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Abstract 

Regulatory capital requirements for market risk, also known as the Fundamental Review of the Trading 
Book (FRTB), were disclosed by the Basel Committee on January 2016. This major overhaul of the Basel 
2.5 framework challenges risk model specification and backtesting. Given the prevalence of historical 
simulation approach within large financial institutions, we focus on the Filtered (Volatility Weighted) 
Historical Simulation (VWHS) approach associated with a EWMA volatility filter. Volatility dynamics is then 
directed by a single parameter. We discuss how this decay parameter, chosen within a reasonable range, 
at banks’ discretion, impacts capital metrics, backtesting statistics, as prescribed by the Basel Committee, 
and fouls the regulatory benchmarking of internal risk models. We show a trade-off between the 
resilience of risk models to periods of turmoil and the magnitude of capital metrics. Under the new 
regulatory rules, this would favour plain historical simulation, as compared with filtered or volatility 
weighed historical simulation. Understanding why, might be helpful for regulated banks, regarding the 
management of their market risk models, and supervisors involved in internal model approval. 

JEL Classification: G18, C51 

Keywords: Basel III, Fundamental Review of the Trading Book, Market Risk, Historical Simulation, 
Backtesting, Capital Requirements. 

1. Introduction 

Modelling market risk is widely documented, both regarding VaR or Expected Shortfall (ES) estimation 
and backtesting methodologies. However, the set of rules disclosed by the Basel Committee in January 
2016, entitled “Minimum capital requirements for market risk”, colloquially known as FRTB or 
Fundamental Review of the Trading Book3, leads to a reassessment of existing approaches. Besides, 
regulators have expressed concerns about excessive variability of risk weighted assets associated with 
market risk. Outcomes of risk models do depend upon modelling choices. This paper aims at unveiling 
implications of discretionary choices regarding risk models, capital market requirements, backtesting 
and risk comparability under the new regulatory framework. Our research focuses on the speed of 
adjustment of the risk measure to the arrival of news, i.e. the decay factors in filtered or volatility 
weighted historical simulation methods. These parameters are set at banks’ discretion leading to a 
trade-off between resilience of risk models during turmoil and conservativeness of the capital metrics. 
The new Basel 3/FRTB framework is intended to strengthen existing regulatory requirements, with a 
shift from a blend of current VaR and stressed VaR to a full-fledged stressed Expected Shortfall. 
                                                           
1 Jean-Paul Laurent, University Paris 1 Panthéon – Sorbonne, 17, rue de la Sorbonne, 75005 Paris, PRISM 
Sorbonne & Labex RéFi, Paris, France, laurent.jeanpaul@free.fr , jean-paul.laurent@univ-paris1.fr  
2 Hassan Omidi Firouzi, former postdoctoral fellow at Labex RéFi, Paris, France, homidifirouzi@escpeurope.eu , 
h.omidi.firouzi@gmail.com, Enterprise Model Risk Manager at Royal Bank of Canada. This work was achieved 
through the Laboratory of Excellence on Financial Regulation (Labex ReFi, ANR-10-LABX-0095). It benefited from 
a French government support managed by the National Research Agency (ANR) within the project 
Investissements d'Avenir Paris Nouveaux Mondes (investments for the future Paris-New Worlds) under the 
reference ANR-11-IDEX-0006-02. The authors thank David Murphy, Matthew Pritsker and the participants of 
seminars held at Paris 1 Panthéon – Sorbonne university and European Institute of Financial Regulation for useful 
feedback. The usual disclaimer applies. 
3 https://www.bis.org/bcbs/publ/d352.htm  
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However, these new features, the use of an endogenously determined stressed period and the 
backtesting features associated with the FRTB, might exacerbate the trade-off between resilience and 
the required amount of capital. While filtered historical simulation methods are often privileged by 
academics, new regulations might further boost the use of simple historical simulation. If filtered or 
volatility weighted historical simulations approaches were to be used, they should be implemented 
taking into account the specificities of the new regulatory framework. 

The importance of our findings is related to the prevalence of historical simulation methods among 
most large financial institutions. Even under the simplest case (no volatility rescaling of shocks on risk 
factors), we need to deal with the length of the estimation period (somehow more constrained under 
the incoming regulatory framework), the structure of the shocks to account for heteroscedasticity in 
the risk factors and the granularity of risk factors. When considering volatility weighted historical 
simulation, one needs to rescale the past observations of risk factors to account for volatility dynamics 
during the estimation period. Plain historical simulation is a special case, where no rescaling is 
processed. Volatility weighted historical simulation is known to have good back-testing properties at 
the price of increased pro-cyclicality. It has also been considered in a CCP context, for initial margin 
models, but the regulatory prescriptions are quite different regarding market risks within banking 
institutions. We show that the decay factor involved in the EWMA volatility filter, routinely used by 
financial institutions, can be estimated in several ways with a large range of outcomes. We suggest 
that this parameter should be closely monitored.  How this modelling choice impacts the backtesting 
performance, the resilience of the risk model under stress and the amount of regulatory capital in a 
Basel 3/FRTB context should be clearly understood. We think that this will be helpful in monitoring 
model risk in normal and stressed times, both for financial intermediaries and their supervisory bodies. 

Quantitative risk methodologies for market risks used to be widely supported by regulators and 
financial institutions. The 1996 Basel amendment for market risk4 and JP Morgan RiskMetrics5 are 
cornerstones of this shift to risk models. However, the 2008 crisis showed major limitations, such as 
clustering of VaR errors and large overshoots of market losses above VaR6. The introduction of Stressed 
VaR and the use of multipliers was meant to deal with previous issue and with the underestimation of 
risk during periods of low volatility; the so-called “Minsky moments” recently investigated by 
Danielsson et al (2016). These fixes, part of the Basel 2.5 package, are still in force. 

In January 2016, the Basel Committee disclosed a document setting up the new regulatory framework 
for the computation of risk weighed assets within the trading book7. This is the outcome of a process 
initiated in May 2012 (http://www.bis.org/publ/bcbs219.htm), still ongoing regarding key technical 
features8.  

                                                           
4 http://www.bis.org/publ/bcbs24.pdf  
5 http://yats.free.fr/papers/td4e.pdf  
6 In the summer of 2007, David Viniar, Goldman Sachs CFO stated “We were seeing things that were 25-standard 
deviation moves, several days in a row”, https://www.ft.com/content/d2121cb6-49cb-11dc-9ffe-0000779fd2ac 
. This led to harsh criticism regarding the ability of risk models to cope with extreme market conditions (Dowd et 
al. (2008), Danielsson (2008), Crotty (2009), Dowd (2009)). To be fair, David Viniar did not mention whether he 
was comparing market moves to long-term historical standard deviation or current estimates of standard 
deviation, nor that Goldman Sachs assumed (conditionally) Gaussian returns when computing risk measures for 
its own purpose. However, it is quite likely that some banks experimented series of VaR exceptions in a row, with 
large overshoots during market turmoil. 
7 Minimum capital requirements for market risk, 2016, Basel Committee on Banking Supervision, 
http://www.bis.org/bcbs/publ/d352.pdf 
8 As part of its 2017-18 work program the Basel Committee planned some “Targeted adjustments and 
simplifications to the revised market risk and securitisation frameworks” and revived the former “Trading Book 

http://www.bis.org/publ/bcbs219.htm
http://www.bis.org/publ/bcbs24.pdf
http://yats.free.fr/papers/td4e.pdf
https://www.ft.com/content/d2121cb6-49cb-11dc-9ffe-0000779fd2ac
http://www.bis.org/bcbs/publ/d352.pdf
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Excessive variability of risk measures provided by internal bank models (advanced approaches in the 
US) has been under scrutiny: The Basel Committee conducted benchmarking exercises based on 
hypothetical portfolios as part of it RCAP (Regulatory Consistency Assessment Programme); large 
“unexplained” variability needs to be better understood9. Lack of trust in risk models jeopardizes 
comparability among banks, shatters confidence in bank disclosures regarding their risk exposures and 
thus casts doubts about the resilience of the banking system during market turmoil. The new 
regulatory framework factors in criticisms about excessive variability of risk weighted assets for market 
risk and suspicion about banks gaming the rules10. Updated requirements associated with the use of 
internal risk models have been considered: 

- Eligibility to using internal models is only provided at desk-level.   
- Data requirements have been enhanced, including stringent criteria for risk factors to be 

considered as “modellable” (i.e. valid inputs for internal risk models). 
- The alignment between models used by the front office and for risk measurement is closely 

monitored through the so-called P&L attribution tests.  
- Compulsory disclosure of risks computed under the standard approach is part of continuous 

monitoring of the outcomes of internal models for market risk. 

Besides using a capital metrics based on a 97.5% Expected Shortfall, the FRTB departs from existing 
Basel 2.5 setup: 

- The Expected Shortfall will be computed only over a stressed period, which is endogenously 
determined, and thus risk-model dependent11. The capital requirements for market risk are 
currently equally based on (current) VaR and stressed VaR12. 

