The Ceyhan-Seyhan Coastal Plain (Cukurova). A Survey of its Structural, Marine, Terrestrial and Human Control Processes - Turkey
Catherine Kuzucuoğlu

To cite this version:
Catherine Kuzucuoğlu. The Ceyhan-Seyhan Coastal Plain (Cukurova). A Survey of its Structural, Marine, Terrestrial and Human Control Processes - Turkey. PALEOCOGRαFYA VE JEOARKe-ΟLOJi ARAŞTIRMALARI, 2022, 978-605-338-372-7. hal-03913279

HAL Id: hal-03913279
https://paris1.hal.science/hal-03913279
Submitted on 26 Dec 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License
“Ayhan SÜR ve Özdoğan SÜR” Anısına
PALEOCOĞRAFYA VE JEOARKEOLOJİ ARAŞTIRMALARI

I

Editör
Ernş ÖNER
Baskını Düzenleme
Rifat İLHAN

Ege Üniversitesi Yönetim Kurulu’nun 05.04.2022 tarih ve 7/29-31 sayılı kararı ile yayınlanmıştır.
Eserin bilim, dil ve her türlü sorumluluğu yazara/editeörne aittir.

T.C. Kültür ve Turizm Bakanlığı Sertifika No: 52149

Ege Üniversitesi Yayınları
Ege Üniversitesi Basım ve Yayınevi
Bornoval-İzmir
Tel: 0 232 342 12 52
E-posta: basimyayinevisbm@mail.ege.edu.tr

Yayın Link
https://basimyayinevi.ege.edu.tr

Baskı: Ekim, 2022

Bu eser, Creative Commons Attrib. 4.0 Uluslararası lisansı (CC BY-NC-ND) ile lisanslanmıştır. Bu lisansla eser alıntı yapmak koşuluyla paylaşılabılır. Ancak kopyalanamaz, dağıtılamaz, değiştirilemez ve ticari amaçla kullanılamaz.

This work is licensed under a Creative Commons Attribution 4.0 International license (CC BY-NC-ND). Under this license, the text can be shared with the condition of citation. However, it cannot be copied, distributed, modified or used for commercial purposes.
İçindekiler

Sunuş

Sevgili Hocalarım Ayhan ve Özdoğan SÜR

Ertuğ ÖNER .. ix

Prof. Dr. Ayhan ONUR SÜR ve Prof. Dr. Özdoğan SÜR (Nekroloji-Amılar)

İlhan KAYAN .. xi

Prof. Dr. Ayhan ONUR SÜR (Biyografi) .. xxı

Prof. Dr. Özdoğan Hayri SÜR (Biyografi) ... xxv

PALEOCOĞRAFYA VE JEOARKEOLOJİ ARAŞTIRMALARI I. .. xxıx

Antik Efes ve Anadolu Arımision’unun Jeoarkeolojisi

John C. Kraft, H. BRUCKNER, İ. KAYAN, J. H. ENGELMANN 1-32

The Ceyhan-Seyhan Coastal Plain (Çıkuurova). A Survey of its Structural, Marine, Terrestrial and Human Control Processes

Catherine KUZUCUOĞLU .. 33-50

Urla Kıyı Düzlüğündeki Limantepe ve Klazomenai’nin Paleocografyası ve Jeoarkeolojisine Paleontolojik Analizlerin Katkısı

Ertuğ ÖNER, S. VARDAR, R. İLHAN, M. DOĞAN, F. YAMAN ve İ. KAYAN 51-94

Van Gölü Havzasındaki Obsidyenlerin Kaynak Alanları ve Prehistorik Dönem Süresince Yayılımı

Ebru AKKÖPRÜ, A. F. DOĞU, D. MOURALIS ... 95-106

Eşen Ovasının Holosen’deki Jeomorfolojik Gelişiminin Patara ve Leetoon Antik Kentlerinin Jeoarkeolojine Etkisi

Ertuğ ÖNER .. 107-134

Karpuz Çay Deltasında Paleocografyası Araştırmaları

İhsan ÇİÇEK, N. TÜRKOĞLU, G. GÜRGEN ... 135-154

Akdeniz Havzasındaki Eroyonda Neden-Sonuç İlişkisi: İç Anadolu’daki Bir Göl Havzasında Holosen Sedimantasyon Taşınımı Üzerinde İklim ve İnsanın Etkisi Çevresinde Paleocografyası ve Jeoarkeolojı Araştırmaları

Ambar Çayı (Diyarbakır) Vadisinde Jeoarkeoloji Çalışmaları

Sabri KARADOĞAN, A. T. ÖKSE, A. COŞKUN, A. AL, T. GÜNCE 183-212
Kadıkalesi (Anaia) Höyüğünün (Kuşadası-Aydın) Paleokoğrafya ve Jeoarkeolojik Özellikleri
Aylın KARADAŞ, S. YILDIZ BAŞARIR... 213-272

