm?
id=1753235.1753272

Dubinsky Y, Rubin J, Berger T, Duszynski S, Becker M, Czarnecki K (2013) An exploratory study of cloning
in industrial software product lines. In: CSMR

Duc AN, Mockus A, Hackbarth R, Palframan J (2014) Forking and coordination in multi-platform devel-
opment: a case study. In: Proceedings of the 8th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, ESEM ’14

Dziobek C, Loew J, Przystas W, Weiland J (2008) Functional variants handling in simulink mod-
els. In: MACDE. https://www.researchgate.net/publication/238778580 Functional Variants Handling
in Simulink Models

Eklund U, Gustavsson H (2013) Architecting automotive product lines: Industrial practice. Sci Comput
Program 78(12):2347–2359

El-Sharkawy S, Yamagishi-Eichler N, Schmid K (2019) Metrics for analyzing variability and its implemen-
tation in software product lines: a systematic literature review. Inf Softw Technol 106:1–30

Entekhabi S, Solback A, Steghöfer JP, Berger T (2019) Visualization of feature locations with the tool
featuredashboard. In: 23Rd international systems and software product line conference (SPLC), tools
track

Etikan I, Musa SA, Alkassim RS (2016) Comparison of convenience sampling and purposive sampling. Amer
J Theor Appl Stat 5(1):1–4

Fægri TE, Hallsteinsen S (2006) A software product line reference architecture for security. In: Software
product lines. Springer, pp 275–326

Fantechi A (2013) Topologically configurable systems as product families. In: SPLC
Faulk SR (2001) Product-line requirements specification (prs): an approach and case study. In: Proceedings

of the Fifth IEEE International Symposium on Requirements Engineering, RE ’01. IEEE Computer
Society, Washington

Faust D, Verhoef C (2003a) Software product line migration and deployment. Softw Pract Exper 33(10):933–
955

Faust D, Verhoef C (2003b) Software Product Line Migration and Deployment. Softw: Pract Exper
33(10):933–955

Fenske W, Thüm T, Saake G (2014) A taxonomy of software product line reengineering. In: Vamos
Fischer S, Linsbauer L, Lopez-herrejon RE, Egyed A (2014) Enhancing clone-and-own with systematic reuse

for developing software variants. In: 30Th IEEE international conference on software maintenance and
evolution, victoria, BC. IEEE Computer Society, Canada, pp 391–400. https://doi.org/10.1109/ICSME.
2014.61

Flores R, Krueger C, Clements P (2012) Mega-Scale product line engineering at general motors. In:
Proceedings of SPLC

Fogdal T, Scherrebeck H, Kuusela J, Becker M, Zhang B (2016) Ten years of product line engineering at
danfoss: lessons learned and way ahead. In: SPLC

Fowler M (1999) Refactoring: Improving the design of existing code. Addison-wesley Longman Publishing
co., Inc., Boston

Empirical Software Engineering (2020) 25:1755–1797 1789

https://doi.org/10.1145/2362536.2362544
https://doi.org/10.1109/2.607064
http://dl.acm.org/citation.cfm?id=1753235.1753272
http://dl.acm.org/citation.cfm?id=1753235.1753272
https://www.researchgate.net/publication/238778580_Functional_Variants_Handling_in_Simulink_Models
https://www.researchgate.net/publication/238778580_Functional_Variants_Handling_in_Simulink_Models
https://doi.org/10.1109/ICSME.2014.61
https://doi.org/10.1109/ICSME.2014.61


Ganesan D, Lindvall M, Ackermann C, McComas D, Bartholomew M (2009) Verifying architectural design
rules of the flight software product line. In: Proceedings of the 13th International Software Product Line
Conference, SPLC ’09. Carnegie Mellon University, Pittsburgh, pp 161–170

Gannod GC, Lutz RR, Cantu M (2001) Embedded software for a space interferometry system: auto-
mated analysis of a software product line architecture. In: Conference Proceedings of the 2001 IEEE
International Performance, Computing, and Communications Conference. IEEE, pp 145–150

Ganz C, Layes M (1998) Modular turbine control software: a control software architecture for the abb gas
turbine family. In: International workshop on architectural reasoning for embedded systems

Garcia S, Strueber D, Brugali D, Fava AD, Schillinger P, Pelliccione P, Berger T (2019) Variability modeling
of service robots: Experiences and challenges. In: 13Th international workshop on variability modelling
of software-intensive systems (vamos)

Gustavsson H, Eklund U (2010) Architecting automotive product lines: Industrial practice. In: SPLC
Habli I, Kelly T (2007) Challenges of establishing a software product line for an aerospace engine monitoring

system. In: Proceedings of the 11th International Software Product Line Conference, SPLC ’07. IEEE
Computer Society, Washington, pp 193–202. https://doi.org/10.1109/SPLC.2007.14

