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ABSTRACT Modern industrial systems now, more than ever, require secure and efficient ways of
communication. The trend of making connected, smart architectures is beginning to show in various fields
of the industry such as manufacturing and logistics. The number of IoT (Internet of Things) devices used
in such systems is naturally increasing and industry leaders want to define business processes which are
reliable, reproducible, and can be effortlessly monitored. With the rise in number of connected industrial
systems, the number of used IoT devices also grows and with that some challenges arise. Cybersecurity
in these types of systems is crucial for their wide adoption. Without safety in communication and threat
detection and prevention techniques, it can be very difficult to use smart, connected systems in the
industry setting. In this paper we describe two real-world examples of such systems while focusing on
our architectural choices and lessons learned. We demonstrate our vision for implementing a connected
industrial system with secure data flow and threat detection and mitigation strategies on real-world data
and IoT devices. While our system is not an off-the-shelf product, our architecture design and results show
advantages of using technologies such as Deep Learning for threat detection and Blockchain enhanced
communication in industrial IoT systems and how these technologies can be implemented. We demonstrate
empirical results of various components of our system and also the performance of our system as-a-whole.

INDEX TERMS Anomaly detection, blockchain, cybersecurity, deep learning, Internet of Things.

The associate editor coordinating the review of this manuscript and

approving it for publication was Stefano Scanzio .

I. INTRODUCTION
Despite the fact that the IIoT (Industrial Internet of Things)
has a profound impact on many industry domains, a major
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barrier towards IIoT adoption lies in cybersecurity issues that
make it extremely difficult to harness its full potential: IIoT
systems dramatically increase the attack surface (introducing
new security threats due to newly connected devices and
protocols, making them more vulnerable to interference),
the disruption of process controls, the theft of intellectual
property, the loss of corporate data, and the industrial espi-
onage. The C4IIoT project (Cyber security 4.0: Protecting the
Industrial Internet of Things1) provides and demonstrates a
novel and unified IIoT cybersecurity framework formalicious
and anomalous behaviour anticipation, detection, mitigation,
and end-user informing. The framework provides a holistic
and disruptive security-enabling solution for minimizing
attack potentials in IIoT systems so the industry can
benefit from the advantages of having connected or smart
system architectures without the inherent risk which these
architectures may bring. The framework itself represents
an example of how similar systems can be built, and it
went through many development iterations with various
changes and improvements. While many of the components
of the framework are open source and available for general
usage, we do not offer a singular ready to use framework,
but rather share our findings and results in building the
framework.

In this paper, we provide an overview of the end-to-end
framework developed in the context of C4IIoT for ensuring
cybersecurity in two targeted industrial IoT applications,
Smart Logistics and Smart Factory applications. While the
paper gives an overview of the overall system architecture,
it focuses in more detail on the several aspects of the
overall system. The paper describes in detail the system
operation, real world deployment, evaluation, and the derived
lessons learned and guidelines with respect to detecting
anomalies in IIoT data, as well as response to a concrete
relevant attack, the data manipulation attack, in the context
of Smart Logistics and Smart Factory, for a real world
industrial environment. Through the layers of the system
architecture we will demonstrate how privacy-preserving and
other techniques can be used to enhance the system so it can
detect faults andmalicious activity in a privacy awaremanner.
There is a limited number of works that describes end-to-
end cybersecurity systems tailored for Smart Logistics (SL)
and Smart Factory (SF) applications, and limited evaluation
results have been reported on threat detection performance
based on deep learning in real environments of SL and SF
systems.We use those two use cases to demonstrate how IIoT
devices can be used in a secure way and what benefits this
brings to the overall system and the industrial end-user who
may implement the overall system.

A. RELATED WORK
We next provide an overview of a representative set of works
on Cybersecurity in IIoT systems. In this context, a relevant
challenge is to provide protocols and mechanisms that ensure

1Project Website – https://www.c4iiot.eu/

secure IIoT devices’ communication. A related effort to
this is the application of fully homomorphic encryption
(FHE) to enable arithmetic operations over the encrypted
data, The authors of [1] develop a FHE approach that
supports blending of arithmetic operations over real numbers.
IIoT devices’ security can be also improved via effective
authentication schemes. To this end, Li et al. [2] propose
a privacy-preserving biometric-based authentication scheme.
In the context of IIoT secure authentication and commu-
nication, blockchain is also becoming a trending research
direction: there have been several approaches to integrate or
leverage blockchains in ensuring IIoT security [3], [4], [5].
Lipps et. al. [6] present a Static Random Access Memory
(SRAM) based hybrid cryptosystem as a solution to securing
communication and authentication in the IIoT. Our proposed
architecture is in line with the described trends; for example,
it uses the blockchain technology in order to ensure a state-
of-the-art secure IIoT device communication.

Machine Learning and Deep Learning algorithms have
been applied in IoT systems for various tasks and across
multiple branches of the industry [7], [8], [9], [10], [11], [12].
For the manufacturing sector, Zhang et al. [7] used LSTM
(Long Short Term Memory Recurrent Neural Networks)
to predict the working condition of industrial equipment,
in order to enhance operation quality. Yan et al. [8] utilize
autoencoders in order to determine remaining useful life in
machines. The authors of [9] used CNNs (Convolutional
Neural Networks) for classification of production items into
the defected and non-defected classes. Deep, fully-connected
neural networks (DNN) have been used to detect malicious
traffic in IoT networks [10]. The work of Wang et al. [11]
proposes the use off CNNs and LSTMs to learn features of
network traffic which are then used to differentiate between
good and malicious network traffic.

Since sensitive and confidential data are constantly being
shared across the networks, a major prevailing concern in
industrial IoT systems is on data protection issues [13].
In this setting, among the aforementioned Machine Learning
(ML) and Deep Learning (DL) models and their applications,
anomaly detection is of significant interest [12]. In the
process of detection of anomalies in IoT-generated data,
some authors focus on detecting faults in device operation
or communication errors in a complex IoT environment like
smart city [14], while others focus on detecting different
types of security threats, such as device tampering, botnet,
IoT pivot, malware analysis and distributed denial-of service
(DDoS) attacks [15], [16].

Some of the DL-based models utilized for anomaly
detection include, e.g., recurrent neural networks [17],
autoencoders [12], [18], etc. A related challenge is on
ensuring data privacy. In this context, differential privacy
has been proposed that safeguards privacy of data by adding
a controlled amount of random noise to the data [19].
We also consider differential privacy in our framework;
as detailed ahead, we adopt differentially private variants
of principal component analysis (PCA) and the KMeans
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clustering algorithm for anomaly detection by making use of
the diffprivlib library [20].

When deploying machine learning models in IIoT environ-
ments, algorithm scalability and IoT edge platforms resource
limitations should be taken into account [21]. Indeed,
processing and computational power of the underlying
hardware can present itself as a major constraint, as in some
cases, the deployed Machine learning models’ size could be
required to go as low as a few kilobytes, while the hardware
usually has only a low-level CPU. More demanding machine
learning models can be supported by following an edge-to-
fog-to-cloud architecture design, e.g., [22]. Therein, the data
generated by IoT devices gets communicated to fog servers
(e.g., mobile operator gateways) and is subsequently further
transferred to the cloud, where more powerful machine
learning (anomaly detection) models are deployed. In order
to shorten response times, anomaly detection in these systems
can take place not only at the cloud, but also at the edge
or fog. As edge devices usually have limited computational
and storage capabilities, only low-to-moderate complexity
models (with a potentially limited performance) can be
deployed at the edge. More powerful models are then
deployed at the fog or cloud, at the expense of longer response
times.