Lissos Antik Kenti Çevresinde Jeoarkeolojik Araştırmalar (Kuzey Arnavutluk)
Levent UNCU.. 273-284

Madra Çayı Deltasında Höyüğek ile Yeniyeldeğirmeni Höyükleri Çevresinde Paleokoğrafya-
Jeoarkeoloji Araştırmaları
Serdar VARDAR... 285-302

Çeşme Bağlararası Höyüğük ve Çevresinde Paleokoğrafya ve Jeoarkeoloji Araştırmaları (Çeşme,
İzmir, Türkiye)
Rifat İLHAN... 303-350

Tarsus Ovası ve Gözlükule Höyüğünde Paleokoğrafya - Jeoarkeoloji Araştırmaları (Tarsus-
Mersin, Türkiye)
Beycan HOCAOĞLU.. 351-374

Bornova Ovasının Paleokoğrafyasında Bayraklı, Yeşilova, Yassutepe Höyüklerinin Jeoarkeolojisi
Ertuğ ÖNER.. 375-406

Güneydoğu Anadolu’da Önemli Bir Kültürel Peyzaj Alanı: Zerzevan Kalesi ve Mithraeum
Sabri KARADOĞAN, A. COŞKUN.. 407-416

Çivril Ovası ve Beycesultan Höyüğünde Paleokoğrafya - Jeoarkeoloji Araştırmaları (Çivril-
Denizli, Türkiye)
Aylın KARADAŞ... 417-448

Jeoarkeoloji’nin Tarihsel Gelişim Süreci ve Yeni Bir Yaklaşım Olarak Dijital Jeoarkeoloji
Ebu Bekir KARAKOÇA, L. UNCU .. 449-460

Myrina ve Tisna Antik Yerleşimleri Çevresinde Paleokoğrafya ve Jeoarkeoloji Araştırmaları
Serdar VARDAR... 461-480

Assessing Alluvial Fan of Bergama Using High Resolution DEM Generated from Airborne
LiDAR Data
Beycan HOCAOĞLU, M. AğCA... 481-496

Sarıçay Ovasının Paleokoğrafyası ve Damlıboğaz -Pilav Tepe’nin Jeoarkeolojik Özellikleri
Rifat İLHAN.. 497-540

Germiğ Platosu Çevresinde Jeomorfoloji Çalışmaları ve Göbekli Tepe Yerleşimi Konusunda
Düşündürdükleri
Abdulkadir GÜZEL, S. KARADOĞAN, A. AL, M. ÖZCANLI, M. AKBIYIK 541-554
Torbali Ovasının Holosen Doğal Çevre Değişmelerinin Alüvyon Delgi Sondaj Yöntemi ile Belirlenmesi ve Paleocoğrafya Değerlendirmeleri

Serdar VARDAR ... 555-570

YAZAR BİLGİLERİ .. 571-574
The Ceyhan-Seyhan Coastal Plain (Çukurova)
A Survey of its Structural, Marine, Terrestrial and Human Control Processes

Catherine Kuzucuoğlu

Abstract

A state of the art of ancient to recent publications and documents regarding the physical geography of the Çukurova Plain, allows the presentation of the physical forces at work in shaping the landscapes of the Çukurova area, from the Adana plain to the Ceyhan Plain, and the western coast of the Iskenderun Gulf, including the Yumurtalık delta. The forthcoming effects of these forces are also changing the life and future of the biologic species, ecosystems and inhabitants of the area. Four main controls are identified: (1) geological structure, especially tectonic structural organization and active tectonics; (2) marine currents, including newly evidenced whirling ones; (3) river hydrology; (4) and last but not least: human pressures on agricultural land, river channels, water resource and coastal lines. Among the remaining forcing factors, wind sediment transport is the least affected, for the time being, by changes. Regarding the main forcing factors, the review allows evidencing the long-term supremacy of tectonism, with the on-going partition of the Plain in two parts, increasingly separated by the Misis Highs. This SW-NE uplifting relief is rather rapidly rising, forcing the Seyhan lower course to slide westwards in direction of the central part of the Plain. This trend is already responsible for the avulsion of the Seyhan from the Gulf of Iskenderun basin to the Adana Basin in 1935. As a result, the Yumurtalık delta east of Karatas lacks sediment input for facing marine erosion, and is increasingly eroded. In addition, a trend of coastal retreat is easily evidenced in both river mouths since three decades. This latter phenomenon results from the too important dam construction on the main rivers providing sediments to the coast, especially the Seyhan River whose load has diminished by 90%. This impoverishment in river sediment loads will accentuate, in relation to the present sea level rise, the speed of on-going penetration of the sea inside the Plain, first underground and, later, overground.