Hardung B, Kölzow T, Krüger A (2004) Reuse of software in distributed embedded automotive systems. In:
Proceedings of the 4th ACM International Conference on Embedded Software, EMSOFT ’04

Haugen Ø, Wasowski A, Czarnecki K (2013a) CVL: common variability language. In: Kishi T, Jarzabek S,
Gnesi S (eds) 17th International Software Product Line Conference, SPLC 2013. ACM, Tokyo, p 277.
https://doi.org/10.1145/2491627.2493899

Haugen O, Wasowski A, Czarnecki K (2013b) Cvl: Common variability language. In: Proceedings of
the 17th International Software Product Line Conference, SPLC ’13. ACM, New York, pp 277–277.
https://doi.org/10.1145/2491627.2493899

Hellebrand R, Schulze M, Ryssel U (2017) Reverse engineering challenges of the feedback scenario in co-
evolving product lines. In: Ter Beek MH, Cazzola W, Diaz O, Rosa ML, Lopez-Herrejon RE, Thüm
T, Troya J, Cortés AR, Benavides D (eds) Proceedings of the 21st International Systems and Software
Product Line Conference, SPLC 2017, vol B. ACM, Sevilla, pp 53–56. https://doi.org/10.1145/3109729.
3109735

Hess KD, Dordowsky F (2008) Rational clearcase migration to a complex avionics project - an experience
report. In: CONQUEST

Hetrick WA, Krueger C, Moore JG (2006) Incremental return on incremental investment: Engenio’s transition
to software product line practice. In: Companion to the 21st ACM SIGPLAN symposium on object-
oriented programming systems, languages, and applications, OOPSLA ’06. ACM, New York, pp 798–
804. https://doi.org/10.1145/1176617.1176726

Jensen P (2007a) Experiences with product line development of multi-discipline analysis software at over-
watch textron systems. In: Proceedings of the 11th International Software Product Line Conference,
SPLC ’07. IEEE Computer Society, Washington, pp 35–43. https://doi.org/10.1109/SPLC.2007.18

Jepsen HP, Dall JG, Beuche D (2007b) Minimally invasive migration to software product lines. In: SPLC
Jepsen HP, Beuche D (2009) Running a software product line: standing still is going backwards. In: SPLC
Ji W, Berger T, Antkiewicz M, Czarnecki K (2015) Maintaining Feature Traceability with Embedded

Annotations. In: SPLC
Johansen MF, Haugen Ø, Fleurey F, Carlson E, Endresen J, Wien T (2012) A technique for agile and auto-

matic interaction testing for product lines. In: Nielsen B, Weise C (eds) Testing Software and Systems
- 24th IFIP WG 6.1 International Conference, ICTSS 2012, Proceedings, Lecture Notes in Computer
Science, vol 7641. Springer, Aalborg, pp 39–54. https://doi.org/10.1007/978-3-642-34691-0 5

John I, Knauber P, Muthig D, Widen T (2001) Qualifikation von kleinen und mittleren unternehmen (kmu)
im bereich software variantenbildung. Technical report IESE-026.00/D, Fraunhofer IESE

Kang K, Cohen S, Hess J, Nowak W, Peterson S (1990) Feature-oriented domain analysis (FODA) feasibility
study. Technical Report, SEI CMU

Kästner C, Thum T, Saake G, Feigenspan J, Leich T, Wielgorz F, Apel S (2009) featureIDE: A Tool
Framework for Feature-oriented Software Development. In: Proceedings of ICSE’09

Kästner C, Ostermann K, Erdweg S (2012) A variability-aware module system. In: G.T. Leavens, M.B.
Dwyer (eds.) Proceedings of the 27th Annual ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, OOPSLA 2012, part of SPLASH 2012. ACM, Tucson,
pp 773–792. https://doi.org/10.1145/2384616.2384673

Kitchenham B, Pfleeger SL (2002) Principles of survey research: parts 1–6. ACM SIGSOFT Software
Engineering Notes 26–28 (2001–2003)

Kolassa C, Rendel H, Rumpe B (2015) Evaluation of variability concepts for simulink in the automotive
domain. In: Bui TX, Louis Jr RHS (eds) 48th Hawaii International Conference on System Sciences,
HICSS 2015. IEEE Computer Society, Kauai, pp 5373–5382. https://doi.org/10.1109/HICSS.2015.632

Empirical Software Engineering (2020) 25:1755–17971790

https://doi.org/10.1109/SPLC.2007.14
https://doi.org/10.1145/2491627.2493899
https://doi.org/10.1145/2491627.2493899
https://doi.org/10.1145/3109729.3109735
https://doi.org/10.1145/3109729.3109735
https://doi.org/10.1145/1176617.1176726
https://doi.org/10.1109/SPLC.2007.18
https://doi.org/10.1007/978-3-642-34691-0_5
https://doi.org/10.1145/2384616.2384673
https://doi.org/10.1109/HICSS.2015.632