Following an edge-fog architectural pattern, Savic et al. [12]
propose to integrate Deep Learning based anomaly detection
as a service into a mobile IoT communication architec-
ture. The proposed architecture embeds autoencoder-based
anomaly detection modules both at the IoT devices, and in the
mobile core network. Thus, the presented method balances
between the system responsiveness and models complexity
versus accuracy. Our framework here also follows an edge-
fog-cloud strategy, as we deploy various DL and ML models
to detect anomalies at all three layers of the edge-to-fog-to-
cloud architecture.

B. CONTRIBUTIONS AND INNOVATIONS
We now summarize our main contributions and contrast them
with existing work. While existing studies usually focus on
a specific and fragmented aspect of cybersecurity in IIoT
(e.g., homomorphic encryption, deep learning application
for a specific attack type, etc.), there is a limited body of
literature that reports on design and deployment of end-to-
end cybersecurity systems for a targeted industrial domain.
We contribute to bridging this gap by providing design,
deployment, and evaluation of a comprehensive end-to-end
cybersecurity system for the targeted industrial application,
namely the smart logistics and the smart factory use cases
in the manufacturing context. We report here on the system
architecture and its integrative parts’ descriptions, and we
illustrate and report on the system operation and deployment
on real industrial data for 1) detecting anomalies in IIoT
readings; and 2) generating response to data manipulation
attacks. The development, evaluation, and deployment of
the system has lead to a number of lessons learned that we
describe in detail later.

The developed system features several innovations that
we will now describe. To tackle cybersecurity flaws and
data leakages, we employ modern, encrypted means of
communication using blockchain for additional security
(described in Section II-F), multiple levels of machine
learning enabled anomaly detection models (described in
Section II-N) trained to detect attacks and faults, mitigation
engines (described in Section II-I and Section II-H) to
provide a meaningful response (described in Section II-G
and Section II-P) to these possible anomalies in minimal
time. Another distinctive feature of the system is a flexible
anomaly detection approach that adaptively triggers anomaly
detection modules at different system layers (edge, field
gateway, cloud), hence trading off accuracy and response
times (Sections II-N and II-H).

Further, we use differential privacy methods (described
in Section II-N1), so even in the case of malicious intru-
sions to the system, the integrity and privacy of the data
provider is preserved. We also introduce both hardware-
level and software-level security (described in Section II-M)
for protecting the data sources and the system in general.
Next, we design and fabricate custom IIoT edge devices
tailored to the targeted use cases, and deploy them in a
real industrial environment. (Sections II-L and II-K) Finally,
we develop a privacy-preserving cloud-based malware anal-
ysis framework (described in II-O) that utilises trusted
execution environments and is able to offload the analysis of
suspicious files to the cloud confidentially.

C. PAPER ORGANIZATION
We provide here a paper road map and organization.
Section II is devoted to the description of the developed
end-to-end cybersecurity system (Figure 1). The end-to-
end system, as detailed below (Figure 1), consists of three
layers (edge, field gateway, cloud), and three levels of pro-
tection (hardware-enabled, device-to-device, and cognitive).
Section II then proceeds as follows. Sections II-A to II-E
provide the system overview, including the requirements
and targeted use cases, and describe the three mentioned
architecture layers. Sections II-F to II-L and II-O then
detail the system in a component-by-component fashion.
Subsections II-M and II-N describe the system components
that correspond to three different levels. Section III is devoted
to empirical evaluation and demonstration of the system.
Specifically, we evaluate and describe communication per-
formance III-A, anomaly detection performance III-B, and a
system response example with respect to a data manipulation
attack (Section III-C). Finally, section IV provides lessons
learned that arose in the system development and evaluation.

In more detail, Section II represents the central part
of the paper, and it is split into 14 subsections (refer to
the architecture figure (Figure 1) for component roles and
positioning, as required):

• II-A describes the system requirements and plausible
threats
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FIGURE 1. C4IIoT cybersecurity architecture high-level overview.

• Sections II-B and II-C explain two specific use cases,
namely Smart Factory Use Case and Smart Logistics
Use Case.

• Section II-D describes different architecture layers
• Decentralized Access Control has been described in II-
F, it controls the access of the data by different entities

• Security Assurance Module, described in II-G,
is responsible for monitoring the C4IIoT architecture

• Security-aware dynamic offloading decisionmechanism
section II-H describes the decision component of the
architecture

• Section II-I describes the SDN component DISCO
• Mitigation engine – High-level reconfiguration search is
presented in section II-J

• Edge devices for Smart Logistics and Smart Factory use
cases are described in sections II-K and II-L

• Important part of the C4IIoT is Hardware Enabled
Security, which is presented in section II-M

• Anomaly detection models are discussed in section
Behavioural Analysis & Cognitive
Security (BACS) II-N

• Finally, Confidential Malware Analysis in the Cloud is
discussed in section II-O

II. ARCHITECTURE OVERVIEW
A. HIGH-LEVEL ARCHITECTURE VIEW
The architecture of the proposed framework is divided into
three logical layers: Edge, Field gateway (fog) and Cloud

(Fig. 1). The architecture enables threat detection at three
different security levels (left side of Fig. 1): hardware-
enabled security (level-1), security enabled by horizontal
device-to-device communication through distributed ledger
technologies (level-2), and security enabled by context-aware
intelligence for detecting anomalous or malicious behaviour
(level-3). The framework also provides a comprehensive
solution for advanced visualization, mitigation, informing
end-users and activating data federation partners.

In relation to cyber-physical impact, we use the standard
confidentiality-integrity-availability (CIA) [23] triad for first-
order impact in cyberspace (relating to the computation and
digital communication), and the impact classification for
physical space (relating to sensing and actuation).

The C4IIoT architecture is designed for two specific use
cases described as follows.

B. SMART FACTORY USE CASE
The Smart Factory Use Case is related to the Manufacturing
process in a factory environment. In this scenario, we have
Autonomous Ground Vehicles (AGVs) which are used in
the manufacturing process. AGVs are connected devices and
provide real-time data which can be analyzed and monitored.
The devices are equipped with sensors (for acceleration and
velocity) which are used to monitor their movement and
detect possible faults (e.g. collisions) and possible malicious
attacks (cybersecurity attacks) which can lead to equipment
malfunction or other issues. In these devices we employ
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software hardening through inclusion of anomaly detection
models (both on device andmore advanced offloadedmodels)
and low-level runtime isolation through the use of Intel SGX
(Intel Software Guard Extensions [24]).

C. SMART LOGISTICS USE CASE
The Smart Logistics Use Case implies the usage of edge
devices outside of the factory environment. The edge devices
(described in Sec. II-L) are attached to the containers carrying
car parts between the manufacturing and the assembly plant.
The key requirement is the ability to track the parameters
of interest such as geolocation, vibrations, magnetic field,
velocity, acceleration and temperature autonomously over
extended periods of time. By nature, the edge devices used
in this use case differ significantly from those used in the
Smart Factory use case. Thereby, we showcase the overall
architecture effectiveness while respecting the heterogeneous
nature of the edge layer, usual for IoT applications. The
edge node, designed and developed within the project to suit
the requirements of the Smart Logistics Use Case, achieves
significantly better power efficiency (with a consumption
in the deep sleep mode with an order of magnitude of
microamps), at the expense of having a constrained speed,
memory capacity and processing power.