Introduction

At the easternmost corner of the Mediterranean, the 120 km wide and 100 km large coastal plain of Çukurova (ancient Cilicia) in Turkey extends between the Taşeli metamorphic massif (west) drained by the Göksu river (outflowing to the sea at Silifke), and the Iskenderun Gulf (east) limited east by the steep slopes of the Amanos massif in Hatay Province. Seaward, the Çukurova plain ends with a worldwide-known magnificent delta built by the alluvium of two major Mediterranean rivers of Turkey: the Seyhan River and, mainly, the Ceyhan River (Fig. 1). Since the 1950’s, the number of scientific articles concerning the delta, the mobility of its natural channels and of its coastal line, and their relationships with the riverine sedimentation input by the main rivers feeding the delta has been increasing (e.g. Ering 1953; Gürbüz, 1999; Erol, 2003; Özpolat et al., 2021). Meantime, scientific and public interest grew also for the conservation of the dune and wetland areas related to the formation of the enormous delta east of Karataş (e.g. Altan et al.,

* Prof. Dr., Laboratoire de Géographie Physique (LGP), UMR 8591 CNRS, Paris 1 & UPEC Universities, e-mail: catherine.kuzucuo@lgp.cnrs.fr
While the whole Çukurova alluvial plain is almost fully exploited by very intensive practices for agricultural production, the genuine environments in the coastal areas (coastal dunes, delta ecosystems) are threatened by impacts of the human activities on the coast and inland, and the sea-born dynamics which both act on the fragile equilibrium necessary for the perpetuation of deltaic ecosystems (e.g. Kuzucuoğlu et al., 1993; Altan et al., 2004; Ozaner, 2004; Isola et al., 2017). In this context and while the rise of the global sea level has started (Simav et al., 2013), the state of geomorphological knowledge presented here aims at exploring the processes controlling the dynamics of the Çukurova plain and coast, as well as of the Ceyhan delta.

1. Impacts of the Structural Framework on the Long-term (geological) Evolution of the Çukurova Plain

As evidenced by the geological map of the area, especially its tectonic components, the structural framework has an important control on the dynamics of the Çukurova plain and its delta, (Fig. 2A). This framework extends from the Mediterranean Sea floor in the vicinity of Cyprus, unto the Central Taurus highlands north of Kozan, and the Hatay-Kahraman-Maraş highlands (Fig. 2B) (Aksu et al., 2021). While a set of deep fractures forms a triangular peak-like pressure oriented toward the “Triple junction” near Karhaman-Maraş (Fig. 2A) (Aksu et al., 2021), a complex set of important regional faults also controls uplift vs subsidence dynamics of sub-basins. As a result, the Çukurova plain corresponds to an elongated tectonic depression bordered by the central Taurus Range to the west, north and northwest, and by the Karataş–Misis–Yumurtalık uplifting lineament to the east (Fig. 2B). This lineament extends from Northern Cyprus to the ridge which separates inland the Adana plain from the Ceyhan plain (Fig. 2A), while the Iskenderun Basin lies east of the lineament. Thus, the “Misis Highs” separate the Cilician lowlands in two parts: (1) the proper Cilicia west of the lineament, (2) and a depression attracting the Ceyhan river east/north-east of the lineament. Noticeably, the tectonic activity of this “Misis lineament” continuously provokes destructive earthquakes, such as in 1998 when fatalities and damage occurred in Adana and in surrounding regions (Över et al. 2004; Ulusay and Turgay, 2004).

Presented here for the first time, the map in Fig. 3 inspired by Aksu et al. (2021), illustrates the major control of the sub-marine topography on the distribution of land-originating water and sediment flows. It illustrates also the control, by this topography, of the river frame organization inland, which outflows into three main sediment traps composed of deeper marine basins, through very steepy gorges providing the connections between the shelf areas and the deep sea.. The resulting picture provided illustrates the important role of the submarine geomorphology organized with the three basins clearly separated from one another, both in the sea and inland, by the Misis Highs. These tectonic disposal and resulting morphology, testify for a complex, intermingled, continental to marine sediment-trapping system in which the role of uplift movements of the Misis Highs is preeminent (Fig. 2B).

The geological control on the Çukurova plain organisation and dynamics is clearly illustrated by the separation, by the Misis Highs, of the water drainage in two different structural basins: west the Adana Plain mostly drained by the Seyhan river, but receiving today the Ceyhan river superimposed on the Misis Highs. As a result, the limestone ridge rising above the flat landscapes of the plain is not only the morphologic expression of a thrust block, but also the backbone triggering (i) the separation of the river drainage toward two basins (the Adana plain and the Gulf of Isenderun), and (ii) the trapping, by submarine topographies, of the sediments produced by the erosion of continental reliefs both in Cilicia (Adana and Ceyhan plains), and the Iskenderun Gulf (Fig. 3).
Accordingly, the lowlands and marine basins are organized in three entities (and not two): the Adana and Ceyhan plains, and Iskenderun Gulf (Figs. 1, 3).