Kolb R, Muthig D, Patzke T, Yamauchi K (2005) A case study in refactoring a legacy component for reuse
in a product line. In: Proceedings of the 21st IEEE International Conference on Software Maintenance,
ICSM ’05. IEEE Computer Society, Washington, pp 369–378. https://doi.org/10.1109/ICSM.2005.5

Krueger C (2006) New methods in software product line development. In: Software product lines, 10th
international conference, SPLC 2006, Proceedings. IEEE Computer Society, Baltimore, pp 95–102.
https://doi.org/10.1109/SPLINE.2006.1691581

Krueger C (2007) BigLever Software Gears and the 3-tiered SPL Methodology. In: Proceedings of
OOPSLA’07 companion

Krueger C, Churchett D, Buhrdorf R (2008) Homeaway’s transition to software product line prac-
tice: Engineering and business results in 60 days. In: Proceedings of the 2008 12th International
Software Product Line Conference, SPLC ’08. IEEE Computer Society, Washington, pp 297–306.
https://doi.org/10.1109/SPLC.2008.36

Krüger J, Fenske W, Meinicke J, Leich T, Saake G (2016) Extracting software product lines: a cost estimation
perspective. In: Proceedings of the 20th International Systems and Software Product Line Conference,
SPLC ’16. ACM, New York, pp 354–361. https://doi.org/10.1145/2934466.2962731

Krüger J, Nielebock S, Krieter S, Diedrich C, Leich T, Saake G, Zug S, Ortmeier F (2017) Beyond software
product lines: Variability modeling in cyber-physical systems. In: SPLC

Krueger J, Gu W, Shen H, Mukelabai M, Hebig R, Berger T (2018a) Towards a better understanding of
software features and their characteristics: a case study of marlin. In: Vamos

Krüger J, Berger T, Leich T (2018b) Features and how to find them: a survey of manual feature location.
LLC/CRC Press

Krueger J, Mukelabai M, Gu W, Shen H, Hebig R, Berger T (2019a) Where is my feature and what is it
about? a case study on recovering feature facets Journal of Systems and Software

Krueger J, Calikli G, Berger T, Leich T, Saake G (2019b) Effects of explicit feature traceability on pro-
gram comprehension. In: 27Th ACM SIGSOFT international symposium on the foundations of software
engineering (FSE)

Lanman J, Darbin R, Rivera J, Clements P, Krueger C (2013) The challenges of applying ser-
vice orientation to the u.s. army’s live training software product line. In: Proceedings of the
17th International Software Product Line Conference, SPLC ’13. ACM, New York, pp 244–253.
https://doi.org/10.1145/2491627.2491649

Li D, Chang CK (2009) Initiating and institutionalizing software product line engineering: From bottom-up
approach to top-down practice. In: Proceedings of the 2009 33rd Annual IEEE International Com-
puter Software and Applications Conference - Volume 01, COMPSAC ’09. IEEE Computer Society,
Washington, pp 53–60. https://doi.org/10.1109/COMPSAC.2009.17

Liang L, Hu Z, Wang X (2005) An open architecture for medical image workstation. In: Medical imaging
2005: PACS and imaging informatics

Liebig J, von Rhein A, Kästner C, Apel S, Dörre J, Lengauer C (2013) Scalable analysis of variable software.
In: ESEC/FSE

Lillack M, Stanciulescu S, Hedman W, Berger T, Wasowski A (2019) Intention-based integration of software
variants. In: 41St international conference on software engineering, ICSE

Linåker J, Sulaman S, Maiani de Mello R, Höst M (2015) Guidelines for Conducting Surveys in Software
Engineering. Lund University. https://portal.research.lu.se/portal/files/6062997/5463412.pdf

van der Linden F (2002) Software product families in europe: The esaps & café projects. IEEE Softw
19(4):41–49

van der Linden FJ, Schmid K, Rommes E (2007) Software product lines in action: The best industrial practice
in product line engineering. Springer, Berlin

Linsbauer L, Berger T, Grünbacher P (2017) A classification of variation control systems. In: Proceed-
ings of the 16th ACM SIGPLAN International Conference on Generative Programming: Concepts and
Experiences, GPCE 2017. ACM, New York, pp 49–62

Lok P, Crawford J (2004) The effect of organisational culture and leadership style on job satisfaction and
organisational commitment: a cross-national comparison. J Manag Develop 23(4):321–338

Marimuthu C, Chandrasekaran K (2017) Systematic studies in software product lines: a tertiary study. In:
21St international systems and software product line conference - Volume A, SPLC ’17