For the Smart Logistics Use Case, we utilize for com-
munication the NB-IoT (Narrowband IoT) technology with
EGPRS fallback, which further increases efficiency regarding
the power consumption as well as the bandwidth usage.
The key enhancement in the cyber security domain comes
from the fact that the Field Gateway is deployed within the
premises of the Mobile Network Operator (MNO). When
edge devices containing SIM cards from a pre-assigned list
connect to the network using a specialized APN, they get
static IP addresses within the same sub-network as the Field
Gateway. This network consisting of the FG and the edge
devices is private and inaccessible by external entities, and
therefore inherently secure. The already high level of security
can be further enhanced by deploying lightweight end-to-end
security protocols to secure the message exchange between
edge nodes and the Field Gateway. It also features lightweight
anomaly detection [12]. More bandwidth-intensive security
protocols are deployed to secure the communication between
the Field Gateway and the cloud layer. To the best of
our knowledge, such approach based on utilization of an
in-network Field Gateway has not been used so far in
industrial IoT applications, and therefore represents one of
the contributions introduced here.

D. EDGE, FIELD GATEWAY, AND CLOUD LAYERS
We now describe the overall system from the 3 layers
perspective (Figure 1).
The edge node layer includes the devices and sensors

that provide the data that feed the whole framework in both
Smart Factory (based on Raspberry Pi like devices) and Smart
Logistics (based on in-house designed IoT devices) use cases.
It also features lightweight anomaly detection modules and

hardware-enabled security. The devices are described in more
detail in Sections II-K and II-L.
Field gateway (FG) is an intermediate (fog) layer of

our architecture (Figure 1), acting as an element that
communicates with the edge nodes on one side and the
cloud on the other. FG possesses intermediate computational
power compared to the low power edge node layer and the
high power cloud layer. It can perform computationally more
intensive security-related tasks compared to the edge node
layer. FG features significantly lower latency compared to
the cloud since it resides closer to the edge nodes. It supports
both edge nodes that utilize wired network connectivity (local
or internet) as well as those based on cellular protocols. The
role of the field gateway is dual. Besides acting as an SDN
(Software-defined networking)-enabled network node, it will
also include a local offloading/outsourcing decision mecha-
nism. Field gateways are located in mobile operator premises
for the Smart Logistics case and within factory premises for
the Smart Factory case, protected in both cases by a strong
security network infrastructure. In both cases, field gateways
are server computers. Communication between FG and the
edge nodes relies on either industrial wireless protocols
in Smart Factory or on Low Power Wide Area Networks
(LPWAN) technologies in Smart Logistics scenario, provided
by the mobile operator. A preferred technology in the latter
case is Narrowband IoT (NB-IoT) which is suitable in terms
of large area coverage, small power consumption and the
support of massive number of devices. GPRS is used as a
backup communication technology. A distinctive feature of
the system is the offloading mechanism, realized through the
MEDICI tool (Section II-H), also hosted at FG. Namely, if the
confidence in an anomaly detected at the FG is low, the data
is offloaded from field gateways to the cloud layer through
the cloud gateway, using an SDN-enabled switch/router and
the offloading mechanism.

The cloud layer is where advanced anomaly detection and
privacy-aware data analytics take place using data aggregated
and offloaded from the field gateways. In case an anomaly
is detected, relevant features about the detected anomalies
(e.g., location/sensor ID, priority level, etc.) are sent to
the mitigation engine. The mitigation egine then decides,
through the CARMAS component described in Section II-J
(Figure 1) if an action needs to be taken and searches for
a new configuration of the system, that is either resistant to
the detected anomaly or at least minimizes the damage that it
can cause. The system is then reconfigured through the SDN
controller. At the same time, a continuous verification tool
performs verification of IoT device’s firmware and takes an
action if a change is detected in the corresponding segment.

Figure 1 includes all the components that constitute
the system, as well as directed arrows that indicate their
communication to implement the above described operation
mechanisms. It also includes the color code that indicates
whether the components are developed in the context of
C4IIoT or have been reused. The Figure also clearly indicates
the mappings between the components and the layers,
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i.e., it described where each component is deployed. The
Figure also showcases which components contribute to which
level (hardware-enabled, device-to-device, cognitive) of the
introduced security mechanisms. These levels are detailed in
Subsections II-M, II-F, and II-N. We now proceed with a
component-by-component system description.

E. COMMUNICATION THROUGH LAYERS – DATA FUSION
BUS (DFB)
For all layers of the architecture it is very important to
have safe and reliable means of internal communication.
For this reason our proposed architecture uses the Data
Fusion Bus component which is a secure message queue
implementation based onApacheKafka. Distributedmessage
queues such as Apache Kafka allow for easy to implement
message-based communication in large systems. They also
allow asynchronous communication where needed and they
are often designed with high-throughput, scalable and high
availability systems in mind. This characterstic combined
with extensive usage of container and container management
software (Kubernetes2 was used for our system) allows
for very high and dynamic, adjustable scalability of our
system. Apache Kafka is also very compatible with various
platforms and programming languages, and it offers various
built-in stream operations for advanced message processing,
filtering and so on. All system components which we
describe in following sections use this single message
bus to communicate with each other. Components publish
information to various message queue topics, and other
components subscribe to topics which are relevant to them.
The messages are also permanently stored for future analysis.
It is important to clarify that the IIoT data (or payload, which
is to be found in various messages) is encrypted so even in
case of a system breach the data remains private. This process
of payload encryption will be described in Section II-F.

F. DECENTRALIZED ACCESS CONTROL
The C4IIoT architecture includes a decentralized access
control (DAC) solution, allowing to control the access to data
by various entities, to enable auditability of various events
and policies, and to verify the integrity of data items. One core
element of the DAC is applying encryption in order to restrict
access to data such as sensor readings. We apply ciphertext-
policy attribute-based encryption (CP-ABE), a type of public-
key encryption where data consumers, such as the C4IIoT
analytics service (BACS, Section II-N), are each granted with
a personal secret key that is associated with a set of attributes
characterizing its holder (for example: organization, role,
purpose of consuming the data, etc.). Entities generating the
sensor readings encrypt them with a public key and specify
an access policy to the encrypted data as part of the process,
describing who shall be allowed to decrypt it in the ‘‘language
of attributes’’. This mechanism has built-in elements of
decentralization. Once a data item is encrypted, no central

2https://kubernetes.io/

authority is required to evaluate the access policy and grant
access to the data. The decentralized access control also relies
on Hyperledger Fabric (HLF), which is a permission-enabled
blockchain with support for executing smart contracts. HLF
enables auditability of events and access policies as well as
assure the integrity of data in C4IIoT. When sensor readings
are created in the edge nodes, or when being stored on the
cloud storage service, a corresponding record is logged in the
HLF channel. These tamper-proof records include a pointer
to the place where the data item is stored, a hash of the data
taken in the time when it was created, and the CP-ABE access
policy used to encrypt it. This solution allows the entities
involved in C4IIoT to monitor and verify the integrity of the
data and detect data manipulation attacks.