2. Agents Controlling the Delta front Dynamics Today

Within this well constrained structural frame (mainly active tectonics), the building of the coastal areas on land is also controlled by processes interplaying between the sea (air and sea currents), the sea-land interface (coastal areas), and the continent (land and stream).

2.1. Along the shore

Because of high evaporation rates during most of the year and of the low turnover of marine water, the salinity of the sea presents here the highest levels of the Mediterranean Sea (39%) and a tidal range of 50 cm (to be compared with 100 cm at Gibraltar and 150 cm in the Gabès Gulf in Tunisia). The waters of the Iskenderun Gulf are also the warmest in the whole Mediterranean Sea. Currents, whether marine or winds, are important agents of the water and sediment circulation in and around the delta.

2.1.1. Winds

In Cilicia, winds reach strong speed for some 15% of the year. According to their monthly distribution, the prevailing winds blow from N, NNE, and NE, but mainly during winter. Near the coast, prevailing winds blow from S and SSW (i.e. from the sea), and are more frequent during summer than in other seasons, both in frequency and in strength, (Altan et al., 2004; Özpolat et al., 2021). Along the coast of the plain, these winds weaken the stability of the dunes and of the shore line, particularly in summer when dune vegetation suffers from hot temperatures and salt concentration in the air (Özpolat et al., 2021).

2.1.2. Marine currents

Marine currents in the region belong to the main circum-Mediterranean westward circulation, originating here from the Levantine coast. This current turns north around the elongated relief formed by the Cyprus island and the submarine part of the Misis relief. Past this turn, it continues west along the Turkish Mediterranean coast. Superimposed on this general movement, vortex currents with high velocities occur in rather short distances from the coasts of the Iskenderun Gulf and Cilicia which favour their formation (Gérin et al., 2009) (Fig. 4). These whirling currents modify the paths and strengths of the main marine coastal current, as well as the salinity of coastal waters at places. Fig. 4 illustrates whirling currents in front of the northern Syria-Samandağ coastline. In the Iskenderun Gulf a similar vortex appear to also form, mixing both the highly saline and warm waters of the Gulf and Cilician coastal waters; vortex can also form along the Cilician coast west of the Karataş rock Point (Taupier-Letage, 2018). As a result of these events, the marine erosion of the coastal deposits may be much more important west of Karataş than east, while the western part of the Iskenderun Gulf may also receive sediments provided by westward-circling currents penetrating the Gulf (Taupier-Letage, 2018), that would feed the Ceyhan delta.

2.1.3. Climate-forced sea level rise at the end of the Last Glaciation (since c. 16 ka years ago): timing and magnitude of induced changes in the Mediterranean

In the Mediterranean, the first significant addition of meltwater after the LGM about 19 ka, may have started with the world ocean level rising 10-15 m in less than 500 years (see references in...
Benjamin et al., 2017). During the Bölling-Alleröd warming interval, an even more significant phase of accelerated sea-level rise occurred. The timing and magnitude of this rise in the global ocean vary according study places. Features collected by Benjamin et al. (2017) are:

- 16-24 m between 14.6 and 13.5 ka (Weaver et al., 2003), or
- 14-18 m between 14.65-14.31 ka (Deschamp et al., 2012), or
- 20 m between 14.3 and 13.8 ka (Bard et al., 2010).

From 12.8 to 11.7 ka ago (i.e. during the Younger Dryas cold event), the rate of sea-level rise slowed down, but with varying intensities (Carlson et al., 2008).

* During a first phase of the Early Holocene (11 to 8.8 ka cal BP) south of today’s Po delta, the sea level rose with a peak around 9.5 ka BP (Correggiari et al., 1996). During the rest of the Early Holocene, the sea level rise was punctuated by smaller meltwater peaks due to episodic deglaciation episodes of the Laurentide ice cap. In several places in the Mediterranean, the 8.2 ka cold event that ends the Early Holocene, was preceded by a sea-level jump of one or two metres (Tornqvist and Hijma, 2012).

* During the mid-Holocene (after 8 ka cal BP), sea-level rise slowed down again, reaching its present level by 4 ka cal BP. In the Adriatic, this decrease in the rise rate led to the formation of a well-developed deltaic complex of the Po River, which is today partly preserved at a depth around -40 m between 40 and 60 km offshore of the city of Ravenna (Correggiari et al., 1996; Cattaneo and Trincardi, 1999).

* By 4000-3000 cal BP in tectonically stable regions, sea level remained close to present levels, with small fluctuations either below or slightly above the present. In the eastern Mediterranean however, as along the Turkish shore areas, significant regional and micro landscape changes occurred because of adjustment in land level caused by tectonic activity uplift vs subsidence (Pirazzoli, 2005).