Martinez J, Ziadi T, Mazo R, Bissyandé TF, Klein J, Traon YL (2014) Feature relations graphs: A visualisa-
tion paradigm for feature constraints in software product lines. In: H.a. sahraoui, A. Zaidman, B. Sharif
(eds.) Second IEEE Working Conference on Software Visualization, VISSOFT 2014. IEEE Computer
Society, Victoria, pp 50–59. https://doi.org/10.1109/VISSOFT.2014.18

Martinez J, Ziadi T, Bissyandé TF, Klein J, Traon YL (2015) Bottom-up adoption of software product lines:
a generic and extensible approach. In: Proceedings of the 19th International Conference on Software
Product Line, SPLC 2015. ACM, Nashville, pp 101–110

Empirical Software Engineering (2020) 25:1755–1797 1791

https://doi.org/10.1109/ICSM.2005.5
https://doi.org/10.1109/SPLINE.2006.1691581
https://doi.org/10.1109/SPLC.2008.36
https://doi.org/10.1145/2934466.2962731
https://doi.org/10.1145/2491627.2491649
https://doi.org/10.1109/COMPSAC.2009.17
https://portal.research.lu.se/portal/files/6062997/5463412.pdf
https://doi.org/10.1109/VISSOFT.2014.18


Martinez J, Sottet J, Garcı́a Frey A, Ziadi T, Bissyandé TF, Vanderdonckt J, Klein J, Traon YL (2017)
Variability management and assessment for user interface design. In: Sottet, J, Garcı́a Frey, A, Vander-
donckt, J (eds) Human Centered Software Product Lines, Human-Computer Interaction Series. Springer,
pp 81–106. https://doi.org/10.1007/978-3-319-60947-8 3

Matsumoto Y (2007) A guide for management and financial controls of product lines. In: 11Th international
software product line conference (SPLC 2007), pp 163–170. https://doi.org/10.1109/SPLINE.2007.26

Melo J, Brabrand C, Wasowski A (2016) How does the degree of variability affect bug finding?. In:
International conference on software engineering (ICSE)

Midtgaard J, Brabrand C, Wasowski A (2014) Systematic derivation of static analyses for software product
lines. In: MODULARITY

Miles MB, Huberman AM, Huberman M, Huberman M (1994) Qualitative data analysis: an expanded
sourcebook. Sage, New York

Mohagheghi P, Conradi R (2007) Quality, productivity and economic benefits of software reuse: a review of
industrial studies. Empir Softw Eng 12(5):471–516

Mohagheghi P, Conradi R (2008) An empirical investigation of software reuse benefits in a large telecom
product. ACM Trans Softw Eng Methodol 17(3):13:1–13:31. https://doi.org/10.1145/1363102.1363104

Molléri JS, Petersen K, Mendes E (2016) Survey guidelines in software engineering: an annotated review. In:
Proceedings of the 10th ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement, ESEM ’16. ACM, New York, pp 58:1–58:6. https://doi.org/10.1145/2961111.2962619

Montalvillo L, Dı́az O (2015) Tuning github for spl development: Branching models & repository operations
for product engineers. In: SPLC

Montalvillo L, Dı́az O, Azanza M (2017) Visualizing product customization efforts for spotting spl reuse
opportunities. In: SPLC

Mukelabai M, Behringer B, Fey M, Palz J, Krüger J, Berger T (2018a) Multi-view editing of software product
lines with peopl. In: 40Th international conference on software engineering (ICSE), demonstrations track

Mukelabai M, Nesic D, Maro S, Berger T, Steghöfer JP (2018b) Tackling combinatorial explosion: a
study of industrial needs and practices for analyzing highly configurable systems. In: 33Rd IEEE/ACM
international conference on automated software engineering (ASE)

Nadi S, Berger T, Kästner C., Czarnecki K (2014) Mining configuration constraints: Static analyses and
empirical results. In: ICSE

Nadi S, Berger T, Kästner C, Czarnecki K (2015) Where do configuration constraints stem from? an
extraction approach and an empirical study. IEEE Transactions on Software Engineering. Preprint

Nesic D, Krueger J, Stanciulescu S, Berger T (2019) Principles of feature modeling. In: FSE
Obbink H, Müller J, America P, van Ommering R, Muller G, van der Sterren W, Wijnstra J (2000) COPA: a

component-oriented platform architecting method for families of software-intensive electronic products.
Tutorial for SPLC

Passos L, Czarnecki K, Apel S, Wasowski A, Kästner C, Guo J (2013) Feature-oriented software evolution.
In: Vamos

Passos L, Padilla J, Berger T, Apel S, Czarnecki K, Valente MT (2015) Feature scattering in the large: a
longitudinal study of linux kernel device drivers. In: MODULARITY

Passos L, Queiroz R, Mukelabai M, Berger T, Apel S, Czarnecki K, Padilla J (2018) A study of feature
scattering in the linux kernel. IEEE Transactions on Software Engineering, Preprint