G. SECURITY ASSURANCE MODULE
The Security Assurance Module (SAM) is a model driver
tool responsible for monitoring, testing, and assessing
the runtime operations of the C4IIoT architecture. This
component is auditing critical components and processes of
the infrastructure while leveraging monitoring mechanisms
developed in the context of project. SAM provides an
evidence-based view of the security posture of the C4IIoT
architecture, with accountability provisions for changes that
occur in said posture and the analysis of their cascading
effects, supporting the runtime checking based on sets of
associated claims and assessments. The real time, continuous
assessment of the security posture of the C4IIoT architecture
is enabled by a purpose-built Event Captor Module based
on Elasticsearch [25](ELK stack), which is responsible for
creating and aggregating events as the required evidence
from multiple sources related to the operation of individual
components, as well as the overarching processes where these
components are involved in. Those events are digested by the
EVEREST tool (details are described below in this section),
where specific rules are set end checked in real-time for
violations. This way, SAM supports several built-in security
assessments addressing the CIA principles along with custom
metrics.

In more detail, the SAM is comprised of five primary
modules:

1) Cyber System Asset Loader: The component respon-
sible for receiving the system’s asset model for the
target organization. This model includes the assets of
the organization and their relations, security properties
for these assets, the threats that may violate these
properties, and the security controls that protect the
assets and is based on STS’s Assurance Model.

2) Vulnerability Analyzer (VA): The Vulnerability Ana-
lyzer is responsible to identify known vulnerabilities
of assets defined within an organisations’ asset model
based on the well established National Vulnerability
Database (NVD) of NIST [26]. The module includes
two components, (a) the vulnerability loader and (b) the
vulnerability database.
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3) Dynamic Tester: The component responsible for
executing dynamic testing assessment (e.g. penetration
testing). The module incorporates varies open-source
tools such as OpenVAS [27], in order to assess the
occurrence and exploitability of identified vulnerabil-
ities in the target system.

4) Event Captor (EC) Module: The Event Captor
Module is a tool that creates a variety of event
types related with the assured system (e.g. user
logins and, file accesses) and pushes them towards
EVEREST for evaluation. Data and events are mostly
collected through Elasticsearch based on lightweight
shippers (namely Beats), such as Filebeat, Metricbeat,
Packetbeat, etc., that forwards and centralizes log data.
Data can also be collected through Logstash8, an open
server-side data processing pipeline that ingests data
from a multitude of sources transforms it, and then
sends it to Elasticsearch. The Event Captor is initiated
through the respective REST calls from EVEREST.

5) EVEREST: A run-time monitoring (reasoning)
engine, for a defined set of tools based on the
event calculus reasoning [28]. It offers an API
for establishing such monitoring rules. EVEREST
consumes the run time events from the applications’s
monitored properties (through the EC), and evaluates
the defined rules. The outcome of EVEREST is
the real-time assessment for the rules validation or
violations.

H. SECURITY-AWARE DYNAMIC OFFLOADING DECISION
MECHANISM
The security-aware dynamic offloading decision component
of the C4IIoT architecture consists of a Multi-critEria DecI-
sion support meChanism for IoT offloading (MEDICI) [29].
MEDICI resides in the FG and dynamically decides which
anomaly detection model (BACS II-N, either in the FG or
the Cloud layer) needs to be triggered if further investigation
is deemed necessary by the edge anomaly detection model
(BACS, II-N). MEDICI takes into account metrics such as
the accuracy and confidence of an anomaly detection model,
the inference or execution time of an anomaly detection task,
the network transmission time to offload the task data to
another device and any delays incurred by the network. Using
lightweight estimation techniques and previously historical
data it predicts the future values of these metrics in order to
decide which anomaly detection task should be executed and
where, so that the overall time to detect an anomaly will be
reduced without compromising the detection accuracy.

As seen in Figure 2, MEDICI consists of three services
called Request, Response, and Network. The role of the
Request Server is to handle incoming offloading requests
from the edge devices and forward them to the Decision
Maker where the actual decision on which anomaly detection
model should be triggered is made. Whenever an anomaly
detection task is executed, relevant execution history informa-
tion (e.g. inference times, task size and confidence levels) and

FIGURE 2. Overview of the MEDICI service.

network data (e.g. round-trip latency and transmission times)
are gathered by the Response Server and Network Server
respectively. History information and network data are then
stored in dynamic storage (ExecutionMap andNetworkMap)
to inform future decisions.

1) CONTINUOUS VERIFICATION (BINSEC)
BINSEC is a platform for static analysis of software binaries
using formal methods. BINSEC operates at binary level, i.e.
on executable programs (e.g. .exe files) after they have been
compiled from source, which is typical for programs written
in languages like C, C++, Rust, Go, Fortran, Ada or Pascal.

Binary executables contain machine code, a combination
of low-level instructions, designed for execution by a specific
processor. Therefore, BINSEC must analyse for different
hardware architectures which have different instruction sets.

Typical examples of its usage include vulnerability dis-
covery (finding new security bugs in existing programs),
vulnerability analysis (finding the specific conditions under
which a vulnerability can be exploited by an attacker, e.g.
Stuxnet-alike [30]), reverse engineering (understanding the
behaviour of a program without access to its source code),
malware analysis (reverse engineering on obfuscated binary
code produced to make reverse engineering more difficult),
program verification at the binary level (proving that a
binary program meets some property, for instance that a
binary program does not suffer from buffer overflows),
program verification in programs containing assembly/binary
fragments (verifying a program at the source level, using
BINSEC to help it understand the assembly parts or external
binary-only libraries used by the program).

For integration of BINSEC in the system architecture, the
key constraints for integrating a binary code analysis for
continuous verification in the mitigation engine are automa-
tion (minimal intervention from the user), precision (low
rate of false positives), and security guarantees (necessity
to not trade security for less automation). In the light of
these constraints, we concluded that, in general, methods
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FIGURE 3. Overview of the SDN service.

like static analysis are not practical for the project, because
they become imprecise without user annotations, and report
many false alarms. They can still be used to guarantee the
security of critical components that are unlikely to change,
but it is unwise to focus on them. Thus, our goal is to focus
on complete methods, that can find bugs instead of proving
their absence. Even if these methods provide lower security
guarantees than sound methods, their ability to be more
automated and the fact that they mostly report true errors are
in line with the focus of the project and the system in general.

I. MITIGATION ENGINE – SDN CONTROLLER
The SDN component (DISCO) built for C4IIoT manages
the network infrastructure. It provides network connectivity
to the factory (the smart factory use case) for day to
day operation. It also protects the network from malicious
behavior by enforcing mitigations. As shown in the Fig. 3,
many containerized services implement the SDN service:

1) The SDN Controller takes as input mitigation require-
ments from the CARMAS (II-J) component using a
REST API. The input mitigation requirement request
describes the wanted end-result across the whole
network infrastructure. In other words the desired
network configuration is provided. The request details
are high-level and generic and lack any specific
implementation details. From the point of view of
CARMAS, the details of an intent instantiation are
irrelevant. For example, an exclusion of a network
device (from a software defined network) can be
enforced on every infrastructure network switch. But
it can also be only enforced on the switches on the data
path used by the target device. This latter example can
save some space in the unrelated flow tables.