Leaving aside the tectonic component of the forcing processes, one important conclusion must be retained from this post-glacial Mediterranean overview, that concerns the Cilician coasts. The Early Holocene climate-forced sea level increase in the Mediterranean sea, together with increasingly humid climate, led to the development of huge deltas over low-sloped sub-marine and continental areas fringing the mountain feet, fed by river systems inland delivering massive loads of sediments from deglaciating highlands. On the basis of this context -and whatever age is the pile of sediments-

2.2. Inland

2.2.1. Climate on land

Climate in the Çukurova plain and surrounding areas is characterized by a very humid variety of the Mediterranean climate (Fig. 5). During summer, dry and warm summers generate a high humidity content of the air above the numerous wetland and humid ecosystems of the delta (Atalay et al. 2014); Yearlong, relief increases the precipitation amounts up to 1000–1200 m altitude,
generating a subhumid-to-humid Mediterranean climate in the transitional highlands (Atalay et al. 2014). In autumn and winter, Mediterranean depressions, which have become colder when passing over Europe and the sea (Türkeş and Erlat, 2003), collide with the relatively cold air leaving Anatolia southwards and with the warmer Saharan air masses over Cyprus (Cullen et al. 2002). A front thus forms, that conducts the Atlantic-sourced Mediterranean depressions storms onto the land, triggering abundant rain and snowfall on the mountain slopes encircling the delta plain and the delta (LaFontaine and Bryson, 1990).

2.2.2. River network

All this rain-born humidity returns to the Çukurova plain and neighbour lowlands, through the water courses of several rivers, the main ones flowing from (i) the Central Taurus (the River Seyhan basin), and (ii) the highlands separating the Mediterranean basin from the Euphrates basin (the River Ceyhan basin) (Fig. 1).

Above the Adana plain, the Seyhan River drains water running from slopes facing the SE. Its headwaters are two rivers separated by the Tahtalı Mountains, which meet near the Gökçeköy village. In the northwest, the western branch originates from the Uzunayla Plateau NE of Kayseri (at the eastern extremity of the Central Anatolian endorheic area). In the north-east, the other branch (Göksu River) originates from the Binboğa Mountains separating the Mediterranean and Eastern regions of Turkey. Downstream, part of the Seyhan River enters the Çukurova plain through the old Roman city of Adana.

Also flowing into the Çukurova plain, the Ceyhan River springs in the Elbistan plain, north of the Nurhak Mountains. Its eastern divide separates the Mediterranean basin from that of the Euphrates River. Strabo (xii. p. 536, in Karmer 1852) records that, before his time, the upstream part of the Ceyhan River used to flow underground and that it was navigable downstream the resurgence. Strabo also claims that, in some parts of the river course, the channel was so narrow that a dog or hare could leap across it. At present, these canyons are inundated by several dam lake reservoirs, with the exception of the Kısıklı Canyon south of the Menzelet Dam (Kuzucuoğlu et al., 2019: 71).

Profiles of these rivers are dominated by very steep slopes in the highest parts of the watershed, whether in the Central Taurus and Elbistan ranges, or in the Amanos massif. These systems collect high amounts of precipitation that they transport to the Adana and Ceyhan plains, as well as to the northern shores of the Iskenderun Gulf. Meantime however, part of the rain and snow falling over the highlands runs into karstic systems which may be deep and well developed because of the geological context (limestone thickness + uplift intensity) that occurred during and after the formation of the Taurus highlands and associated plateau reliefs. For this reason, the volume of sediment delivery by the rivers when reaching the lowlands and the sea, can be underestimated.

3. Recent Evolution of the River Paths in the Plain, Coastal Line and Delta

As underlined above, the sediment series accessible in today’s Cilician plain and coastal areas, can only record Mid-to-Late Holocene environmental changes. Early Holocene remains (including Palaeolithic to Neolithic sites, if ever) are today buried below Mid-Holocene sediments. Early Holocene sediments resulting from highland erosion and coastal aggradation responding to the start of the Late Glacial and Early Holocene sea level rise (see the 0 to -100m bold black lines in Fig. 3), they may be found in today’s plain only by very deep coring. When sea level stabilized ca. 6000-4000 years ago (end of Chalcolithic/early Bronze Age), the high sediment input discharged by rivers
continued, building coastal areas and deltas seawards. According to data from similar large deltas in the Mediterranean, it is most probable that sea level stabilized, (i.e. the coastline altitude) to its present position c. 4000 years ago. In Cilicia however, it is also possible that subsidence continued at places controlled by recent tectonic movements. In this case, sediment input also continued over some coastal areas such as in the Ceyhan delta which prograded over the western submarine landforms of the Iskenderun Gulf.

As a result of the Mid-Holocene stabilization of the sea level, multiple and large-scale changes in the position of channels, back-swamp, oxbow lakes, as well as dune fields constructions occurred, evidenced today by remote sensing analyses of landscapes in the Çukurova. These landforms record translations of fluvial channel patterns, with river avulsions and consequent palaeomeanders, abandoned channels and suites of concentric features generated by progressive lateral meander migrations (e.g. Çetin et al., 1999; Gürbüz, 1999; Erol, 2003; Ozaner, 2004; Ataol, 2015; Isola et al., 2017).