Pech D, Knodel J, Carbon R, Schitter C, Hein D (2009) Variability management in small development orga-
nizations: Experiences and lessons learned from a case study. In: Proceedings of the 13th International
Software Product Line Conference, SPLC ’09. Carnegie Mellon University, Pittsburgh, pp 285–294

Perrouin G, Sen S, Klein J, Baudry B, Le Traon Y (2010) Automated and scalable t-wise test case generation
strategies for software product lines. In: ICST

Pfofe T, Thüm T, Schulze S, Fenske W, Schaefer I (2016) Synchronizing software variants with variantsync.
In: H. Mei (ed.) Proceedings of the 20th International Systems and Software Product Line Conference,
SPLC 2016. ACM, Beijing, pp 329–332. https://doi.org/10.1145/2934466.2962726

Pohjalainen P (2011) Bottom-up modeling for a software product line: an experience report on agile modeling
of governmental mobile networks. In: Proceedings of the 2011 15th International Software Product Line
Conference, SPLC’11

Pohl K, Böckle G, Linden FJvd (2005) Software Product Line Engineering: Foundations, Principles and
Techniques. Springer, Berlin

POTTERS L, Nicola G (2018) The 2018 EU Survey on Industrial R&D Investment Trends. Technical report.
https://doi.org/10.2760/802408x

Quilty G, Cinneide MO (2011) Experiences with software product line development in risk management
software. In: Proceedings of the 2011 15th International Software Product Line Conference, SPLC ’11.
IEEE Computer Society, Washington, pp 251–260. https://doi.org/10.1109/SPLC.2011.30

Empirical Software Engineering (2020) 25:1755–17971792

https://doi.org/10.1007/978-3-319-60947-8_3
https://doi.org/10.1109/SPLINE.2007.26
https://doi.org/10.1145/1363102.1363104
https://doi.org/10.1145/2961111.2962619
https://doi.org/10.1145/2934466.2962726
https://doi.org/10.2760/802408x
https://doi.org/10.1109/SPLC.2011.30


Rabiser R, Schmid K, Eichelberger H, Vierhauser M, Guinea S, Grünbacher P (2019) A domain analysis
of resource and requirements monitoring: Towards a comprehensive model of the software monitoring
domain. Inf Softw Technol 111:86–109

Rauf R, Antkiewicz M, Czarnecki K (2011) Logical structure extraction from software requirements docu-
ments. In: Proceedings of the 2011 IEEE 19th International Requirements Engineering Conference, RE
’11

Romero D, Quinton C, Duchien L, Seinturier L, Valdez C (2015) Smartyco: Managing cyber-physical
systems for smart environments. In: European conference on software architecture. Springer, pp 294–302

Rösel A (1998) Experiences with the evolution of an application family architecture. In: Proceedings
of the Second International ESPRIT ARES Workshop on Development and Evolution of Software
Architectures for Product Families

Rosenmüller M, Siegmund N (2010) Automating the configuration of multi software product lines. In: Bena-
vides, D, Batory, DS, Grünbacher, P (eds) Fourth International Workshop on Variability Modelling of
Software-Intensive Systems, Linz, Austria, January 27-29, 2010. Proceedings, ICB-Research Report.
Universität Duisburg-Essen, vol 37, pp 123–130. http://www.vamos-workshop.net/proceedings/VaMoS
2010 Proceedings.pdf

Rubin J, Chechik M (2013a) A framework for managing cloned product variants. In: ICSE
Rubin J, Czarnecki K, Chechik M (2013b) Managing cloned variants: a framework and experience. In: SPLC
Rubin J, Kirshin A, Botterweck G, Chechik M (2012) Managing forked product variants. In: SPLC
Sattler F, von Rhein A, Berger T, Johansson NS, Hardø MM, Apel S (2018) Lifting inter-app data-flow

analysis to large app sets. Autom Softw Eng 25(2):315–346
Schaefer I, Bettini L, Bono V, Damiani F, Tanzarella N (2010) Delta-oriented programming of software

product lines. In: International conference on software product lines. Springer, pp 77–91
Schmid K, John I, Kolb R, Meier G (2005) Introducing the pulse approach to an embedded system population

at testo ag. In: ICSE
Schulze M, Hellebrand R (2015) Variability exchange language - A generic exchange format for variabil-

ity data. In: Zimmermann, W, Böhm, W, Grelck, C, Heinrich, R, Jung, R, Konersmann, M, Schlaefer,
A, Schmieders, E, Schupp, S, y Widemann, BT, Weyer, T (eds) Gemeinsamer Tagungsband der Work-
shops der Tagung Software Engineering 2015, CEUR Workshop Proceedings, vol 1337. CEUR-WS.org,
Dresden, pp 71–80. http://ceur-ws.org/Vol-1337/paper11.pdf