2) The OpenFlow Controller manages the network
switches. It pushes OpenFlow [31] rules inside them.
The SDN Controller configures the OpenFlow Con-
troller through a set a network policies. A policy
is a specific configuration constraint to a specific
infrastructure context. A set of low level network
policies can provides a higher level network intent.
Faucet [32] is the base of this OpenFlow Controller.

3) The SDN Controller also uses extra side services.
Such as a Metric Controller that monitors the network

switches using OpenFlow. A Prometheus database that
stores the gathered metrics. A Grafana UI that displays
the infrastructure’s state.
For the smart factory use case, the SDN fabric is built
as shown in the Fig. 3. Some Raspberry Pi mimics the
communicating factory hardware. Some COTS hosts
act as the rack mounted network switches. They run
an Open vSwitch [33] daemon. It listens to OpenFlow
rules and steer the data path accordingly to the SDN
rules.

J. MITIGATION ENGINE – HIGH-LEVEL
RECONFIGURATION SEARCH (CARMAS)
The Cyber-Attack Runtime Mitigation Action Search (CAR-
MAS) component is presented in detail in [34]. It takes
as input from the Advanced Visualization Toolkit (AVT),
a set of detected attack actions, each accompanied with the
business loss that they would bring about if left unmitigated.
It produces and sends as response to the AVT a proposed list
of network reconfiguration action sets to mitigate the input
attack, in decreasing order of their estimated business loss
reduction. CARMAS assembles five sub-components in a
Docker containerized REST web service:

1) The Inference Engine (IE), a general-purpose,
application-independent, rule-based artificial intelli-
gence automated reasoner [35] to interpret application-
specific, Knowledge Bases (KB) in a formal yet
executable language that parsimoniously integrates
the constraint [36], [37], logic [38], [39], object-
oriented [40], [41] and service-oriented programming
paradigms [42], resulting in what we coin Constraint
Object-Oriented Logic Programming as a Service
(COOLPS);

2) The ontology, a COOLPS KB representing an
application-independent, conceptual model of IIoT
networks, vulnerabilities, attack actions and network
reconfiguration mitigation actions and their relations;

3) The Constraint Optimization Problem (COP) builder,
a COOLPS KB which interpretation by the IE builds
the COP of finding the best mitigation for the input
suspected ongoing cyberattack;

4) The COP solver, a COOLPS KB which interpretation
by the IE solves the built COP;

5) The service-oriented wrapper, a COOLPS KB which
interpretation by the IE starts a web server to com-
municate with the AVT, and then, for each REST
request, (a) convert its JSON payload into a query
submitted to the COP builder, (b) forwards the builder’s
answer as a query to the COP solver, (c) converts the
solver’s answer into a JSON payload for the REST
response that (d) the web server then sends back to
the AVT.

The COP builder takes as parameter a heuristic function
to build a COP that tailors relevant general knowledge that
its reuses from the ontology to the specific attack input
description received from AVT. In [34], we show that such
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heuristically built COP can then be solved by the COP solver
in a few seconds even for large coordinated attacks involving
up to 10 attack actions targeting up to 15 network assets.

K. SMART FACTORY EDGE DEVICES
The edge node for the Smart Factory use case is designed
following the established requirements, according to which,
these nodes are placed on autonomous ground vehicles
(AGVs). The AGVs are located in the factory, where they
have virtually unlimited energy. These vehicles have a big
energy consumption, as for example a direct tap a power input
or a set a big batteries, hence, the IoT devices embedded
in these vehicles do not have particular power restrictions.
Due to this feature, IoT nodes contain a relatively powerful
microprocessor, such as the ones found on Raspberry Pi
devices.

Attached to it, there are different connected devices, which
form the node and add a hardware security layer. This layer
is achieved through the use of several Hardware Security
Modules (HSMs). On one hand, an Infineon OPTIGATM

TPM2.0 [43] is incorporated via SPI (Serial Peripheral
Interface) communication. TPM2.0 is a type of HSM which
stores keys and performs cryptographic operations on the
node. This component is essential as the keys used in the
blockchain network are stored in this device. Two more
HSMs are also involved in the Smart Factory edge node.
On the one hand, there is one HSM in the form factor card
that uses an NFC reader to authenticate the user at the node.
On the other hand, the same mechanism is also established
but through aUSBDongle, which contains anHSMwhere the
cryptographic keys of the user are stored, in this way, it makes
possible to carry out the authentication process.

L. SMART LOGISTICS EDGE DEVICES
The edge node devices for Smart Logistics use case have
been custom built, designed and manufactured in-house
within the C4IIoT project, aiming to be low power due
to battery-powered operation, but still capable of running
lightweight anomaly detection tasks. The CPU is a low-power
ARM Cortex M0+ operating at 16MHz with 32kB/256kB of
SRAM/FLASH memory for the data/application code. Such
limited resources are fit for the required tasks of sensor data
acquisition, secured communication with the field gateway,
and lightweight anomaly detection. For wireless connectivity,
it features NB-IoT and LTE-M, new 3GPP communication
standards. Where LTE carrier might be unavailable, EGPRS
fallback is supported to ensure connectivity in such areas.
Geolocalization is supported by the integrated GNSSmodule.
The following onboard sensors providing data for anomaly
detection modules are available: accelerometer, magnetic
field sensor, air temperature, humidity and pressure sensor,
and the illumination sensor. Secured-by-hardware functional-
ity is provided by OPTIGATM Trust M crypto chip. The edge
node devices in their housings, andmounted on the containers
are depicted in Fig. 4.

FIGURE 4. Edge nodes mounted on containers in the smart logistics use
case.

M. HARDWARE ENABLED SECURITY
Hardware-enabled security plays a significant role in the
C4IIoT architecture, since it forms the base for manymodules
that are built on top of it, including the decentralized
access control (DAC) technologies. The Hardware Security
Module (HSM) that has been added in the edge nodes offers
robustness and trustworthiness both in the operations and
the data collected from the IoT devices. There are different
HSMs included in the two scenarios: Smart Factory and
Smart Logistics. The main difference between these two
scenarios is the constraints of the IoT devices themselves.
In the Smart Factory use case, the IoT devices are placed
in automatic guided vehicles (AGVs). The work is carried
out inside the factory, hence there are no energy constraints,
enabling IoT nodes to contain a high power microprocessor,
such as a Raspberry Pi platform. In the inbound Smart
Logistics scenario, the IoT devices are attached to containers,
which results to significant power restrictions due to the
fact the devices are powered by batteries only. In this case,
IoT devices developed with low-power microcontrollers are
essential.

Both the hardware and software running on IoT devices
is conditioned by this feature. In the case of software the
anomaly detectionmechanisms are lighter than in other layers
of the architecture. Furthermore, the hardware elements
embedded in the IoT device also vary from the different
scenarios. In the Smart Factory use case the hardware security
module used in the Raspberry Pi is the Infineon OPTIGATM
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TPM2.0. OPTIGATM TPM2.0, as we will see later, is a
suitable HSM for the Raspberry Pi, as it offers more robust
operations and provides more advanced mechanisms for
operating system devices. In the inbound Smart Logistics use
case, the HSM used is the Infineon OPTIGATM Trust M.
OPTIGATM Trust M offers a low power crypto-controller
which performs security mechanisms in the microcontroller.