3.1. From the Chalcolithic to the Iron Age

Deep cores as well as geomorphological and sub-surface sedimentological data studied by Gürbüz (1999) show that the Seyhan River was running from north to south-east, in direction of the Akyatan lagoon. Its mouth was located in the Tuzla area (i.e. ca. 10 km west and at least 4 km to the south of the present-day mouth). It was then a wave and wind constructed delta submitted to a strong erosion, today recorded by fossil flood plain muds on the present coastline. This erosion was caused by a succession of events: (1) decrease or stop of coarse grained sediment river input to the sea, followed by (2) sea currents forcing the migration of the channel westwards, causing (3) the sea to erode the delta previously built at the former mouth. Gürbüz (1999) does not produce any date précising the chronology of this evolution, nor any discussion about subsidence that could have caused the random depths and lateral locations of the many fossil coarse river channels recovered through the cores.

This record is completed by the spatial distribution of archaeological sites in the Çukurova plain (Seyhan and Ceyhan plains) distributed on satellite images interpreted by Rutishauser et al. (2017). The resulting map (Fig. 6) evidences, together with three distinct groups of river channels, the hydrographic evolution of the plain and delta areas during the Mid to Late Holocene. Remarks and discussions raised by these results can be summarized as follows:

a) An initial situation (Early Holocene?) can be described as a river flooding activity (in green in Fig. 6), with channels connected to west and east rivers were meeting some 30 km north from today’s Karataş point. At the time, the sea coast was lower than today, and sediment accretion was produced by multiple river channels migrating laterally over a wide area developed at the western foot of the Misis Highs. The absence of Neolithic sites in this area suggests that this accretion period was the Early Holocene, when climate was the wettest of the Holocene (sedimentation accretion associated with wetlands and surface meanders), and the coastline some 15 to 20 kms downstream today’s shore.

b) During the Chalcolithic, a change in the river dynamics inland occurred. The Ceyhan channels concentrated in a valley-like corridor at the foot of the Misis Highs, while the Seyhan river channels moved westwards over a plane and wide area at the extremity of which today’s fluvial corridor of the Seyhan river concentrated. This record may evidence a subsidence of the plain west of the Ceyhan “valley area” c. 6000-5000 years ago, which continued until the Roman and Medieval
epochs in the Seyhan “valley area” as shown by Özpomat et al. (2021). At the end of this period, archaeological sites identified were settled along a W-E pioneer (coastal?) track today positioned c. 18 km inland from today’s coastline (Fig. 6).

The following periods of the Late Holocene, Roman and Hellenistic sites grouped in locations close to today’s main Seyhan and Ceyhan rivers active paths, abandoning the area between both valley systems. The reason for this is probably that it was transformed into a wetland-rich area, subject to numerous and imprevisible floods, that was repulsive for agriculture and settlements. Nevertheless, while flood valleys concentrated human activities, a few sites started colonizing the “no-man’s land” where green channels are concentrated in Fig. 6, indicating that, during Roman to Hellenistic period, a prioneer movement started the modern site distribution in the plain and its colonization by increasing human groups.

Regarding the evolution of the plain environments during the modern period, the maps drawn by 19th century travelers and historians of the main river paths in the plain, exhibit their still very pregnant mobility (Kuzucuoğlu et al., 2019) (Fig. 7). They illustrate, in particular (i) a sliding westwards of the Seyhan River, leaving the Akyatan laguna to develop at its former mouth (Gürbüz, 1999), while (ii) the Ceyhan River constructed east of the Misis High and Karatas rock point, a huge delta growing into the Gulf of Iskenderun.

However, stamps in Figure 7 also testify for some lack of knowledge about the coastline (e.g. the 1855 stamp).

Today

With a ~300 km length and a 20,670 km² catchment, the Ceyhan River used to be, in its natural state, a major source of sediment which contributed to form an enormous delta east of Karataş. In 1935 however, the apex event for mobility of rivers in the plain occurred, with the displacement of the Ceyhan river mouth westwards in direction of the Karataş rock point (Eriç, 1953; Russell, 1954) (Fig. 7). This catastrophic avulsion event occurred during a very important flood (Ataoğl, 2015). Changes in river paths during floods, was a current process forcing meander sliding over the plain surface since the start of the plain construction. In 1935 however, this change of direction was a “point of no-return” because it concerned the main sediment and water in-flow feeding the delta in the eastern part of the plain, emphasizing the hydrologic trend of water channels to slide westwards. Besides, this avulsion confirms the subsidence of the western part of the Cilician part, as well uplift impact associated to the Misis Highs that forced the Ceyhan River mouth displacement westwards. Meanwhile and according to Seyrek et al. (2008), this lateral variation confirms an “unclinal” shifting of the river.