                                                           
Group” that drafted FRTB, now “Market Risk Group”. On November 2016, the European Union disclosed its 
implementation of these new Basel rules https://ec.europa.eu/transparency/regdoc/rep/1/2016/EN/COM-
2016-850-F1-EN-MAIN.PDF. Regarding backtesting issues, they closely mimic rules enacted by the Basel 
Committee. The US Treasury disclosed in June 2017 a report, https://www.treasury.gov/press-center/press-
releases/Documents/A%20Financial%20System.pdf recommending delaying the implementation of the FRTB in 
the United States until it could be “be appropriately calibrated and assessed”. So far, no advance notice of 
proposed rulemaking (ANPR) has been disclosed by the Fed. However, in December 2017, the US committed to 
implement the upcoming capital requirements for market risk whose implementation has been delayed from 
2019 to January 2022: https://www.bis.org/press/p171207.htm   
9 http://www.bis.org/publ/bcbs240.pdf, http://www.bis.org/publ/bcbs267.htm 
https://www.eba.europa.eu/documents/10180/15947/20131217+Report+on+variability+of+Market+RWA.pdf  
10 Colliard (2014) mentions JP Morgan shift of IRC model associated with the London whale CDS trade 
inventory. See also the US Senate inquiry on that topic: 
https://www.hsgac.senate.gov/subcommittees/investigations/hearings/chase-whale-trades-a-case-history-of-
derivatives-risks-and-abuses 
11 This will the case if the reduced set of risk factors equals the full set of risk factors. Otherwise, the ratio of 
current expected shortfall, computed over the full set of risk factors, to current expected shortfall computed 
over the reduced set of risk factors is involved, which leads to some dependence with respect to current market 
conditions. 
12 Basel Committee (http://www.bis.org/publ/bcbs158.pdf ) mentions that stressed period should be “relevant 
to the banks’ portfolio”. But in many cases, the 12 Month stress period includes September and October 2008. 
The FRTB is more prescriptive than Basel 2.5: “The expected shortfall for the portfolio using this set of risk factors, 
calibrated to the most severe 12-month period of stress available over the observation horizon, is calculated”. 
Detailed requirements will likely depend upon national jurisdictions and discretionary model supervision. 

https://ec.europa.eu/transparency/regdoc/rep/1/2016/EN/COM-2016-850-F1-EN-MAIN.PDF
https://ec.europa.eu/transparency/regdoc/rep/1/2016/EN/COM-2016-850-F1-EN-MAIN.PDF
https://www.treasury.gov/press-center/press-releases/Documents/A%20Financial%20System.pdf
https://www.treasury.gov/press-center/press-releases/Documents/A%20Financial%20System.pdf
https://www.bis.org/press/p171207.htm
http://www.bis.org/publ/bcbs240.pdf
http://www.bis.org/publ/bcbs267.htm
https://www.eba.europa.eu/documents/10180/15947/20131217+Report+on+variability+of+Market+RWA.pdf
https://www.hsgac.senate.gov/subcommittees/investigations/hearings/chase-whale-trades-a-case-history-of-derivatives-risks-and-abuses
https://www.hsgac.senate.gov/subcommittees/investigations/hearings/chase-whale-trades-a-case-history-of-derivatives-risks-and-abuses
http://www.bis.org/publ/bcbs158.pdf
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- Regulatory backtesting will be conducted at a more granular (desk) level and involves a set of 
indicators, daily VaR exceptions at both 97.5% and 99% levels, p-values, daily 97.5% one day 
97.5% Expected Shortfall13. 

- The capital metrics involves computation based on shocks on risk factors over a base liquidity 
horizon of 10 days (FRTB §181 c). No square root scaling-up from the daily backtesting horizon 
to the 10 days capital metrics horizon is permitted. 

Though the FRTB is rather prescriptive regarding the use of data (one-year stressed period for Expected 
Shortfall computations) and backtesting (past year), there are some discretionary (internal) modelling 
choices: risk factor granularity, parametric vs historical models, features of shocks on risk factors, 
volatility rescaling, modelling of correlation. The number of market risk factors could range from 
around 5 000, roughly the number of risk factors involved in the standard approach, more often in 
between 50 000 and 100 00014. For ease of exposition, we will thereafter focus on a long S&P500 
equity portfolio. Besides its intrinsic importance and wide use for benchmarking risk models, we intend 
to investigate key modelling choices and their implications regarding backtesting and capital metrics, 
that are unrelated to portfolio complexity. 

We do not aim at determining the most suitable data generating process. We rather assess the 
implications of actual modelling choices made by banks on the measurement and assessment of risk 
models and on model risk. Most of these approaches, such as parametric GARCH, including GJR-
GARCH(1,1) used for initial margin models by a number of CCPs, GARCH-EVT, RiskMetrics/EWMA, 
historical simulation and its variants (Filtered Volatility Estimation, Volatility Weighted Historical 
Simulation or VWHS) are location-scale models: the data generating process involves a conditional 
mean, a conditional standard deviation and some distribution for the innovations. Given the usually 
short-term horizon involved by regulation, 10 days for market risk, one can reasonably consider that 
conditional mean has a marginal impact on the computation of risk measures15. 

Given the degree-one positive homogeneity of VaR or Expected Shortfall, the risk measure can then 
be written as the pointwise estimate of volatility times the risk measure of innovations. Innovations 
could follow some given iid distribution, such as Student t, laxer assumptions allowing the use of EVT 
might be made. Non-parametric approaches to the risk measure of innovations are also being used, as 
in the Volatility Weighted Historical Simulation approach introduced by Boudoukh et al (1998). In all 
cases, the derivation depends on the chosen estimation technique and perhaps more importantly on 
the length of the data sample. 

                                                           
13 Failure to comply with new backtesting requirements leads to ineligibility of trading desks to the Internal 
Models Approach (IMA) and a fall-back to the Standardised Approach (SA), associated with more stringent capital 
requirements. According to ISDA, based on the outcome of the June 2015 Basel Committee Quantitative Impact 
Study, the ratio of SA capital requirements to the risk measure derived from internal expected shortfall models 
would range from 2.1 to 4.6 depending on the risk factor class Industry FRTB QIS Analysis, 
https://www2.isda.org/attachment/Nzk0OA==/Industry%20FRTB%20QIS%20Analysis%20Executive%20Summa
ry%20OCT%202015.pdf  
14 Under the Basel Committee prescriptions, internal models should be at least as granular as the standard 
approach, thus the number of risk factors associated with IMA is floored by the number of risk factors involved 
in SA. The number of risk factors currently involved in internal models (advanced approach) is not disclosed, thus 
the provided figures are indicative and could vary significantly from one bank to another. Since the non 
modellable risk factor (NMRF) charge might be large, there is a possibility that some banks would decide to 
reduce the granularity of risk factors when moving to FRTB. 
15 10 days is the horizon associated with the most liquid market risk factors. Less liquid market risk factors have 
liquidity horizons up to 120 days, but this results from computations over 10 days, which are scaled-up. 

https://www2.isda.org/attachment/Nzk0OA==/Industry%20FRTB%20QIS%20Analysis%20Executive%20Summary%20OCT%202015.pdf
https://www2.isda.org/attachment/Nzk0OA==/Industry%20FRTB%20QIS%20Analysis%20Executive%20Summary%20OCT%202015.pdf
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Computing short-term prediction of volatility is thus of first importance. This usually involves a GARCH 
or I-GARCH (EWMA) dynamics. The January 2016 Basel document is not prescriptive about 
specification and estimation of volatility dynamics, for instance the length of the estimation period. 
This is left at banks’ discretion. Picking-up a number, such as the .94 decay factor in EWMA RiskMetrics 
is also regulatory compliant. This discretionary approach to setting key parameters involved in risk 
models is not innocuous as will be further discussed. 

Even though many academic articles focus on parametric or semi-parametric GARCH models, the 
approach predominantly used by main financial institutions is non-parametric, more precisely based 
on empirical quantiles of innovations, so called historical simulation. Due to increased computational 
constraints associated with the new Basel rules, it is likely that some banks still using parametric 
approaches (so called “Monte Carlo”) will have switched to historical simulation by implementation 
date of the new Basel rules. As for volatility filtering, whenever being used, EWMA seems also 
predominantly being used by banks, in most cases with a constant over time decay factor of .94 applied 
to all risk factors, as prescribed in RiskMetrics document. Operational constraints such as a stable and 
timely estimation of GARCH models, involving 50 000 risk factors should not be misjudged. The good 
news of setting-up harsh constraints in volatility dynamics, such as using the same decay factor for all 
risk factors, is that the number of key and easy parameters to grasp and understand is dramatically 
reduced. Apart from a uniform treatment of all risk factors, the drawback of such a parsimonious and 
somehow arbitrary approach is that the decay factor becomes a parameter of first importance, 
regarding capital metrics and the resilience of the bank’s risk model. 

We discuss different estimation methods of the decay factor and show that this leads to large 
discrepancies both regarding estimated values and pointwise volatility estimates. The resulting ratios 
of pointwise daily estimates of volatilities typically range from .5 to 2 even though median and average 
remain close to one. On top of this, small autocorrelations lead to highly unstable volatility predictions. 
This translates to risk measures. Besides, considering quantiles of innovations casts doubts on the 
ability of parametric GARCH or GARCH-EVT to capture tail dynamics (see Harvey and Siddique (1999), 
Brooks et al (2005) for modelling of higher order conditional moments) and the validity of the 
stationary/ergodic assumptions required under EVT approaches.  