1) HORIZONTAL DEVICE-TO-DEVICE SECURITY
Within the C4IIoT architecture, data aggregated by the IIoT
devices (edge nodes) may not be shared among different
devices or with data federation partners in raw form.
Furthermore, a data federation partner may want to protect
its data and analytics results from its competitors, or to
monetize its data selectively. This, Level-2 security, of the
C4IIoT framework has been built upon multiple technologies
brought by the partners in order to support this. One of
them is IBM’s decentralized access control (DAC) solution
that utilizes distributed ledger technologies (Blockchain) and
attribute-based encryption (ABE) in order to restrict access
to data using privacy-aware policies, enable auditability of
events and access policies and assure the integrity of data
in C4IIoT. Infineon’s secure element technology that allows
to protect sensitive information integrates with the DAC
and further strengthen the security and trustworthiness in
C4IIoT by securely storing the secret keys the edge nodes
use to interact with the Blockchain. Our identity management
solution (developed by HPE - Hewlett Packard Enterprises)
completes the Level-2 security mechanism by providing
a public key infrastructure (PKI) that enables to manage
and authenticate identities in C4IIoT using certificates and
cryptographic materials.

N. COGNITIVE SECURITY
The Behavioural Analysis & Cognitive Security (BACS)
Framework includes behavioural models based on advanced
deep learning techniques to providemore contextual informa-
tion and form an advanced anomaly detection model for the
entire IoT ecosystem. The framework takes into account that
each device is not isolated and includes its interactions with
other devices. BACS is depicted in Fig. 5 and it consists of
the following three main packages:
• BACSCL (BACS Cloud Layer) performing anomaly
detection based on deep autoencoder forests (unsu-
pervised Anomaly Detection (AD)) and deep neural
network forests (supervised AD) implemented in Python
using the Tensorflow 2 library.

• BACSPY providing anomaly detection based on outlier
detection, classification and representation learning
algorithms implemented in Python using Tensorflow 2,
scikit-learn and PyOD libraries

• BACSC contains lightweight anomaly detection rou-
tines implemented in C for constrained microcontroller
and based on IIoT devices planned for the Smart
Logistics use case.

FIGURE 5. BACS framework.

The models available in BACS are:

1) TFAutoAD - Auto-Encoder model that has three
variants: one that works on Edge layer, other that works
in FG, and third one that works in Cloud layer.

2) TFAutoDeepAD - Deep Auto-Encoder model
3) TFAutoVAEAD - Variational Auto-Encoder model.
4) TFAutoDeepVAEAD - Deep Variational Auto-

Encoder.
5) TFAutoWideVAEAD - Wide Variational Auto-

Encoder
6) TFAutoFCNAD - ADmodel based on Fully Connected

architecture.
7) TFAutoDeepFCNAD - Deep AD model based on

Fully Connected architecture.
8) TFAutoLSTMAD - AD model based on LSTM archi-

tecture.
9) TFAutoGRUAD - AD model based on GRU architec-

ture.
10) TFAutoRNNAD - AD model based on RNN architec-

ture.
11) TFAutoProphetAD - AD model that uses Face-

book’s state of the art model Prophet [44]
12) Kmeans_DPLAD - differentially private kMeans AD

model.
13) PCA_DPLAD - differentially private PCA AD model.
14) EE_SKLAD - Scikit Learn implementation of Elliptic

Envelope AD model.
15) SVM_SKLAD - Scikit Learn implementation of One-

Class SVM AD model.
16) LOF_SKLAD - Scikit Learn implementation of Local

Outlier Factor AD model.
17) IF_SKLAD - Scikit Learn implementation of Isolation

Forest AD model.
18) ABOD_PyODAD - PyOD implementation Angle-base

Outlier Detection model.
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19) KNN_PyODAD - PyOD implementation of kNN model
for Outlier Detection.

20) PCA_PyODAD - PyOD implementation of PCA for
Outlier Detection model.

21) HBO_PyODAD - PyOD implementation of Histogram-
based Outlier Detection model.

1) PRIVACY AWARE, TRUSTWORTHY DATA & ANALYTICS
In order to preserve private information in privacy-sensitive
data, we deploy differentially private methods. A method
that analysis certain data at the input and produces a certain
output is said to be differentially private, if by looking at
the output, one cannot determine whether any individual’s
data was included in the original dataset or not for analysis.
In other words, the guarantee of a differentially private
algorithm is that its behavior hardly changes when a single
individual joins or leaves the dataset – anything the algorithm
might output on a database containing some individual’s
information is almost as likely to have come from a database
without that individual’s information. Some of the common
practices to achieve differential privacy are i) adding noise to
the samples during the training process (indistinguishability
of samples); and ii) adding noise to the gradient computed
on a sample (indistinguishability of gradients of samples).
Specifically, in the context of C4IIoT, two differential privacy
outlier detection models – PCA and KMeansm have been
utilized. Both of these methods are implemented using diff-
privlib – a general-purpose library for experimenting with,
investigating and developing applications in, differential
privacy [20].

O. CONFIDENTIAL MALWARE ANALYSIS IN THE CLOUD
C4IIoT has also developed an (optional) cloud-based solution
that can be used to detect malicious files and identify mal-
ware. The entire system is designed with privacy-preserving
guarantees regarding the processing of sensitive and/or
critical files in third-party clouds that may not considered
trusted. The entire processing is performed in the cloud-
based server, encapsulated inside hardware assisted enclaves,
base on Intel SGX3 enclaves, which communicates with
the clients through a network TLS-terminated connection.
This encapsulation enables the protection of the malware
analysis, and most importantly the privacy of the user’s data.
In addition, by having the entire malware analysis modules on
a cloud-based server, the C4IIoT is alleviated from the need
to maintain multiple analysis tools in different layers or even
entities.

The cloud-based server is able to accept multiple connec-
tions and perform the analysis on the incoming data. For the
analysis of the received data, the server maintains an updated
signature set of know-threats (acquired by open-source tools,
such as ClamAV [45]), or even behavioral analysis models
for combating evolved attacks. The suspicious data are

3Project website – https://www.intel.com/content/www/us/en/developer/
tools/software-guard-extensions/overview.html

received in encrypted format by the cloud-based server and
are forwarded inside the Intel SGX enclave that host the
malware analysis engine. Once inside the secure enclave,
the data are decrypted and prepared for processing. The
cryptographic keys required for the authentication and the
successful decryption of the data reside exclusively inside
the SGX enclave. In this way, the secret keys and sensitive
or critical data are never present in plain-text format in the
server’s file system or DRAM and they remain inaccessible
even by the server’s host/provider. Moreover, even if the
non-SGX part of the cloud-based server or the hosting
infrastructure gets compromised, the keys and the private user
data cannot be obtained.

When the analysis of the suspicious data finishes, the
results are send back as a status report. The report generation
is also performed inside the secure enclave, so it cannot be
accessible and ensure that attackers or honest-but-curious
entities, such as the cloud provider, will not obtain any
information about the data. In combination with protecting
the analysis inside the enclaves, we also eliminate the
possibility of malicious entities injecting custom code and
observe the generated report in order to infer information that
could threaten the privacy of the user’s data.

This way of encapsulation and software protection can be
used in combination with our BACS (II-N) component to
achieve even higher level of security. BACS includes built
and ready-to-use special Docker images which can be used
with Intel SGX platform compatible runtimes.