Since then, photographs from airplanes (Bal, 2000; Ozaner, 2004; Özpomat et al., 2021), completed by satellite imagery at various dates, have evidenced a see-saw trend (accumulation vs erosion) very dangerous for the preservation of the coastal areas of the Çukurova plain and delta. For example, the comparison of the 1947 air photograph with a 1995 Google Earth Imagery (Figs. 8) (Bal, 2000), as well as the comparison between a 1950 air photograph and a 2016 satellite imagery in Özpomat et al. (2021) together with chronologic comparisons of satellite imagery from 1985 to 2020 (Figs. 9, 10), illustrate a tremendous erosion of both the Seyhan and Ceyhan river mouths. From this set of figures (Figs. 8 and 9), it is easy to date the reversal of sedimentation/erosion trend after 1995, with the erosion clearly pregnant on river mouths since 2000. Before that date, at the beginning of
the 1950’s for example, Russell (1954) described the dramatic seasonal coastal progradation around the Ceyhan river mouth, that resulted from sediment transported each spring by the peak discharge following nival melting upstream. In the 1990’s, Çetin et al. (1999) estimated that this process typically increased the land area by ~7.5 ha annually.

However, since the Aslantaş Dam was completed in the Ceyhan valley in 1984 (Figs. 11 and 12), and even more with the construction (starting in 1988) of four more dams, the river flow downstream to the Ceyhan plain has become virtually sediment-free. Consequently, coastal erosion around its mouth is now a significant problem (e.g. Çetin et al., 1999; Bal, 2000) (Fig. 9), which has considerably increased in the last two decades (Fig. 10).

Conclusion

If the human factor pressures on resources are not considered, the main factors controlling the coastal dynamics (progression vs erosion) of the Çukurova delta is the structural context, because (a) it accentuates the partition between a western and eastern parts of the Çukurova plain, (b) it succeeds to attract the Ceyhan river delta westward away from the Iskenderun Gulf, (c) the tectonic attraction of sediments in the subsiding western part of the Cilician basin is stronger than that of the Levantine basin. As a result, and in spite of the mobility of the low courses of the main river channels and of their multiple secondary channels, the structural context strongly controls the fluvial dynamics in the plain on the long term.

This evolution is articulated by the role of the Misis Highs whose uplift (whether noticeable or not on the short term) accentuates the partition with a sedimentation activity more dynamic, especially since 1954 –and even more since 1990- west of the Highs in the Cilician basin than toward the Iskenderun Gulf.

In the future, and as a result of this evolution, the geomorphogenetic role of the River Ceyhan would have increased in the Cilician plain, comforting the positive dynamics of the Çukurova plain. However and on the contrary, the impact of dams retaining dramatically its sediment load since the 1990’s, reduces its impact on the plain construction whose coastal environments is thus being eroded away by marine processes becoming more aggressive with time.

Acknowledgements

The author expresses her personal reconnaissance to regretted geomorphologist Dr S. Ozaner who introduced her -with his well-known enthusiasm- to the Ceyhan delta in 1992 and 1993, and in acknowledgment of Dr S. Ozaner’s personal investment in the promotion and protection of natural environments in Turkey during this professional time life.
References

Aksu A.E., Yaltırmaz C., Hall J. 2021. Outer Cilicia Basin – A piggy back basin developed in an intramontane setting following the partitioning of a large ancestral Miocene basin across the north-eastern Mediterranean. Tectonophysics 814.

https://en.wikipedia.org/wiki/Ceyhan_River

Kuzucuoğlu C., Çınar A., Kazancı N. (Eds). 2019. Landscapes and Landforms of Turkey Springer Verlag, 632 pp. (Chap. Mediterranean Anatolia: 66-89 (Physical map/Fig. 4.45 is p. 83, and Changes during XIX-XXème centuries/Fig. 4.46 is p. 85)

Figure 1. River network and watersheds contributing to the development of the Çukurova delta. Legend: 1: Seyhan River course; 2: Ceyhan River course; 3. Seyhan and Ceyhan rivers watershed limit; 4. Coastal lagoon; 5. Turkey-Syria border line; 6: 0-100m a.s.l.; 7: 100-1000 m a.s.l.; 8: > 1000 m a.s.l. Source: modified from Kuzucuoğlu et al. (2019), p. 83
Figure 2. Structural constrains of the evolution of the Çukurova delta, from Gökşu river mouth to İskenderun basin. A. Main fault lineaments (background map source: GeomapApp software), B. Geological cross-section from Kozan highlands toward Cyprus Sea. Source: modified from Aksu et al. (2021).
Figure 3. From the continent to the deep sea: topography and flow organization. Legend: White arrows: Erosion or structural features concentrating water flow originating from the continent; Light blueOld contour: 100 m a.s.l.; Dark blue contour: 0 m sea level; Bold black contours: every 100 m down to 300 m b.s.l. contours; Thin black contours: every 20 m. Source of contours map: GeomapApp.