We proceed with the benchmarking tools prescribed by the Basel Committee, number of VaR 
exceptions at 97.5% and 99% over past year and p-values. We also consider some conditional coverage 
checks. For a large range of decay factors, risk models do not fail back-tests, not a surprise given the 
well-known lack of power of usual statistical tests. Using smaller values of decay factors results in a 
small improvement during stressed periods, since risk estimates react more promptly to volatility 
surges. Unlike CCP initial margin models this does not lead to procyclical effects since the risk-measure 
is based on a stressed period, is averaged and VaR exceptions are only computed over the current 
period (past year). Using a volatility floor as in Murphy et al (2014) or Gurrola-Perez and Murphy (2015) 
would reduce the occurrence of VaR exceptions during so called “Minsky moments”, i.e. calm before 
the storm. Unlike CCP initial margin models, this is not usually done at the expense of inflating capital 
requirements during low volatility periods, since capital metrics are computed under a stressed period, 
usually a volatile one. 

The paper is organised as follows. Section 2 deals with the modelling and pointwise estimation of 
volatility. The focus is put on the intricacies of the estimation of decay factor in EWMA approaches. 
Section 3 documents the substantial impact of previous modelling choices on VaR estimates under the 
(volatility weighted) historical approach. Section 4 provides some empirical evidence regarding 
backtesting performance along the prescribed lines of Basel 3. We also consider econometric 
approaches associated with conditional coverage restrictions. Due to lack of power of statistical tests, 
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a wide range of decay factors and thus internal modelling choices, will not be rejected. However, 
focusing on stressed periods, it appears that plain historical simulation underperforms VWHS, with 
clustering of VaR exceptions. More generally, the use of volatility filters that react promptly to large 
market moves, i.e. smaller values of decay factors, is associated with more resilient market risk models. 
Section 5 deals with the computation of capital metrics, i.e. 10 days 97.5% Expected Shortfall 
computed over an endogenously stressed period. We suggest an implementation of VWHS that 
conforms with regulatory prescriptions and with the Basel III backtesting metrics. We discuss the 
impact of the decay factor on the determination of the one-year stressed period and the associated 
expected shortfall. The endogenous determination of the stress period, overlapping 10 days returns 
and the use of a non-robust risk measure challenge the usefulness of VWHS, as compared with plain 
historical simulation. We conclude with comments regarding the development and use of internal 
market risk models under the January 2016 rules disclosed by the Basel Committee. 

2. Dynamics of Volatility 

We will thereafter focus on the S&P500 index confused with the studied risk factor. In the univariate 
case, the data generating process for the risk factor often takes the form of a location scale model, i.e. 
𝑟𝑟𝑡𝑡 = 𝜇𝜇𝑡𝑡 + 𝜎𝜎𝑡𝑡𝑧𝑧𝑡𝑡. 𝑟𝑟𝑡𝑡 will thereafter be a relative return, though log-returns might also be considered. In 
the case of a constant elasticity of variance diffusion process, a rescaling of prices would be required 
to cope with heteroscedasticity. Proper definition of “shocks” on risk factors is an important issue in 
risk modelling, but will be left aside in this paper. 

Given the short time horizons, typically one day for backtesting under the Basel Committee framework 
and 10 days regarding the capital metrics, we will moreover assume subsequently that the conditional 
mean 𝜇𝜇𝑡𝑡 = 0. 𝜎𝜎𝑡𝑡 is the conditional (on available information at 𝑡𝑡 − 1) standard deviation and 𝑧𝑧𝑡𝑡 relates 
to the innovation term. 

Let us confuse for a while the horizon of the capital metrics and the periodicity of the returns, say one 
day. Given that standard risk measures considered by regulators, including VaR and Expected Shortfall 
are degree one positively homogeneous, we have 𝜌𝜌(𝑟𝑟𝑡𝑡) = 𝜎𝜎𝑡𝑡 × 𝜌𝜌(𝑧𝑧𝑡𝑡), where 𝜌𝜌 stands for the 
considered risk measure16. Pointwise estimations of conditional volatility  𝜎𝜎𝑡𝑡 are thus of utmost 
importance. A benchmark model is GARCH(1,1), which mitigates parameter parsimony and a number 
of realistic features regarding clustering of squared returns: 

𝜎𝜎𝑡𝑡2 = 𝛼𝛼0 + 𝛼𝛼1𝑟𝑟𝑡𝑡−12 + 𝛽𝛽1𝜎𝜎𝑡𝑡−12           (1) 

When 𝛼𝛼0 > 0 and 𝛼𝛼1 + 𝛽𝛽1 < 1, the volatility process is stationary, thus broadly speaking there is some 
mean reversion towards a constant value. It is usually assumed that 𝑧𝑧𝑡𝑡 are i.i.d. Then, all dynamics is 
captured by moments of order two. Different estimation strategies depend upon the specification of 
the distribution of 𝑧𝑧𝑡𝑡. Let us remark that under the previous framework the risk measure turns out to 
be a constant multiple of 𝜎𝜎𝑡𝑡. 

The GARCH(1,1) specification can be improved in many ways, for instance introducing asymmetric 
responses depending on upward or downward moves as in Glosten et al. (1993): Volatility tends to 
increase faster after large negative shocks as compared with positive shocks of same magnitude. Abad 

                                                           
16 We chose to consider relative returns, thus 𝑟𝑟𝑡𝑡 = (𝐼𝐼𝑡𝑡 − 𝐼𝐼𝑡𝑡−1) 𝐼𝐼𝑡𝑡−1⁄  on a trading day where no dividends are being 
paid. Assuming that the S&P500 index is used to compute the daily 𝑡𝑡 − 1 risk measure on a S&P500 portfolio and 
that 1 𝐼𝐼𝑡𝑡−1⁄  units of the index are being held, the change in value between the current date 𝑡𝑡 − 1 and the one-
day horizon is provided by (𝐼𝐼𝑡𝑡 − 𝐼𝐼𝑡𝑡−1) 𝐼𝐼𝑡𝑡−1⁄ : 𝑟𝑟𝑡𝑡 can actually be related to a change in value. In the case of one a 
99% one-day VaR computed at date 𝑡𝑡 − 1, we would consider the 1% quantile of 𝑟𝑟𝑡𝑡. 
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and Benito (2013), Abad et al (2014) provide a review of potential extensions to the base model, usually 
at the expense of increasing the number of parameters. 

In the following table, Table 1, we provide the parameters’ estimates for GARCH(1,1) using historical 
data for S&P 500 index returns from 2/1/2002 to 30/12/2015 and assuming Gaussian innovations 
(rugarch package in R). The mean reversion parameter in GARCH models, 0α  is close to zero.  

 

Given low values of 0α , it is not a full surprise that, unlike in the financial econometrics literature, the 

financial industry has privileged a more parsimonious EWMA filter for computing pointwise estimates 
of volatility:  

𝜎𝜎𝑡𝑡2 = 𝜆𝜆𝜎𝜎𝑡𝑡−12 + (1 − 𝜆𝜆)𝑟𝑟𝑡𝑡−12            (2) 

The dynamics of volatility depends on a single parameter,λ , the decay factor. The previous dynamics 
is also known as I-GARCH(1,1). In contrast to the previous modelling, there is no mean-reversion, the 
dynamics is not stationary. Oanea and Anghelache (2015) review the use of EWMA approaches: Tse 
(1991) and Kuen and Hoong (1992) emphasize the fact that EWMA model overperformed ARCH models 
in estimating the risk for Japanese and Singaporean financial markets. On the other hand, Hammoudeh 
et al. (2011) found that GARCH-t model overperforms EWMA in estimating the risk involved in 
commodities’ markets. Similarly, Degiannakis et al. (2011) show that the ARCH framework is better in 
estimating risk compared to RiskMetrics model. Chen et al (2012) report also a poor forecasting ability 
of EWMA approach in a Value at Risk context. Guermat and Harris (2002) propose a robust EWMA 
approach involving a different recursive scheme. 

One can also notice that there is no strictly positive lower bound on volatility, which might be an 
undesirable feature. Long periods of low squared returns result in very low estimates of current 
volatility. For this reason, some CCPs floor the estimated volatility when computing initial margins; this 
also helps dealing with pro-cyclicality issue, further discussed within this paper, in the Basel III/FRTB 
context. 

We can expand equation (2) as:  

   𝜎𝜎𝑡𝑡2 = 𝜆𝜆𝑇𝑇𝜎𝜎𝑡𝑡−𝑇𝑇2 + (1 − 𝜆𝜆)∑ 𝜆𝜆𝑖𝑖−1𝑇𝑇
𝑖𝑖=1 𝑟𝑟𝑡𝑡−𝑖𝑖2        (3) 

The conditional variance involves a weighted average of past squared returns, a computation period 
T  and a conditional variance seed 2

t Tσ − . There are no clear-cut choices. For large 𝑇𝑇 and 𝜆𝜆 far-away 

from 1, the value of the seed will not have great importance, but we may be faced with some practical 
issues as further discussed.   