P. USER INTERFACE
The C4IIoT user interface offers active real-time monitoring,
historical analysis and possible mitigation actions for specific
attacks. The real-time monitoring consists on data produced
by the edge enriched with information from the applied
anomaly detection mechanisms, and information from the
network traffic analysis. An alerting mechanism informs
the end-user about detected attacks and provides the option
to select among suggested mitigation actions. Finally, the
historical analysis help users to understand the evolution
of the edge devices behaviour and look for potential
relationships or behavioural patterns among the monitored
assets.

1) ADVANCED VISUALISATIONS
The Advanced Visualization Toolkit (AVT) provides the
means to visualise several indicators deriving from the
analysis of data coming from the Edge layer. It enables
the end-user to explore data in a high level through several
interconnected, interactive visualisations that also allow
drilling into more detailed information to reveal hidden
relationships and insights. It also supports a timeline analysis
component and multiple visualisations. These visualisations
include a set of interactive graphs and charts that form the
heart of the AVT. Bar charts, line charts and pie charts are
some of the standard forms of data representations. Different
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TABLE 1. Various types of attacks and responsible system components
for detection and mitigation. The list is not comprehensive and includes
some common attacks.

visualizations are used to display different types of data,
in order to make the understanding of data easier.

III. SYSTEM PERFORMANCE AND VALIDATION
We now present several evaluation results for the C4IIoT
framework. Specifically, we demonstrate validity and perfor-
mance of the framework by considering anomaly detection
validity and performance, as well as the overall system and
communication performance.

The C4IIoT framework supports detection of various
types of cybersecurity attacks, through the utilization of
its different components (Figure 1). Table 1 shows the
mapping between various types of attacks and the responsible
components. In this paper, we demonstrate the framework
capabilities on a concrete example of the Data Manipulation
Attack.

We next proceed by describing the setup and data
preparation for the subsequent evaluations (for anomaly
detection). Then, the overall system and communication
performance will be described in more detail in Section III-
A, the anomaly detection performance is discussed in III-B,
and the data Manipulation Attack testing will be detailed in
Section III-C.
For anomaly detection components, a thorough evaluation

of both unsupervised and supervised BACS models was
planned to be done on labeled real datasets. While real data
for nominal operation in the industrial environment has been
acquired, acquisition of labeled data with positive labels that
correspond to real anomalies in the industrial environment is
difficult to acquire. Henceforth, we work with real nominal
(normal operation) data and generate on top of it synthetic
anomalies.We evaluated the BACS component with synthetic
anomalies, where one can differentiate between i) isolated,
and ii) continuous anomalies.
• Single (isolated) anomalies are formed in a single
timestamp via one of 3 strategies, which are discussed
bellow. This type of anomalies reflect the anomalous
behaviour of sensors.

• Continuous anomalies stretch over a time interval
and they affect 10 distinct consecutive data samples.

This type of anomalies reflect the behaviour of physical
values that are measured by the sensors.

The strategy that we use to form anomalies is to replace a
value x from the column c in the original dataset with:
• make_zero – zero;
• make_small – a sample from distribution

Xsmall = x (1− U [0.1, 0.4));

• make_large – a sample from distribution

Xlarge = x (1+ U [0.1, 0.4));

• randomize – a sample from distribution

Xrandomize = U [min
x
{x|x ∈ c},max

x
{x|x ∈ c}).

Here,U [a, b) denotes the uniform distribution on the interval
[a, b), b > a.

A. COMMUNICATION PERFORMANCE
Speed and reliability, along with data integrity, are important
aspects of the architecture. The Data Fusion Bus is a
component based on Apache Kafka [46], which offers
management capabilities of the system through anAPI, which
offers a fast, reliable and secure way to transfer data between
the components and the layers of C4IIoT architecture. Kafka
topics (queues) are secured through certificates issued by a
private Certificate Authority, and the certificate users can
either be allowed or banned from using these topics. Access
to topics is provided following the principle of least privilege,
in order to ensure that in a case where the certificate is
compromised, access will be restricted to the minimum
possible. This architecture protects the transferred data, along
with preventing any unauthorised user to inject data into the
system.

Although most topics cause very little traffic (∼ 0.1
messages/second), the main topic which aggregates the data
from Edge of both the Smart Logistics and the Smart Factory,
may be used to transfer messages at a very higher rate. The
traffic was measured using a Prometheus [47] to receive the
metrics from Kafka and a Grafana [48] interface to depict
them. In the testing environment, using approximately ten
simulated devices sending a message every 7-9 seconds a
traffic of 5kB/s wasmeasured. This kind of throughput is very
low for Kafka infrastructure, strongly suggesting that even
hundreds of devices, either AGVs or Smart Logistics could
be easily supported by this architecture.

Data from Kafka is consumed by various components of
the C4IIoT architecture, at almost real time, allowing the
detection of possible cyber attacks to be reported fast. All
components that need to process the data, consume them
at the rate they can, therefore avoiding an overflow of data
which could potentially disrupt their service. Additionally,
data which is needed by more than one components,
is consumed by the relevant Kafka topic without delay since
it becomes available for all at the same time. In the case one
of the components crashes, since the data remain available in
the Kafka topic, when it is up again, it can resume operation
from the point it was stopped.

124758 VOLUME 10, 2022



G. Bravos et al.: Cybersecurity for Industrial Internet of Things: Architecture, Models and Lessons Learned

B. COGNITIVE SECURITY PERFORMANCE
In this section we describe the C4IIoT framework per-
formance with regards to the BACS evaluation (anomaly
detection). We evaluate both use casesm Smart Logistics
and Smart Factory, in order to validate our approach. For
the Smart Logistics use case we operate in an unsupervised
fashion, where we only measure the system response time
and not anomaly detection accuracy. Here, we report that
all our models successfully converge and behave normally
during training. For the Smart Factory use case, we employ
our synthetic anomaly generation process described in
the previous section. In addition to the system response
time, we also measure validation metrics (such as accu-
racy and F1-score) obtained in testing with the synthetic
dataset.

It is important to emphasize that BACS was designed to
be compatible with any tabular dataset, and to work with
both unsupervised and supervised data. This was achieved
through the definition of abstractions in the code which help
with unknown data sources and making BACS configurable
to adapt to these situations.

All hyperparameters (such as epochs of training, learning
rate, neural network architectures and so on) were decided
though a trial-and-error process. A hyperparameter opti-
mization process such as grid search would surely benefit
the system, but it has not been performed due to time
constraints.

In the results ahead, there are a few notation specifics that
we now explain for clarity. If there are several models with the
same name, we also annotate them with the architecture layer
they belong to (e.g., TFAutoAD [Edge]). The TFAutoAD
(TensorFlow autoencoder) has the same configuration in all
the three architecture layers (edge, field gateway, cloud), but
the layers themselves are different by design in operating
with varying window lengths. This means that the input
to the models is not the same across the architecture
layers, and that is why we add the layer designation in
the naming conventions. The window lenghts used are 1,
5, and 10 for the Edge, Field Gateway and Cloud layers,
respectively. The models having ‘‘TF’’ in their name are
implemented in TensorFlow 2 (neural networks), ‘‘SKLAD’’
are implemented with scikit-learn library, ‘‘PyOD’’ with
the PyOD library, and ‘‘DPL’’ with the diffprivlib
library.