Schulze S, Schulze M, Ryssel U, Seidl C (2016) Aligning coevolving artifacts between software product
lines and products. In: I. Schaefer, V. Alves, E.S. de Almeida (eds.) Proceedings of the Tenth Inter-
national Workshop on Variability Modelling of Software-intensive Systems. ACM, Salvador, pp 9–16.
https://doi.org/10.1145/2866614.2866616

Seidl C, Berger T, Elsner C, Schultis KB (2017) Challenges and solutions for opening small and medium-
scale industrial sofware platforms. In: 21St international systems and software product line conference
(SPLC)

Seiler M, Paech B (2017) Using tags to support feature management across issue tracking systems and version
control systems. In: REFSQ

Sellier D, Benguria G, Urchegui G (2007) Introducing software product line engineering for metal processing
lines in a small to medium enterprise. In: Proceedings of the 11th International Software Product Line
Conference, SPLC ’07. IEEE Computer Society, Washington, pp 54–62. https://doi.org/10.1109/SPLC.
2007.22

Sharp DC (1998) Reducing avionics software cost through component based product line development.
In: 17th DASC. AIAA/IEEE/SAE. Digital Avionics Systems Conference. Proceedings (Cat. No.
98CH36267)

She S, Lotufo R, Berger T, Wasowski A, Czarnecki K (2011) Reverse engineering feature models. In: ICSE
She S, Ryssel U, Andersen N, Wasowski A, Czarnecki K (2014) Efficient synthesis of feature models.

Information and Software Technology 56(9). https://doi.org/10.1016/j.infsof.2014.01.012. http://www.
sciencedirect.com/science/article/pii/S0950584914000238

Sinkala ZT, Blom M, Herold S (2018) A mapping study of software architecture recovery for software
product lines. In: Proceedings of the 12th European Conference on Software Architecture: Companion
Proceedings, ECSA ’18

Slegers WJ (2009) Building automotive product lines around managed interfaces. In: Proceedings of the 13th
International Software Product Line Conference, SPLC ’09. Carnegie Mellon University, Pittsburgh,
pp 257–264

Software Engineering Institute (2008) Catalog of software product lines. http://www.sei.cmu.edu/productlin
es/casestudies/catalog/index.cfm

Stanciulescu S, Schulze S, Wasowski A (2015) Forked and integrated variants in an Open-Source firmware
project. In: ICSME

Empirical Software Engineering (2020) 25:1755–1797 1793

http://www.vamos-workshop.net/proceedings/VaMoS_2010_Procee dings.pdf
http://www.vamos-workshop.net/proceedings/VaMoS_2010_Procee dings.pdf
http://ceur-ws.org/Vol-1337/paper11.pdf
https://doi.org/10.1145/2866614.2866616
https://doi.org/10.1109/SPLC.2007.22
https://doi.org/10.1109/SPLC.2007.22
https://doi.org/10.1016/j.infsof.2014.01.012
http://www.sciencedirect.com/science/article/pii/S09505849140 00238
http://www.sciencedirect.com/science/article/pii/S09505849140 00238
http://www.sei.cmu.edu/productlines/casestudies/catalog/index.cfm
http://www.sei.cmu.edu/productlines/casestudies/catalog/index.cfm


Stanciulescu Ş, Berger T, Walkingshaw E, Wasowski A (2016) Concepts, operations and feasibility of a
projection-based variation control systems. In: Proceedings of the 32nd International Conference on
Software Maintenance and Evolution, ICSME’16

Staples M, Hill D (2004) Experiences adopting software product line development without a product line
architecture. In: Proceedings of the 11th Asia-Pacific Software Engineering Conference, APSEC ’04

Steger M, Tischer C, Boss B, Müller A, Pertler O, Stolz W, Ferber S (2004) Introducing pla at bosch gasoline
systems: Experiences and practices. In: SPLC

Stoll P, Bass L, Golden E, John BE (2009) Supporting usability in product line architectures. In: Proceedings
of the 13th International Software Product Line Conference, SPLC ’09

Svahnberg M, Bosch J (1999) Evolution in software product lines: Two cases. J Softw Main 11(6):391–422
Takebe Y, Fukaya N, Chikahisa M, Hanawa T, Shirai O (2009) Experiences with software product line

engineering in product development oriented organization. In: SPLC
Thiel S, Ferber S, Fischer T, Hein A, Schlick M, Bosch R (2001) A case study in applying a product line

approach for car periphery supervision systems. In: SAE
Thörn C, Gustafsson T (2008) Uptake of modeling practices in SMEs: initial results from an industrial survey.