Figure 5. Mean annual precipitations over areas drained by rivers toward the Adana and the Cilician plain. Legend: 1. Area with $P < 300$ mm/yr; 2. Area with $300 < P < 600$ mm/yr; 3. Area with $600 < P < 800$ mm/yr; 4. Area with $800 < P < 1000$ mm/yr; 5. Area with $P > 1000$ mm/yr. Source: modified from Atalay et al. (2014) and Sensoy (2016).
Figure 6. Archaeological sites identified by surveys in the Çukurova delta. Legend of background map: Black lines: Main beds of the Seyhan and Ceyhan Rivers (2015); Blue lines: Seyhan and Ceyhan Late Holocene divagation channels; Green lines: River divagation channels previous to Bronze Age; Purple lines: Relict canals. Source: modified from Rutishauser et al. (2017).
Figure 7. Changes in hydrographic patterns and coastlines since the early 1800’s (1827-2018). Source: Kuzucuoğlu et al., 2019 (p. 85). Figure based on Spruner von Merz (1855) map for 1855 stamp; Brooker & Skead (1858), redrawn by Ozaner (2004) for 1858 map; Grassl (1860) for 1860 map; Erol (1953) for 1953 map; and Google Earth imagery (NOAA) for the 2018. Note that the course of the Ceyhan River as drawn by Erol (1953) is the state of the art before the diversion in 1935.

Figure 9. Evolution of the mouth areas of the Seyhan and Ceyhan rivers from 1985 to 2020. Source: images available at Google Earth (2020).
Figure 10. Dams in the watersheds of the Seyhan and Ceyhan rivers and the growth of water volume capacity retained in their reservoirs, from 1956 to 2013. A: Dam Locations. Sources: Background map is modified from Kuzucuoğlu et al. (2019), p. 83. Dam locations are from Google Earth (2020), with size of blue circles representative of small and large dams based on data from capacity of reservoirs list in Wikipedia. B: Growth of total dam reservoirs capacity, distinguishing Seyhan and Ceyhan Rivers. Source for dam operation year and capacity of dam reservoirs: https://en.wikipedia.org/wiki/List_of_dams_and_reservoirs_in_Turkey.
Urla Kıyı Düzlüğündeki Limantepe-Klazomenai’nin
Paleoçoğrafya ve Jeoarkeolojisine Paleontolojik Analizlerin Katkısı

Contribution of Paleontological Analysis to Paleogeography and Geoarchaeology of Limantepe-Klazomenai on the Urla Coastal Plain

Ertuğ Öner1, Serdar Vardar **, Rifat İlhan ***, Mehmet Doğan ****, Fatma Yaman***** ve İlhan Kayan*****

Özet

Anahtar kelimeler: Urla, Limantepe, Klazomenai, Paleoçoğrafya, Jeoarkeoloji, Paleontoloji, Fosil

Abstract

The Urla Peninsula, which is located on the shores of Western Anatolia, has had favorable geographical conditions for settlement throughout the ages. To the north of the city of Urla, which gave its name to the peninsula lies the İskene coastal plain. On the shore of İzmir Gulf, the plain is renown with the ancient

* Prof. Dr., Ege Üniversitesi Edebiyat Fakültesi Coğrafya Bölümü, İzmir / e-mail: ertugoner03@gmail.com
** Doç. Dr., İzmir Katip Çelebi Üniversitesi Sosyal ve Beşer Bilimler Fakültesi Coğrafya Bölümü, İzmir / e-mail: serdarvardar@yahoo.com
*** Dr. Arş. Gör., Adıyaman Üniversitesi Fen Edebiyat Fakültesi Arkeoloji Bölümü, Adıyaman / e-mail: rifatcoğrafya@gmail.com
**** Doç. Dr., Ege Üniversitesi Edebiyat Fakültesi Coğrafya Bölümü, İzmir / e-mail: mehmet.dogan@ege.edu.tr
***** Çanakkale Onsekiz Mart Üniversitesi Lisansüstü Eğitim Enstitüsü Coğrafya Anabilim Dalı, Çanakkale / e-mail: fatmayaman35@gmail.com
****** Prof. Dr., Ege Üniversitesi Edebiyat Fakültesi Coğrafya Bölümü, İzmir (Emekli Öğretim Üyesi) / e-mail: ilhankayan11@gmail.com

51

düzlüğü'nin gelişimi delta gelişiminden farklıdır (Kayan vd., 2018; 2019; Öner vd., 2019a; 2019b; Öner, 2020) (Şekil 6).

Ural Kıyı Düzlüğü'nün Holosen Stratigrafisi ve Paleoçografik Gelişimi