One key issue to be considered is the determination of the decay factor. Under the RiskMetrics’ 
approach (J.P. Morgan (1996)), the decay factor was set to 𝜆𝜆 = 0.94 for daily returns (further on 
conditional returns were assumed to be Gaussian). The estimation of decay factor was based on the 
root mean-squared prediction error (RMSE), i.e.: 
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where 𝜎𝜎𝑖𝑖2(𝜆𝜆) is set according to equation (3) and 𝑇𝑇 is the length of the estimation period. While the 
RiskMetrics technical document reports a wide dispersion of estimated decay factors for different 
asset classes, it was decided to retain a single number of 0.94 whatever the considered period or the 
considered risk factor. Issues related to EWMA RiskMetrics approach have been outlined by Fan and 
Gu (2003) and González-Rivera et al (2007). 

Alternative criteria have been considered regarding the decay factor’s estimation. Fan and Gu (2003) 
use a pseudo-likelihood method: The decay factor is computed as: 
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González-Rivera et al (2007) estimate decay factor(s) by minimizing the check loss function (scoring 
function) as follows: 

( )
( )

0,1 1

1ˆ arg min
T

i
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e
T α

λ
λ ρ

∈ =

= ∑ , 

Where 𝑒𝑒𝑖𝑖 = 𝑟𝑟𝑖𝑖 − 𝑞𝑞𝛼𝛼  and 𝜌𝜌𝛼𝛼(𝑒𝑒𝑖𝑖) = �𝛼𝛼 − 1{𝑒𝑒𝑖𝑖<0}�𝑒𝑒𝑖𝑖 for 𝛼𝛼 ∈ (0,1). 𝑞𝑞𝛼𝛼 is the quantile at confidence level 
𝛼𝛼. González-Rivera et al (2007) find that when considering a 99% 10 day - VaR and equity markets, the 
RiskMetrics approach tend to overestimate the decay factor(s). 

 

Table2: Decay factor estimation using three different methods and different periods of historical data. First five 
years: 1/2/2003 – 12/21/2007. Second five years: 1/2/2008 – 12/31/2012. Ten years: 1/2/2003 – 12/31/2012. 

Table 2 reports decay factor estimates using the above three different approaches (and two confidence 
levels, corresponding to the Basel 3 backtesting requirements for the check loss function) and different 
estimation periods. 

The most obvious outcome is that there is a wide range of plausible values for the decay factor, 
depending both on the chosen criteria and the estimation period. Moreover, consistently with the 
previous statement, a closer inspection of the (one-dimensional) criteria shows that they are 
essentially flat.  

Figure 1 compares one day ahead volatility predictions based on decay factors equal to 0.94, 
recommended in RiskMetrics and mentioned as a benchmark in many textbooks, and 0.817. The y-axis 
reports the ratio of volatility estimates over the ten years 2003 – 2012 period. The median is not far 
                                                           
17 The volatility estimates have been computed with one year rolling period and a seed equal to the first squared 
returns. The daily update and the choice of a one-year period are inspired by FRTB. Using a more conventional 
approach, i.e. leaving the EWMA update operate throughout the ten years period would not have a material 
impact on our results. Given the 0.8 and 0.94 values of the decay factor, the seed one year away from the 
volatility estimation date has a quite small impact. 
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away from one. This is not full surprise since EWMA estimators involve an averaging of past squared 
returns, with weights summing-up to one. However, the interdecile range shows a rather large 
dispersion of the ratios and a strong dependence on the considered date. Lopez (1999), Christoffersen 
and Diebold, (2000), Angelidis et al (2007), Gurrola-Perez and Murphy (2015) also pointed out the 
issues related to volatility prediction in a risk management context. Building volatility filters is even 
more intricate when considering different risk factors (Davé and Stahl (1998)). 

 
Figure 1: Ratio of EWMA one day ahead estimates of volatility with decay factors equal to .8 and .94 over the 

ten years 2003 – 2012 period. Green line corresponds to the 90% quantile, red line to the 10% quantile. 

3. Implementation of Risk Measures 

3.1 Historical Simulation and Banks’ Market Risk Internal Models  

Most of the academic literature focuses on parametric implementation of risk measures. The use of 
GARCH dynamics is prominent and a wide range of parametric distributions regarding innovations are 
considered. The semi-parametric GARCH-EVT is also well documented. Though CCP do not usually 
publicly disclose details of their initial margin models, anecdotal evidence does not discard GARCH 
models (Murphy et al (2014)).  

A decreasing number of banks are reported to use “Monte Carlo” approaches. We think that this 
denomination is misleading, since it usually involves a parametric model for risk factors, a multivariate 
normal distribution for instance. Monte Carlo techniques are only required when it comes to 
computing the distribution of portfolio returns, especially when the valuation function is non-linear 
with respect to risk factors. In some cases, even for linear portfolios, the distribution of returns cannot 
be achieved analytically and requires simulation of risk factors.  

Many large banks are reported to use non-parametric approaches, often called “historical simulation” 
(see Perignon and Smith (2010), Mehta et al (2012) and the study conducted by the European Banking 
Authority (2017)). O’Brien and Szerszen (2017) notice that on a small sample of five large US banks, 
three of them were computing VaR through historical simulation. Plain (i.e. non-filtered or volatility 
weighted) historical simulation involves the empirical distribution of past portfolio returns, typically 
one or two years in the current Basel 2.5 setting. Basel III computational requirements regarding capital 
metrics are more stringent, due to the endogenous computation of the stress period and increased 
granularity of regulatory metrics. Moreover, computing ES through a Monte Carlo approach with a 
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given confidence level is comparatively most costly than computing a VaR, due to the robustness of 
the VaR, as compared with ES. This is likely to increase the predominance of historical simulation.   

The dismissal of GARCH models is likely to be related to the huge number of risk factors, involved in 
banks’ internal models, a typical number would be 50,000. Specifying, estimating, implementing and 
monitoring a stable and meaningful GARCH model is therefore a huge challenge. Due to the large 
number of parameters involved, constraining the model, such as the use of a small number of common 
factors is to be considered, which is not an easy task either. 

One of the issues when using plain historical simulation is the choice of the length period, more often 
one or two years. Therefore, these models are subject to “ghost effects” when dates associated with 
the largest losses get out the sample. To mitigate this effect, Boudoukh et al (1998) proposed to assign 
more probability weights to recent events than those happened in the far past. This method has been 
known as BRW method in the literature. It improves over plain historical simulation though Pristker 
(2006) reports some drawbacks. Unlike filtered or volatility weighed historical simulation, the BRW 
method is not compliant with FRTB prescriptions: When, it comes to ES computations, the Basel 
Committee states that “observations (…) must be equally weighted”. 

3.2 Filtered and Volatility Weighted Historical Simulation Models 

Another concern with HS is that these models poorly deal with the dynamics of volatility of returns 
(Engle and Manganelli (2004), Pritsker (2006), Andersen et al (2007)). Volatility of returns for a given 
risk factor can vary through time and considering it as a fixed constant through time might understate 
the estimated VaR. This feature can partially be accommodated by considering shorter time intervals 
at the price of increased volatility of VaR estimates, which is both problematic to regulators and 
practitioners18. 

Filtered historical simulation (FHS) has been introduced by Barone-Adesi et al (1999). An almost 
identical technique known as Volatility Weighted Historical Simulation (VWHS in the sequel) has been 
considered by Hull and White (1998). 

To get a better flavour of FHS, consider the following time series modelling historical returns: 𝑟𝑟𝑡𝑡 =
𝜎𝜎𝑡𝑡𝑧𝑧𝑡𝑡, where tz  is the series of i.i.d innovations. When 𝜎𝜎𝑡𝑡  is fitted with a volatility tracking model (say 

using a EWMA or a GARCH filter), we normalize the historical returns to get a set of 𝑟𝑟𝑡𝑡 𝜎𝜎𝑡𝑡⁄ . To estimate 
quantile for the next day, we bootstrap the standardized innovations and plug the simulated values 
into 𝑟𝑟𝑡𝑡 = 𝜎𝜎𝑡𝑡𝑧𝑧𝑡𝑡. The VaR is then computed as the opposite of the quantile of this distribution. 

Different improvements have been proposed regarding the statistical bootstrapping step. We refer to 
Mancini and Trojani (2011), for a description of a robust bootstrap method. Regarding VaR estimation, 
FHS has been supported by many articles in the literature. We can refer to Kuester et al (2006), Pritsker 
(2006), Marimoutou et al (2009), Zikovic and Aktan (2009). For instance, Pritsker (2006) compared the 
performance of plain historical simulation and BRW estimators with FHS and concluded that FHS is 
more accurate than both plain historical simulation and BRW. Kuester et al (2006) show that the FHS 

                                                           
18 The March 2017 European Banking Authority benchmarking study, based on EU banks with approved internal 
models reports that 58% of respondents were using a one-year window to compute VaR, while other 
respondents were using lengthier windows.  
https://www.eba.europa.eu/documents/10180/15947/EBA+Report+results+from+the+2016+market+risk+ben
chmarking+exercise+-+March+2017.pdf   
FRTB favours using a one-year period, which can be shortened during times of stress, but cannot be less than six 
months. 

https://www.eba.europa.eu/documents/10180/15947/EBA+Report+results+from+the+2016+market+risk+benchmarking+exercise+-+March+2017.pdf
https://www.eba.europa.eu/documents/10180/15947/EBA+Report+results+from+the+2016+market+risk+benchmarking+exercise+-+March+2017.pdf
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model explained above along with its variants, like using the Skewed t Student distribution for 
simulations and at filtering stage, are the most robust to the choice of data window length. 