In: MiSE
Thörn C (2010) Current state and potential of variability management practices in software-intensive SMEs:

Results from a regional industrial survey. Inf Softw Technol 52(4):411–421
Thüm T, Apel S, Kästner C, Schaefer I, Saake G (2014) A classification and survey of analysis strategies for

software product lines. ACM Comput Surv (CSUR) 47(1):6
Tischer C, Muller A, Mandl T, Krause R (2011) Experiences from a large scale software product line merger

in the automotive domain. In: SPLC
Toft P, Coleman D, Ohta J (2000) A cooperative model for cross-divisional product development for a soft-

ware product line. In: Proceedings of the First Conference on Software Product Lines : Experience and
Research Directions: Experience and Research Directions. Kluwer Academic Publishers, Norwell, pp
111–132. http://dl.acm.org/citation.cfm?id=355461.355537

Vale T, de Almeida ES, Alves V, Kulesza U, Niu N, de Lima R (2017) Software product lines traceability: a
systematic mapping study. Inf Softw Technol 84:1–18

Van Gurp J, Bosch J, Svahnberg M (2001) On the notion of variability in software product lines. In:
Proceedings Working IEEE/IFIP Conference on Software Architecture

VEL (2018) Variability exchange language. https://www.variability-exchange-language.org/
Verlage M, Kiesgen T (2005) Five years of product line engineering in a small company. In: ICSE
Völter M, Visser E (2011) Product line engineering using domain-specific languages. In: de almeida, ES,

Kishi, T, Schwanninger, C, John, I, Schmid, K (eds) Software Product Lines - 15th International Confer-
ence, SPLC 2011. IEEE Computer Society, Munich, pp 70–79. https://doi.org/10.1109/SPLC.2011.25

von Rhein A, Thüm T, Schaefer I, Liebig J, Apel S (2016) Variability encoding: From compile-time to
load-time variability. J Log Algebr Methods Programm 85(1):125–145

Yin RK (2003) Case study research: Design and Methods, Applied Social Research Methods, vol 5, 3rd edn.
Sage, London and Singapore

Zhang W, Jarzabek S (2005) Reuse without compromising performance: Industrial experience from rpg soft-
ware product line for mobile devices. In: Proceedings of the 9th International Conference on Software
Product Lines, SPLC’05. Springer, Berlin, pp 57–69. https://doi.org/10.1007/11554844 7

Zhou S, Stãnciulescu Ş, Leßenich O, Xiong Y, Wasowski A, Kästner C (2018) Identifying features in forks.
In: Proceedings of the 40th International Conference on Software Engineering (ICSE)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Empirical Software Engineering (2020) 25:1755–17971794

http://dl.acm.org/citation.cfm?id=355461.355537
https://www.variability-exchange-language.org/
https://doi.org/10.1109/SPLC.2011.25
https://doi.org/10.1007/11554844_7


Thorsten Berger is an Associate Professor at Chalmers University of Technology and University of Gothen-
burg. His research focuses on model-driven software engineering, program analysis, and empirical software
engineering, to develop methods and tools for highly configurable software. He received his Ph.D. from the
University of Leipzig in 2013, then worked as a Postdoctoral Fellow at the University of Waterloo in Canada
and the IT University of Copenhagen in Denmark. He participated in national and international research
projects and received grants from competitive funding agencies (e.g., Swedish Research Council). He pub-
lished in major software-engineering conferences (e.g., ICSE, FSE, ASE, OOPSLA) and journals (e.g., IEEE
TSE, IEEE Software), and received best-paper awards at the 2015 ACM SIGPLAN conference on MOD-
ULARITY and the 2013 European Conference on Software Maintenance and Reengineering (CSMR, now
IEEE SANER). He serves in the program committees of major conferences, including ICSE, FSE, and ASE,
recently recognized with a distinguished reviewer award at ASE 2018.

Jan-Philipp Steghöfer is an Associate Professor at Chalmers University of Technology and the University of
Gothenburg. He received his Ph.D. in 2014 from the University of Augsburg. His main research interests are
software traceability, agile development of safety-critical systems, software product lines, and software engi-
neering education. Jan-Philipp participates in several European projects with a focus on software traceability
and drives development of the open source traceability management tool Eclipse Capra.

Empirical Software Engineering (2020) 25:1755–1797 1795



Tewfik Ziadi is currently an Associate Professor at Sorbonne Université and a researcher at Laboratoire
d’Informatique de Paris 6 (LIP6). He received his Ph.D. from the University of Rennes 1 in 2005 and his
habilitation (HDR) in 2016 from UPMC. His main research area of interest is related to Software Prod-
uct Lines with different contributions published at ASE, SPLC or IST journal. He is a co-developer of the
BUT4Reuse platform for Bottom-Up technologies for Reuse. He is the scientific coordinator of an interna-
tional project and the general co-chair of the Systems and Software Product Line Conference (SPLC 2019)
and co-chair of the ACM SAC VSPLE Variability and Software Product Line Engineering Track, 2019. He
was the publication chair of ICSR 2018 (International Conference on Software Reuse), and co-chair of the
editions of the REverse Variability Engineering workshop (REVE 2013-2018).