In Table 2 we present performance for all the supported
BACS models. Column Inference Time represents total time
to perform inference for the entire dataset, while the column
Average Inference Time represents the average response time
for a specific model. In the Smart Logistics use case, and
in similar systems in general, we expect the models to have
low response times (e.g., less than 100ms), which is achieved
here.

In Table 3 and Table 4, we present similar results for
the Smart Factory use case. The only exception is the
Facebook Prophet (ProphetAD) model. As Prophet is a tool
for univariate time series modelling, we had to create multiple

TABLE 2. Smart logistics use case BACS results. The column anomalies
represents the number of detected anomalies on the training dataset
(model sensitivity), Inf. Time represents the total model inference time for
all dataset derived time series windows, and the Avg. Inf. Time represents
the average model inference time which is the expected model response
time in real-world usage. Times are in seconds. Models operate in the
Cloud layer, unless otherwise specified in the model name.

TABLE 3. Smart factory use case BACS results. Same notes as table 2.

models to process data per sensor, hence the slower response
times.

Finally, in Table 5, we present the synthetic supervised
learning results for our models when testing with contin-
uously generated anomalies. From our testing, recurrent
neural networks seem to perform best with this type of
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TABLE 4. Smart factory use case BACS results when testing with synthetic
singular anomalies (self-supervised results). Models operate in the Cloud
layer, unless otherwise specified in the model name.

TABLE 5. Smart factory use case BACS results when testing with synthetic
continuous anomalies (self-supervised results). Models operate in the
Cloud layer, unless otherwise specified in the model name.

synthetic anomalies, with respectable accuracy and F1-
scores. It is important to mention that the F1-score is the
main metric we use to compare models here, as accuracy
can often be misleading in anomaly detection scenarios when
working with imbalanced data (less anomalies compared

to normal data). In the results table we can also see
that the Principal Component Analysis (PCA_DPLAD)
with differential privacy included performs well while the
K-Means algorithm from the same family of algorithms
fails to converge, mostly due to it being more suitable for
unsupervised analysis (e.g., clustering).

The above experiment with the synthetic anomalies
generation has helped us greatly to detect implementation
errors and to choose which models to use in which layers of
the architecture in order to have an optimized performance.
This leads, for example, to the choice that at the Cloud
layer we use recurrent neural network models (GRU – Gated
Recurrent Unit, specifically).

C. SYSTEM RESPONSE EXAMPLE: DATA MANIPULATION
ATTACK
A data manipulation event corresponds to the scenario when
the data is changed either in transit or at rest. This event
is detected by comparing the hash of the data against the
hash stored on the blockchain element of DAC. The hash
of the data is stored on DAC at the Field Gateway for the
Smart Logistics data and at the Edge for the Smart Factory
use case. This hash is checked before the data are stored,
by the storage connector, and if there is a mismatch a data
manipulation event is reported, which is the case where the
data have been somehow changed in between the different
layers and components of C4IIoT (in transit). An event like
this would suggest that a certificate which allows access to the
DFB (Data Fusion Bus) has been compromised and therefore
has to be invalidated. A different case of data manipulation
is at rest, where the data are changed after they are stored in
the database. In this case the users of the AVT can request a
check of the data, initiating again a comparison of the hash of
the data against the hash that is stored on DAC, and they are
notified if there is a mismatch.

IV. LESSONS LEARNED & CONCLUSION
In this paper we described our effort to design and implement
a secure and modern Industrial IoT System while providing
useful details which can help other researchers in devel-
oping similar systems. While working together, the entire
consortium of the C4IIOT Project advanced and learned
about different aspects of cyber security in IIoT systems.
Through various levels of security layers implemented in the
components described here, we collected several lessons on
how IIoT systems can be hardened and safely used in the
industry. Specifically, we draw the following lessons learned
from the aforementioned development process.

In the IoT ecosystem, sensors are resource-constrained
devices that are mainly used for fine-grained monitoring of
the infrastructure and the environment. The commoditization
of trusted execution environments (TEE, such as OPTIGATM

TPM or Intel SGX) can ensure that these operations are
performed in a trustworthy manner.

Regarding anomaly detection models, validation is impor-
tant and can be difficult to define. For example, if we were
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to use only accuracy score as a performance metric for our
models, we would have very biased models as the data
is very biased (less anomalies compared to normal data).
By using other performance metrics (e.g., F1-score) we were
able to create better models with respect to the natural class
imbalance in the data. Moreover, it is very important to have
good understanding of model hyperparameters and how to
effectively tune them in order to obtain high performing
models.

With regards to on-device anomaly detection performance,
due to a low computational power and small memory
capacity, it was practically infeasible to train the edge
node anomaly detection autoencoder directly on the edge
node device. Many data points would have to be stored
at the device to train a model exhibiting an acceptable
level of accuracy. Moreover, the training of autoencoders
is a computationally intensive optimization process usually
performed in many iterative steps. Finally, low computational
power prevents any serious model validation and tuning of
model hyperparameters. Consequently, we adopt a scheme
in which edge node autoencoders are trained offline and an
inference engine for feed-forward neural networks is directly
integrated into the firmware of the edge node device enabling
autoencoder-based anomaly detection on pretrained models.

In our experiments with anomaly detection models,
we found that it is important to have different anomaly detec-
tion model types in place in order to be able to detect different
types of anomalies: sequence-type models such as GRU or
LSTM neural networks could detect continuous anomalies
(anomalies spanning multiple measurements/timestamps)
better than lighter ‘‘fully connected’’ models. On the other
hand, for the singular anomalies, both model types performed
similarly well.

The Apache Kafka message queue as one part of the data
fusion bus (DFB) provided a solution for communication
between modules which was easily adopted by the other
modules using high level programming languages but it
is more challenging for other technologies. Kafka Mirror
makers are a good solution where Kafka cannot be deployed
as a cluster, but only if the flow of the data is one way.

The SDNController uses the OpenFlow protocol that is not
flexible enough and contains some ambiguities. However, the
SDN switches have to implement the standard following their
interpretations of it. This leads to incompatibilities between
vendors. The SDN switches must be controlled by the SDN
Controller. In order to do that, they listen for instructions on
a port. This has been identified as a potential security hole.

There are several attack types which we left somewhat
unexplored as they are not relevant to our concrete system
and use cases. For example, real time monitoring and
detection of ransomware attacks remains to be explored
in our future work. Techniques such as auto-quarantine
of malware or buggy software, full network communi-
cation halt of potentially compromised components can
be used to somewhat reduce risks of data loss in such
scenarios.

To conclude, through our system definition, implemen-
tation and validation, we display our vision of a secure
connected platform in smart factory and smart logistics
environments. We considered concepts important in IIoT
scenarios through procedures such as mitigation strategies,
encryption, deep learning based anomaly detection, data
validity, etc. Our proposed architecture may also be applied
to other new IIoT systems with some minimal or moderate
technical modifications, while our results can be used as a
baseline for new research in the field. We also emphasize
the independence and portability of several components
in our system. Most of them can be easily adapted and
used as standalone services in other systems. To reduce
verbosity some implementation details have been left out, but
we encourage the readers to explore our project website,4

where we include all the detailed descriptions for all of the
mentioned components.
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