VWHS also accounts for volatility changes: past returns are scaled according to a revolatile and 
devolatile process (Gurrola-Perez and Murphy (2015)), i.e. dividing past returns by the estimate of the 
volatility for the corresponding date and multiplying past returns by current volatility: 

�̃�𝑟𝑡𝑡 = 𝜎𝜎𝑇𝑇
𝜎𝜎𝑡𝑡
𝑟𝑟𝑡𝑡 , 1 ≤ 𝑡𝑡 ≤ 𝑇𝑇  

Where 𝜎𝜎𝑇𝑇 is the most recent forecast of the volatility. Then the VaR is computed from the empirical 
distribution of �̃�𝑟𝑡𝑡. Unlike FHS, there is no bootstrapping, but this feature apart FHS and VWHS coincide. 
O’Brien and Szerszen (2017) consider VWHS with a GARCH filter, Gurrola-Perez and Murphy (2015), 
Murphy et al (2014) discuss possible extensions of VWHS, including the use of a floor on volatility when 
using EWMA filter. 

While VWHS principles are simple, we must keep in mind the following ingredients: the value of the 
decay factor, the data window length and the EWMA seed, i.e. the first value of the volatility in order 
to start the iterative process of computing volatilities. A “long-term average” of volatilities is often 
chosen, one could also start with the first squared return over the computational window. We will 
discuss other choices further on.  

 EWMA volatility filter GARCH volatility filter 
Parametric innovations RiskMetrics Academic Standard 
Non-parametric innovations FHS / VWHS Garch-EVT 

Table 3: Approaches to VaR and ES computations. 

The above table summarizes the different approaches to VaR or Expected Shortfall computations. We 
remind that, thanks to degree one positive homogeneity, we have in all cases: 

𝜌𝜌(𝑟𝑟𝑇𝑇) = 𝜎𝜎𝑇𝑇 × 𝜌𝜌(𝑧𝑧𝑇𝑇) 

In a standard parametric GARCH model, 𝜎𝜎𝑇𝑇 is estimated accordingly, the 𝑧𝑧𝑇𝑇 are assumed to be iid, with 
a given parametric distribution, Gaussian, Student t or more involved ones such as reciprocal inverse 
Gaussian. The parametric GARCH model This can be considered as an academic benchmark and is also 
being used by some clearing houses for the computation of initial margins. RiskMetrics assumes that 
the  𝑧𝑧𝑇𝑇 are Gaussian, but uses a EWMA filter to compute current values of the volatility 𝜎𝜎𝑇𝑇. 

As compared with parametric GARCH or to a lesser extent to GARCH-EVT models, VWHS does not make 
any formal assumption about innovations. As for other historical simulation techniques, the estimation 
window is of key importance, but the January 2016 Basel rules (§ 181(e)) clearly push towards using a 
one-year period, even though this might be reduced during periods of market stress.  

We might have also considered other estimates of volatility, based on options’ implied volatilities, such 
as the VIX index. The idea seems appealing due to the forward-looking nature of VIX, while still being 
“historical data” and amenable to internal modelling. Unfortunately, we further show that a rescaling 
of returns based on VIX may lead to poor backtesting results. 

Figure 2 provides ratios of 99% 1 Day VaR estimates computed under VWHS with decay factors 0.8 and 
0.94. over the ten years 2003 – 2012 period. For a given day 𝑇𝑇, we have considered the empirical 
quantile of the standardised returns 𝑧𝑧𝑡𝑡 = 𝑟𝑟𝑡𝑡 𝜎𝜎𝑡𝑡⁄  over the past year and multiplied it by the pointwise 
estimate of 𝜎𝜎𝑇𝑇. The pattern mimics the one associated with pointwise volatility estimates. This 
confirms that the prominent role of volatility estimates in deriving market risk measures. 
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Figure 2: VaR1%/VaR1% for decay factors 0.8 and 0.94 respectively, trading days on the x-axis from January 

2003 to December 2012. 

The median of the ratios of VaR is almost equal to one, thus on average no modelling choice is more 
conservative regarding risk measurement. However, the ratio of the ninth to first deciles equals 1.85. 
Besides, this ratio is highly volatile. In other words, a modelling choice might look as aggressive on a 
given day and the converse will occur within a few days. Changes in risk models require supervisory 
approval and are thus sticky. Therefore, gaming capital requirements by discretionary updating of 
decay factor during turmoil would likely be deemed non-compliant with current regulations and the 
supervisory process19.  

The inherent large instability of VaR outcomes under some plausible modelling choices jeopardizes the 
benchmarking approaches based on hypothetical portfolios led by the Basel Committee and the 
European Banking Authority. Due to the “single day effect” it is hazardous to conclude to excessive 
variability of internal models’ outcomes and to disentangle what is due to “statistical noise” and what 
would come from deliberate choices aimed at relaxing regulatory requirements. In its latest 
benchmarking exercise, the European Banking Authority initiated an averaging over two weeks. This is 
a welcome move regarding the assessment of the variability of market risks weighted assets derived 
from internal models. A further enhancement would be using a 60 days averaging, consistently with 
the Basel Committee capital metrics. 

The other component of VWHS VaR is the empirical quantile of the rescaled return. We did find some 
dynamics in the standardised returns 𝑟𝑟𝑡𝑡 𝜎𝜎𝑡𝑡⁄  as illustrated in Figure 3. We computed the ratio 
(VaR1%/VaR2.5%)/ (Φ−1(99%)/Φ−1 (97.5%) from January 2003 to December 2012. Φ stands for the 
Gaussian cdf. The VaR has been computed using VWHS and a decay factor of 0.8. The fluctuations in 
the ratio of VaR to inverse Gaussian CDF ratios away from 1 demonstrates that under VWHS the 
rescaled returns do not represent a stationary Gaussian distribution.   

                                                           
19 As shown before, the estimates of decay factors are highly unstable. One could think of a dynamic decay factor 
model, as to lower decay factor during volatile periods. This goes beyond the scope of this paper. 
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Figure 3: ratio (Var1%/VaR2.5%)/ (Φ−1(99%)/Φ−1(97.5%) on the y-axis, trading days on the x-axis from January 
2003 to December 2012. 

4. Impact Analysis of Choice of Decay Factor on Backtesting Metrics 

The Basel Committee introduced some new backtesting requirements, based on the number of one-
day VaR exceptions at desk-level and at 99% and 97.5% confidence levels. We show that a lower value 
of decay factor actually lowers the number of VaR exceptions under stress, thus being associated with 
better resilience. This is captured to some extent by conditional coverage tests. However, the lack of 
power of statistical tests provides some discretion in setting the value of decay factor, while meeting 
the regulatory backtesting requirements. 

Backtesting VaR models is a standard issue. For a review of backtesting methods we refer to Berkowitz 
et al. (2008), Boudoukh et al (1998), Haas (2001), Hendricks (1996) and Kuester et al (2006). There is 
also a vast literature dedicated to the assessment of model risk due to parameter uncertainty or the 
choice of estimation method; see for instance Christoffersen & Gonçalves (2005), Alexander & Sarabia 
(2012), Escanciano & Olmo (2012), Escanciano & Pei (2012), Gourieroux & Zakoïan (2013), Boucher & 
Maillet (2013), Boucher et al. (2014), Danielsson & Zhou (2015), Francq & Zakoïan (2015), Danielsson, 
et al. (2016). We also remind that our focus is to concentrate on a key parameter left in the shadow, 
i.e. decay factor, and deal with the implications of different choices for risk management under Basel 
III/FRTB.  

Let us denote by ( ){ }11 1
t tt r VaRI α++ <−=  the binary variable associated with a “hit” or a VaR exception. The 

standard definition of VaR is equivalent to 𝐸𝐸[𝐼𝐼𝑡𝑡+1|𝐹𝐹𝑡𝑡] = 𝛼𝛼. This conditional moment restriction is 
referred to as the conditional coverage property. The information set may content any relevant 
instrumental variables, such as past VaR exceptions. An implication of the conditional coverage 
property is 𝐸𝐸[𝐼𝐼𝑡𝑡+1] = 𝛼𝛼, so-called unconditional coverage (UC) property. 

4.1 Backtesting Risk Models under the Basel 3 Framework 

A test was set up to verify the UC property by Kupiec (1995) using the maximum likelihood ratio test 
under the assumption that VaR violations are independent. Lopez (1999) has shown that Kupiec’s test 
and other alternatives have low power meaning that the probability of not rejecting an inaccurate VaR 
model is high.  
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In the 1996 amendment, the Basel Committee proposed to use a backtesting method known as “traffic 
light approach” to monitor VaR models (BCBS, 1996). As an implication of the unconditional coverage 
property and the independence between VaR exceptions, under the null hypothesis that the risk model 
is well specified, the number of VaR violations follows a Binomial distribution. The Committee then 
proposed to categorize the backtesting results for VaR at 1% significance level over the period of 250 
days into three different zones as follows. 