Jacques Robin received his PhD. in Computer Science from Columbia University in 1995. Since then
he has been a research consultant at Bellcore Laboratories in New Jersey USA, an associate professor at
Universidade Federal de Pernambuco in Recife, Brazil, a research laboratory manager at Thales Research
and Technology, Palaiseau, France and a research engineer at Sorbonne Université and now Université
PanthéonSorbonne both in Paris, France. His research has touched upon a wide variety of topics in both
artificial intelligence and software engineering including natural language generation and computational lin-
guistics, web information retrieval, machine learning and data mining, logic and constraint programming,
formal software verification, model-driven engineering, process engineering, software product lines and con-
textaware self-adaptive systems. He is currently participating to multiple European projects on topics as
varied as round-trip product lines engineering, verifiable artificial intelligence and selfadaptive cybersecurity.

Empirical Software Engineering (2020) 25:1755–17971796



Jabier Martinez joined the Digital Trust Technologies (TRUSTECH) area of Tecnalia in 2018. His interests
are mainly related to modelling, software reuse, variability management, software product lines, and non-
functional properties such as safety, security and privacy. After several years of industrial experience, he
received his PhD in 2016 from the Luxembourg University (SnT, Interdisciplinary centre for Security and
Trust) and Sorbonne University (Lip6, Laboratory of Computer Sciences, Paris 6). He participated in several
European research projects. He coorganizes the Reverse Variability Engineering series of workshops.

Affiliations

Thorsten Berger1 · Jan-Philipp Steghöfer1 ·Tewfik Ziadi2 · Jacques Robin3 ·
Jabier Martinez4

Jan-Philipp Steghöfer
jan-philipp.steghofer@chalmers.se

Tewfik Ziadi
tewfik.ziadi@lip6.fr

Jacques Robin
jacques.robin@univ-paris1.fr

Jabier Martinez
jabier.martinez@tecnalia.com

1 Chalmers | University of Gothenburg, Gothenburg, Sweden
2 Sorbonne University, Paris, France
3 University of Paris 1 Pantheon-Sorbonne, Paris, France
4 Tecnalia, Bilbao, Spain

Empirical Software Engineering (2020) 25:1755–1797 1797

mailto: jan-philipp.steghofer@chalmers.se
mailto: tewfik.ziadi@lip6.fr
mailto: jacques.robin@univ-paris1.fr
mailto: jabier.martinez@tecnalia.com

	The state of adoption and the challenges of systematic variability management in industry
	Abstract
	Introduction
	Background
	Clone&own
	Clone Management
	Configuration
	Platform
	Feature
	Feature Model
	SPLE Process
	Product-Line Quality Assurance



	Methodology
	Aims and objectives
	Planning, scheduling, and designing the study
	Data collection
	Data Analysis

	Literature review
	Meta studies
	Exploratory studies
	Surveys
	Experience reports and case studies
	Summary

	Variability drivers and variable artifacts in our cases
	Primary variability drivers
	Variable artifact types

	Adoption of variability management concepts in our cases
	Power electronics use case
	Truck manufacturing use case
	Aerospace use case
	Automotive firmware use case
	Railway use case
	Web application use case
	Modeling platform use case
	Imaging technology use case
	Traffic control use case
	Requirements engineering tool case
	Hardware modeling tool case
	Chip modeling tool case

	Variability management challenges
	General challenges
	Challenge 1, Model-Driven Engineering
	Challenge 2, Tool Integration


	Clone management
	Challenge 3, Visualize and Track Variability
	Feature-Orientation
	Record and Analyze Variability Decisions
	Challenge 4, Cloning in Combination with Variability
	Limitations of Clone-Management Techniques
	Clone Management of Whole Product Lines


	Migration to an integrated platform
	Challenge 5, Platform Migration Process and Tools
	Diffing of Cloned Variants
	Asset Integration at Code and Model Level
	Training, Certification, and Budgeting
	Definition of a Target Architecture
	Challenge 6, Migration Decision Support
	Cost/Benefit Estimation
	Measurement
	Challenge 7, Continuous Integration


	Working with an integrated platform
	Challenge 8, Representation of Variability
	Missing Standards
	Representation of Behavioral Variability
	Representation of Topological Variability
	Representation of User-Interface Variability
	Challenge 9, Feature Modeling
	Feature-Modeling Process
	Variation-Point Methodology
	Feature-Oriented Authorization
	Feature-Oriented Views and Synchronization
	Challenge 10, Quality Assurance
	Consistency Analyses
	Validation and Verification


	Product line evolution and modernization
	Challenge 11, Artifact Synchronization
	Challenge 12, End-User and After-Market Traceability
	Challenge 13, Dynamic Product-Line Platform



	Threats to validity
	Construct Validity
	Internal Validity
	External Validity
	Reliability



	Conclusion
	Variability Drivers
	Adoption of SPLE Concepts
	Challenges
	Future Work



	References
	Affiliations