- Green zone, if the number of VaR exceptions is less or equal to 4. 
- Yellow zone, if the number of VaR exceptions is between 5 and 9 inclusively. 
- Red zone, if the number of VaR exceptions is larger or equal than 10. 

The Basel III framework adds extra requirements. Firstly, backtesting metrics are requested to be 
reported at desk level (see Danciulescu (2010), Wied et al (2015) for a multivariate approach to 
backtesting) and not only at bank’s portfolio level. The purpose is to validate internal risk models at a 
more granular sub-portfolio level. Desks that are not eligible to the internal model approach will be 
required to apply a standard approach, that is inspired by parametric approaches with conservative 
risk weights and correlation assumptions. More formally, each trading desk requiring internal model 
approval will need to produce the number of daily VaR exceptions over the past trading year at 99% 
and 97.5% confidence levels. The maximum permitted number of exceptions is equal to 12 at 1%, and 
30 at 2.5%. 

Columns 2 and 3 of Table 4 report the number of VaR exceptions over a period of 10 years (2005 – 
2014) using different volatility filters. The expected number of VaR exceptions is equal to 25 at 1% 
confidence level and to 63 at 2.5% level. We proceeded as follows: For a given trading day, we used 
the 252 previous trading days (one year) to compute the VaR. The EWMA seed is the first squared daily 
return of that previous year. We considered a daily update of the VaR, consistently with the 
methodology previously used to produce figures 1 to 3. FRTB provides a monthly cap regarding the 
update of datasets (and the recalibration) of internal risk models. A frequent update is likely to reduce 
the number of VaR exceptions, but will be more difficult to handle due to increased IT, operations costs 
and the management of risk limits. 

We then remark that for quite different values of decay factor, ranging from 0.8 to 0.97, we get quite 
reasonable number of VaR exceptions. However, if we focus on a stressed sub-period (January 2007 - 
January 2011), the number of 1% VaR exceptions is equal to 8 for a decay factor equal to 0.8 and 
increases up to 13 for a decay factor equal to 0.97. Smaller decay factors imply prompter VaR increases 
when volatility rises and better behaviour during stressed periods.  

Since the maximum number of permitted 1% VaR exceptions over past year, for a single desk, is 12, 
regulatory prescriptions do not seem binding. However, given that stressed periods might be 
associated with large market moves, improper accounting of negative convexity, i.e. using Taylor 
expansions in lieu of full revaluation of options exposures, plus the increased occurrence of operational 
errors might have an extra material impact of the number of VaR exceptions. The backtesting 
requirement should not thus be dismissed and (internally) assessed over a stressed period, on top of 
day to day monitoring, in order to assess the resilience of a risk model. 
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Table 4: VaR exceptions using EWMA model with different decay factors, VIX approach, and 
simple HS model for a period of 10 years of VaR exceptions calculation (2005-2014). 

 

We also remark that plain historical simulation may lead to poor backtesting results. According to the 
EBA study already mentioned, 58% of surveyed banks, with agreed internal models, were using a one-
year estimation period, already conforming to FRTB prescriptions. 42% used a longer estimation 
period. We thus used plain historical VaR based on a rolling one-year period as for VWHS approaches. 
The number of VaR exceptions is above expectations, 40 and 89 at the 99% and the 97.5% levels 
respectively. Using a (rolling) two years estimation period (last line of Table 4) does not make a big 
difference. Though this is not a formal statistical procedure, this suggests that VWHS outperforms plain 
HS, especially at the 1% level, and better conforms with the expected number of VaR exceptions over 
the very long run, including periods of market stress, such as the great financial crisis or the European 
sovereign debt crisis. This is consistent with the findings of Kourouma et al (2010) that emphasizes the 
poor performance of unfrequently updated VaR models during the 2008 crisis. Similar results are 
provided by Boucher et al. (2014), where plain HS (𝜆𝜆=1) provides poor results under stress (see also 
O'Brien & Szerszen (2017)). 

While the VIX is acknowledged for its forward-looking properties (see Christoffersen and Mazzotta 
(2005)), it performs quite poorly when used in the VWHS scheme and is associated with a very large 
number of VaR exceptions. We might have improved filtering with VIX by appropriate scaling, but this 
is beyond the scope of our research. 

It is of interest that the Basel Committee considered two confidence intervals, 97.5% and 99%, aiming 
at controlling the accuracy of the tail distribution. Hurlin & Tokpavi (2006), Pérignon & Smith (2008), 
Leccadito, Boffelli, & Urga (2014), Colletaz et al. (2016) have also advocated the use of different 
confidence internals, especially due to the capital metrics shift from Value at Risk to Expected Shortfall. 
Emmer et al. (2015) suggests considering VaR at different confidence levels for backtesting Expected 
Shortfall, Kratz et al. (2016) further discuss the idea in the FRTB context. It is worth noting that, while 
the base time horizon for Basel compliant Expected Shortfall is 10 days, the backtesting toolbox (VaR 
at 97.5% and 99%, p-values) involve a single trading day time horizon.  

In the same vein, the Basel Committee quantitative impact studies and the 2013 US regulatory rules 
prescribe reporting of p-values at desk level. We remind that if 𝐹𝐹𝑡𝑡 is the (predicted) conditional 
distribution of returns, the p-values are 𝐹𝐹𝑡𝑡(𝑟𝑟𝑡𝑡+1).  Though no formal tests are required, this clearly 
points out to the PIT (Probability Integral Transform) adequacy tests aimed at checking whether the 
loss distribution (instead of a single quantile) is well predicted: if 𝐹𝐹𝑡𝑡 is well-specified then, 𝐹𝐹𝑡𝑡(𝑟𝑟𝑡𝑡+1) ∼
𝑈𝑈 where 𝑈𝑈 is uniformly distributed over (0,1) leading to formal statistical tests (Crnkovic and 
Drachman (1995), Diebold et al. (1997), Berkowitz (2001)). We also refer to McNeil (2016) for recent 
developments in the FRTB backtesting context. 



16 
 

A qualitative inspection of Figure 4, where a decay factor of 0.8 has been used, shows that the QQ plot 
is well aligned with the bisector line, which is rather reinsuring. However, Figure 5 tempers this 
outcome. Using a higher decay factor of 0.94 also provides reasonable outcome, consistently with the 
lack of power of statistical back-tests. For decay factor equal to 0.94 (respectively 0.8), the number of 
VaR exceptions at 1% level is equal to 26 (respectively 28), while the expected value is 26. For decay 
factor equal to 0.94 (respectively 0.8), the number of VaR exceptions between the 1% and 2.5% levels 
is equal to 42 (respectively 40), while the expected value is 41. The figures correspond to the 10 year 
period starting in 2005. 

 
Figure 4: QQ plot for p-values computed under VWHS with decay factor =0.8. 

 
Figure 5: QQ plot for p-values computed under VWHS with decay factor =0.94. 

The BIS monitoring exercises also require reporting banks to provide one-day horizon 97.5% values of 
expected shortfall. Figure 6 provides the ratio the one-day horizon ES to the one-day 99% VaR. 

 

Figure 6: Ratio of 97.5% one-day ES to 99% one-day VaR. 
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Most of trading days the ratio is close to one, but with quite a number of days where ES is far much 
larger than VaR. This echoes the debate about the robustness of the ES and the significance of such 
patterns (Cont at al (2010), Emmer et al (2015)). Though restricted to one-day horizons, Figure 6 
suggests that a stressed expected shortfall is likely to be more inflated (as compared with median 
expected shortfall) than a stressed VaR. 

4.2 Dynamic Behaviour of VWHS under Different Decay Factors 

As suggested above, resilience of a risk model should be assessed during stress periods, with a concern 
about clustered VaR exceptions. As outlined by O’Brien and Szerszeń (2017), some internal bank 
models did perform quite poorly during the great financial crisis, while they used to be overly 
conservative before.  

 

Figure 7: Overshoots for VaR exceptions using VWHS and lambda=0.8 at 1% confidence level. 

Clustering of VaR exceptions, i.e. several blows in a row might knock-out bank’s capital. Given volatility 
clustering, risk models that do not react promptly might fail to face extreme events. For this purpose, 
some tests aim at checking that VaR exceptions are not clustered. This encompasses the duration tests 
of Christoffersen & Pelletier (2004), Haas (2005), Candelon et al. (2010). 

Figure 7 focuses on the location and the magnitude of VaR exceptions over ten years (2005-2014), 
when using VWHS (decay factor equal to 0.8) on our benchmark S&P500 portfolio. Apart from large 
overshoots, we can see that VaR exceptions are not concentrated on a specific period, even though 
rather frequently occurring in groups of two of three exceptions. Even when using a small decay factor 
and thus a promptly reactive volatility filter, VWHS does not fully comply with the requirement of 
removing clusters of VaR exceptions.  

We consider a formal assessment of VWHS based on the conditional coverage test of Berkowitz et al. 
(2008) (see also Cenesizoglu and Timmermann (2008), Gaglianone et al. (2012), Dumitrescu et al. 
(2012), White et al. (2015) for related approaches).   

More specifically, Engle and Manganelli (2004) considered the following type of regression as a check 
of the conditional coverage property, where past VaR exceptions and past values of the VIX index level 
would be instrumental variables, if a GMM approach had been used. 

𝐼𝐼𝑡𝑡 = 𝛼𝛼0 + ∑ 𝛼𝛼𝑖𝑖𝐼𝐼𝑡𝑡−𝑖𝑖𝐼𝐼
𝑖𝑖=1 +∑ 𝛽𝛽𝑗𝑗𝑉𝑉𝐼𝐼𝑉𝑉𝑡𝑡−𝑗𝑗𝐾𝐾

𝑗𝑗=0 + 𝑢𝑢𝑡𝑡        (4) 
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The VaR model is well specified at 𝛼𝛼 = 1%, 2.5% if 𝛽𝛽𝑗𝑗 = 0,𝛼𝛼𝑖𝑖 = 0, 𝑖𝑖 ≥ 1. Engle and Manganelli (2004) 
proposed a dynamic quantile test. Berkowitz et al. (2008) assume that the error term follows a logistic 
distribution, where the log odds are regressed against regressors in Equation (4) above. We followed 
their approach (implementation is based on the glm() function in statistical software R). The outcome 
depends on the chosen instrumental variables and the associated lags. We chose 𝐼𝐼 = 4 as in Engle and 
Manganelli and the VIX index as an extra instrumental variable as in Berkowitz et al. (2008). We used 
backward model selection techniques and the Bayesian Information Criteria (BIC) to come up with the 
appropriate regression model. Results in the case of the 2.5% VaR and a decay factor equal to 0.94 are 
provided in Table 5. The regressors selected by the backward scheme corresponds to the red cells in 
Table 5. BIC result in this case is relatively close to the lowest one. The VIX is not selected in either 
case. 

 

Table 5: BIC for different models. (1,2|0) means that in Equation (9), we considered lags 1 and 2 for 
𝐼𝐼𝑡𝑡−𝑖𝑖 and no term associated with VIX. 

As the VaR violations are in practice rare events and the sample size to be considered in practice is not 
that large to conduct a backtesting procedure, it might raise a problem with correct statistical inference 
regarding the model accuracy. Therefore, reducing the possibility of having any error types in the 
statistical inference relying on finite sample inference to accept or reject a statistic test is of 
importance20.  

Table 6 reports the results based upon a one-year stressed period, from the 2/29/2008 to 2/28/2009: 
We used a one-year backtesting period as prescribed by the Basel Committee, but chose to focus on a 
volatile period to assess the resilience of the risk model. As above, we considered a decay factor of 
0.94 and computed the 2.5% VWHS VaR. Since backward model selection technique and the use of BIC 
may lead to different choices of regressors in equation (4), we proceeded either using a single regressor 
𝐼𝐼𝑡𝑡−3 or two regressors 𝐼𝐼𝑡𝑡−3, 𝐼𝐼𝑡𝑡−4 according to the above analysis. 

 
Table 6: Checking the VWHS VaR model. * corresponds to a 5% level. 

                                                           
20 For instance, Christoffersen and Pelletier (2004), Berkowitz et al. (2008) used a Monte Carlo testing technique 
proposed by Dufour (2006). 
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This shows mixed results. When using a single regressor, we do not reject the VWHS 2.5% VaR model, 
while the converse occurs when using two regressors…  

Proceeding in the same way with different values of the decay factor, we come up with statistically 
significant coefficients in equation (4) when the decay factor is above 0.9, while using a decay factor 
below 0.9 did not lead to the rejection of VWHS. This is in line with the qualitative insights provided 
based on the number of VaR exceptions. However, this pleasant feature is no longer valid, if we do not 
restrict to 𝐼𝐼 = 4. Though considering the number of VaR exceptions over stressed periods seems to 
favour VWHS with rather low values of the decay factor, the outcome of the statistical analysis is 
blurred. 
 

5. Computation of Capital Metrics under the January 2016 Basel 3 Requirements 

While back-testing studies tend to favour lower values of decay factor than the .94 Riskmetrics 
benchmark and dismiss the use of plain historical simulation, there are well-known drawbacks to using 
more reactive volatility filters when it comes to risk modelling: 

- Risk estimates might become unduly shaky, reacting too promptly to new large market moves. 
This would make day to day management of risk limits within banks more difficult. Also, this 
would enhance pro-cyclical features. For this purpose, time-averaging is often implemented, 
for instance 60 trading day averaging in the Basel 2.5 and Basel 3 frameworks (with slightly 
different schemes). 

- In conjunction with the use of EWMA filter, a low decay factor can result in low estimates of 
volatility after several calm days, leading to severe underestimation of risk. For this purpose, 
it can be thought of introducing volatility floors at some stage in the estimation process. Of 
course, using a volatility floor can lead to a dramatic reduction in the number of VaR 
exceptions, but conservativeness will then be privileged over accuracy. 

Nevertheless, it is important to account for the specificities of capital and backtesting requirements 
within the Basel 3 framework that can lead to different modelling choices regarding the value of the 
decay factor than when dealing with initial margin models used bilaterally or by CCPs.  

As for capital requirements under the internal models’ approach, moving from Basel 2.5 to the FRTB 
involves switching from a 99% VaR to a 10 days 97.5% Expected Shortfall computed over 12 months. 
No scaling from a shorter horizon is allowed (see Danielsson and Zigrand (2006) for a discussion), while 
the use of overlapping observations is explicitly permitted. It is worth noting that the use of historical 
simulation with overlapping observations coupled with the occurrence of a market crash might lead a 
repeated use of almost the same 10 days period for the derivation of the ES: the market crash, if severe 
enough might be included in all the six 10 days periods involved in the 97.5% ES computation. This 
anchoring effect adds to the well-known issues about robustness of the ES metrics. 

As for the derivation of ES under the volatility weighted scheme over a 10 days horizon, we compute 
the rescaled returns over a 10 days period (𝑡𝑡 − ℎ − 9, 𝑡𝑡 − ℎ)  as 𝜎𝜎𝑇𝑇

𝑟𝑟𝑡𝑡−ℎ
𝜎𝜎𝑡𝑡−ℎ

+ 𝜎𝜎𝑇𝑇−1
𝑟𝑟𝑡𝑡−ℎ−1
𝜎𝜎𝑡𝑡−ℎ−1

+ ⋯+

𝜎𝜎𝑇𝑇−9
𝑟𝑟𝑡𝑡−ℎ−9
𝜎𝜎𝑡𝑡−ℎ−9

, equivalently as 𝜎𝜎𝑇𝑇𝑧𝑧𝑡𝑡−ℎ + 𝜎𝜎𝑇𝑇−1𝑧𝑧𝑡𝑡−ℎ−1 + ⋯+ 𝜎𝜎𝑇𝑇−9𝑧𝑧𝑡𝑡−ℎ−9 20F

21. We then sort out these 

rescaled 10 days returns over a one-year period to derive an empirical expected shortfall. Alexander 
(2009) provides a forward-looking scheme to the computation of 10 day returns in a FHS context, this 

                                                           
21 For ease of exposition, we earlier considered relative rather than log-returns. Using daily log-returns makes 
more sense here since they add-up to provide 10 day-returns, while adding daily relative returns results in an 
approximation.  
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requires simulating returns and volatilities by bootstrapping. We also refer to Giannopoulos & Tunaru 
(2005), Righi & Ceretta (2015), Barone-Adesi et al (2017) for further discussion about implementing 
the VWHS and FHS for expected shortfall.  

As for the computation of volatilities under the EWMA scheme over the one-year period, we 
proceeded as follows:   

- We first computed the average squared return over this one-year period.  
- We then used this value as the seed for the EWMA recursion (Equation (2)).  

From a capital metrics point of view, all returns required to compute the EWMA seed are known to 
the modeller.  

If the decay factor equals one (plain historical simulation), then the volatility estimates remain equal 
to the historical volatility, which would not be the case with another seed. Other possible choices might 
have been made. Some consider an historical volatility computed over a “very long” period as a seed. 
Another possibility would be taking the first squared return. These seed values are arbitrary and might 
be unrelated to market conditions over the one year considered period for the computation of the 
Expected Shortfall. For instance, a very small value of the seed would lead to underestimate the 
volatilities at the start of the computation year. Therefore, the revol/devol scaling term 𝜎𝜎𝑇𝑇

𝜎𝜎𝑡𝑡
 is typically 

associated with quite large values at inception of computational year and gradually decreases to one, 
its end value. Scaling-up first returns by a multiplicative factor up to 10, means that it will be likely that 
large negative values will be located at the beginning of the computational year. For a small decay 
factor, a typical pattern would be using an almost null squared return as a seed, followed by a very 
large negative return at day 5 or 6. Due to the overlapping 10 days computation windows for the 
expected shortfall, the risk estimates will then be driven by those two single values.  

For values of the decay factor that are close to one, the revol/devol scaling term 𝜎𝜎𝑇𝑇
𝜎𝜎𝑡𝑡

 will remain quite 

above one over a large fraction of the computational year, also leading to inflating the expected 
shortfall. Figure 8 depicts the revol/devol scaling pattern for a given year, associated when using the 
first squared return as the EWMA seed and 𝜆𝜆 =0.999. Let us remark that, when 𝜆𝜆 = 1 by construction, 
we have a flat pattern, with revol/devol values equal to 1. But we need to go to higher digits to observe 
such convergence. 

 
Figure 8: 𝜎𝜎252

𝜎𝜎𝑡𝑡
 over the period 03 January, 2007 – 02 January, 2008, 𝜆𝜆 = 0.999.  

Trading day on x – axis. 𝜎𝜎02 = 𝑟𝑟02. 
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The endogenous selection magnifies the issue, i.e. the starting day of the one-year stressed period, 
will be such that the revol/devol scaling pattern exhibits the above feature. An inadvertent, but 
improper, seed choice leads to VWHS expected shortfall up to seven times higher than plain historical 
simulation expected shortfall. Occasionally, we end-up with stressed risk measures higher than the 
nominal exposure: Under plain historical simulation, the expected shortfall is capped by the maximum 
loss (and thus the nominal exposure), which is not the case under VWHS.  

The Basel 3/FRTB capital metrics is fully based on a one-year stress period, as compared to a blend of 
current and stress periods in the existing Basel 2.5 setting. This one-year stress period under the Basel 
3 framework is determined endogenously as the one that will maximise the Expected Shortfall, starting 
from January 2007 at the latest. It must be updated no less than monthly (we chose a daily update in 
this paper). Based upon the S&P500 index, we found the following results:  

- For decay factor between [0.8, 0.94], the stress window is from Oct 18, 2007 to Oct 16, 2008; 
- For decay factor between [0.95, 0.97], the stress window is from Nov 27, 2007 to Nov 24, 2008; 
- For decay factor 0.98 the stress window is from Nov 29, 2007 to Nov 26, 2008; 
- For decay factor 0.99 the stress window is from Dec 04, 2007 to Dec 02, 2008; 
- For decay factor 1 (plain historical simulation), the stress window is from Nov 09, 2007 to Nov 

07, 2008. 

Though the stress window encompasses the great financial crisis, it does depend upon the chosen 
decay factor. For a given decay factor, this stress period will remain unchanged until a crisis of larger 
magnitude occurs. The use of a stress periods kills the procyclical effect usually associated with lower 
decay factors. Apart from macroprudential views, procyclical capital metrics lead to some practical 
difficulties for financial institutions. The instability of outcomes jeopardizes the risk management and 
the setting of risk limits processes. 

The Basel Committee new capital metrics involves an averaging of the expected shortfall over the past 
60 days. Since the stressed period is unchanged in our case study, this cancels out the averaging effect, 
which purpose is to deal with time varying exposures. For constant positions, we are left with a single 
computation: for 𝜆𝜆 = 0.94, we need to compute the ES over the period October 18, 2007 to October 
16, 2008. 

In Figure 9, we provide the revol/devol scaling pattern over that stressed period, associated with 𝜆𝜆 =
0.94. Since the seed is set to the average squared return, we do not anymore observe the decreasing 
pattern of Figure 6. However, the scaling coefficients remain quite larger than one over most of the 
year. This scheme is associated with an increase in volatility at the end of the period. Thus, large values 
of  𝜎𝜎𝑇𝑇

𝜎𝜎𝑡𝑡
  inflate the returns and the expected shortfall as compared with plain historical simulation. 
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Figure 9: 𝜎𝜎252

𝜎𝜎𝑡𝑡
 over the period October 18, 2007 to October 16, 2008, 𝜆𝜆 = 0.94.  

Trading day on x – axis. 𝜎𝜎02 is equal to the average squared return over that period. 
 

Thus, unsurprisingly, Figure 10 shows that VWHS leads to higher stressed expected shortfall than when 
using plain historical simulation.  

To ease comparisons, we chose a fixed computation period, 2006-2011 and computed the maximum 
Expected Shortfall for each decay factor over this historical window. For 𝜆𝜆 = 0.94, the VWHS expected 
shortfall estimate (35%) is roughly 50% higher than using plain historical expected shortfall (22%).  

 

Figure 10: Values of 97.5% expected shortfall computed over a one-year endogenous stressed period for 
different values of the decay factor (x-axis). Years of calculation: 2006-2011. 
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Figure 11: convergence of VWHS to plain historical simulation expected shortfall, decay factor in x-axis. Years of 
calculation: 2006-2011. 

To check the convergence of VWHS expected shortfall (𝜆𝜆 < 1) to plain historical expected shortfall, 
we provide a zoom for large values of the decay factor in Figure 11. We do observe convergence, but 
in the provided example, we have a huge dependence of the expected shortfall on the value of the 
decay factor around 1. We have an expected shortfall of 35% for 𝜆𝜆 = 0.99 and of 22% for 𝜆𝜆 = 1.00 
(plain historical simulation), with an almost linear decrease. 

In Figure 12, we provide the revol/devol scaling pattern over the  year 2007 for a decay factor equal to 
0.9999. The values of  𝜎𝜎𝑇𝑇

𝜎𝜎𝑡𝑡
 remain quite close to one, consistently with the convergence of VWHS 

expected shortfall to plain historical expected shortfall. 

 

Figure 12: convergence of the scaling pattern to one as decay factor tends to one. 𝜆𝜆 = 0.9999. Trading days in 
x– axis. Year of calculation: 2007. 

6. Conclusion 

More than twenty years after the disclosure of RiskMetrics and of the 1996 Basel amendment for 
market risk, quantitative risk models are under scrutiny. They are deemed as overly complex, prone to 
model error and to tweaking. But where do we stand exactly? How could it be that quantitative risk 
assessment is considered as altogether prone to model error and to gaming? While the regulation of 
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market risk is experimenting a large overhaul, unveiling the impact of key parameters within the 
toolbox of risk modellers was the aim of this paper.  

Computations based on single day show substantial dispersion of risk estimates, within the class of 
reasonably well specified models, that do not fail standard back-tests. This variability can be explained 
by few key parameters that drive the speed at which new market information is incorporated in risk 
measures. Well-documented difficulties in volatility prediction lead to inherent “statistical model” 
error. This needs to be understood and accounted for, when assessing the reliability of internal models 
of market risk measurement.  

The 60 days averaging considered under the FRTB framework might be of little help. For the studied 
benchmark portfolio, the stressed period remains unchanged and the expected shortfall is constant. 
That is, we are averaging a constant value over 60 days.  

Thus, in most cases, the capital charge associated with the Basel 3 FRTB methodology will be acyclic, 
i.e. will not depend on current market volatility: for a given exposure, unless the current period 
becomes the stressed period, the capital metrics, i.e. Expected Shortfall computed over a given 
stressed period will remain constant. 

This also suggests an update of risk assessment methodologies currently being used by the Basel 
Committee or by the European Banking Authority. Apart from the design of hypothetical portfolios, 
comparing between different bank risk models should involve computations over stressed periods and 
averaging as now prescribed by the January 2016 Basel rules.  

Given the large number of desks potentially involved (up to 100) and the large direct and indirect 
(reputational, increased supervisory oversight) costs associated with falling-back to standardised 
computations, managing VaR exceptions is a challenge for large investment banks. Given the 
specificities the FRTB / Basel III framework for computing and backtesting risk measures, incorporating 
more quickly market information, i.e. using lower decay factors is a double edge sword. On one hand, 
better dealing with sudden increase in market volatility lowers the number of VaR exceptions without 
targeting a series of VaR exceptions in turbulent times and leads to more resilient risk models. On the 
other hand, this dramatically inflates stressed expected shortfall (even with well suited seeds in the 
EWMA volatility filter), compared with plain historical simulation. The price of increased reliance is 
such that it would be unlikely that financial institutions would move from plain historical to volatility 
weighted/ filtered historical simulation. A volatility floor might be considered as a mean to monitor 
the revol/devol scheme and mitigate the inflating effects of using stressed expected shortfall. 
Additionally, it would further lower the number of VaR exceptions and the likelihood of desk 
ineligibility to internal modelling. Reducing the number of days over which the ES is computed, for 
instance using monthly computations instead of daily would also mitigate the adverse effects of an 
endogenous stress period.  

There are other challenges when dealing with risk models:  

- We restricted to a single risk factor and linear exposure. The number of risk factors involved in 
practical modelling questions the use of a single decay factor. This is left for future research. 

- When it comes to non-linear exposures, banks may need to consider full revaluation. Banks 
using Monte Carlo approaches to compute risk measures will face increased computer time 
requirements, since FRTB is more demanding than current regulation. Likewise, plain historical 
simulation might be favoured over volatility weighted historical simulation. 

- The overhaul of existing frameworks concerns both the design of risk methodologies, data 
(modellable risk factors) and systems (alignment of front office and risk tools, i.e. P&L 
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attribution tests). While risk factor modellability is out of the scope of this paper, as mentioned 
above, the use of historical simulation methods might make it easier to fulfil the P&L 
attribution requirements, even though uncertainties remain regarding the completion of 
regulatory rules related to the eligibility of internal risk models. 

Nevertheless, the issue raised in our paper should be properly addressed. While the use of stressed 
expected shortfall is more conservative and dramatically reduces procyclicality of capital 
requirements, it should not provide wrong incentives when it comes to resilience of risk models and 
jeopardize financial stability. 
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