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ENVELOPE THEOREMS FOR STATIC OPTIMIZATION AND

CALCULUS OF VARIATIONS

JOËL BLOT, HASAN YILMAZ

Abstract. We establish differentiability properties of the value function of
problems of Static Optimization in an abstract infinite dimensional setting and
we apply that to problems of Calculus of Variations. We lighten the assump-
tions of existing results, notably by using Gâteaux and Hadamard differentials.
Moreover we use recently established Multipliers Rules.
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1. Introduction

The paper treats of envelope theorems for parameterized problems of Static
Optimization as

(M, π)















Maximize f(x, π)
subject to x ∈ G

∀i = 1, ..., k, gi(x, π) ≥ 0
∀j = 1, .., ℓ, hj(x, π) = 0,

and for parameterized problems of Calculus of Variations (Lagrange problems) un-
der parameterized constraints as

(V , π)



















Maximize J(x, π) :=
∫ T

0 L(t, x(t), x′(t), π)dt
subject to x ∈ C1([0, T ],M), x(0) = a0, x(T ) = aT

∀i = 1, ..., k, Gi(x, π) :=
∫ T

0
gi(t, x(t), x

′(t), π)dt ≥ 0

∀j = 1, ..., ℓ, Hj(x, π) :=
∫ T

0
hj(t, x(t), x

′(t), π)dt = 0.

We precise all the elements of these problems in the following sections.
We denote by V (π) the value function of one of these problems. An envelope
theorem consists to provide conditions to ensure the differentiability of V (in a
meaning that we will specify) and to provide an expression of this differential.
When π0 is a fixed value of the parameter, in an envelope theorem, it is assumed that
the optimal solution exists for all the parameters which belong to a neighborhood
of π0, not only for π0. This is the difference between the problem of the envelope
theorem and the problem of the regular perturbations where the theory provides
conditions to ensure the existence of solutions x(π) when π is near to π0, [4].
The envelope theorems are classical fundamental tools of the economic theory; cf.
[5], [7], [8], [11], [17], [20], [21], [24], [25], [22] for example.

Our contribution is to establish envelope theorems with lightened assumptions with
respect to the existing results. Notably we don’t assume the regularity of the
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multipliers which are associated to the solutions of these optimization problems,
and we prove their continuity; their differentiability is unnecessary. We use the
Hadamard differentiability instead of the continuous Fréchet differentiability that
is weaker in infinite dimension. Note that to avoid to assume that the multipliers
are of class C1 is labelled as a conjecture in [5] (p. 7).
To realize this aim, we use recent multipliers rules established in [26] which contains
an improvment of the results of [2] and an improvment of clasical results in the
setting Fréchet C1 as exposed in [1], we establish new results on the functionals
under an integral form, we provide a variation of the Gram-Schmidt method, we
provide informations on the dual space of an useful subspace of the space of the
continuously differentiable functions defined on a segment of R.

Now we describe the contents of the paper. In Section 2, we specify our notation,
and we provide some preliminaries. In Section 3, we state an envelope theorem for
the parameterized problems of Static Optimization in infinite dimension.
In Section 4, we prove the results of Section 3. In a first subsection, we establish
results of topological algebra, we built a variation of the Gram-Schmidt method to
permit us to prove the continuity of the multipliers (instead to assume it).
In Section 5, we establish an envelope theorem for the parameterized problems of
Calculus of Variations. In a first subsection, we state an envelope theorem. In a
second subsection, we establish new results on the differentiability of nonlinear in-
tegral functionals. In a third subsection, we establish results on the Euler equation.
In a fourth subsection, we study dual spaces which are useful to our results, In the
last subsection, we give a proof of our envelope theorem.

2. Notation and Preliminaries

X and Y are two real normed spaces.

2.1. Notions of differentiability. L(X,Y) denotes the space of the continuous
linear mappings from X into Y. The topological dual space of X is denoted by X∗.
Generally the norm of the dual spaces will be denoted by ‖ · ‖∗. When A ⊂ X,
C0(A,Y) denotes the space of the continuous mappings from A into Y.
Let G be an open subset of X, f : G → Y be a mapping, x ∈ G and v ∈ X. When it
exists, the right-directional derivative (also called the right Gâteaux variation) of f
at x in the direction v is D+

Gf(x; v) := lim
θ→0+

1
θ
(f(x+ θv)− f(x)). When D+

Gf(x; v)

exists for all v ∈ X and when D+
Gf(x; ·) ∈ L(X,Y), the Gâteaux differential of f at

x is DGf(x) ∈ L(X,Y) defined by DGf(x) · v := D+
Gf(x; v).

We say that f possesses a Hadamard variation at x for the increment v when there
exists D+

Hf(x; v) ∈ Y such that, for all (θn)n ∈ ]0,+∞[N converging to 0, and for all

(vn)n ∈ XN converging to v, we have lim
n→+∞

1
θn
(f(x + θnvn) − f(x)) = D+

Hf(x; v).

When D+
Hf(x; v) exists for all v ∈ X, and when D+

Hf(x; ·) ∈ L(X,Y), the Hadamard

differential of f at x is DHf(x) ∈ L(X,Y) defined by DHf(x) · v := D+
Hf(x; v).

When it exists, DF f(x) denotes the Fréchet differential of f at x. C1(G,Y) denotes
the space of the continuously Fréchet differentiable mappings from G into Y. When
T ∈ ]0,+∞[, C1([0, T ],G) denotes the space of the continuously differentiable func-
tions from [0, T ] into G, and when ξ0, ξT ∈ X, C1

ξ0,ξT
([0, T ],G) denotes the space of

the functions x ∈ C1([0, T ],G) such that x(0) = ξ0 and x(T ) = ξT . C
∞
c ([0, T ],Rn)

denotes the space of the infinitely differentiable functions from [0, T ] into R
n such
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that their support is included into ]0, T [.
When X is a finite product of m real normed spaces, X =

∏

1≤i≤m Xi, if k ∈
{1, ...,m}, DF,kf(x) (respectively DH,kf(x), respectively DG,kf(x)) denotes the
partial Fréchet (respectively Hadamard, respectively Gâteaux) differential of f at x
with respect to the k-th vector variable. If 1 ≤ k1 ≤ k2 ≤ k3 ≤ m, DH,(k1,k2,k3)f(x)
denotes the Hadamard differential of the mapping
[(xk1

, xk2
, xk3

) 7→ f(x1, .., xk1
, ..., xk2

, ..., xk3
, ..., xm)] at the point (xk1

, xk2
, xk3

).
We refer to [10] for all these notions of differentiability.

2.2. Bounded variation functions. We consider the functions from [0, T ] into a
normed vector space which are of bounded variation (cf. [19](Chapter 10, Section
1). BV ([0, T ],X) denotes the set of such functions. C0

R( ]0, T [ ,X) denotes the set
of the functions from [0, T ] into X which are right-continuous on ]0, T [. We define
NBV ([0, T ],X) := {g ∈ BV ([0, T ],X) ∩ C0

R( ]0, T [ ,X) : g(0) = 0}. A function of
NBV ([0, T ],X) is called a normalized bounded variation function. ‖g‖BV := V T

0 (g)
defines a norm on NBV ([0, T ],X). If X is finite dimensional, if (ei)1≤i≤d is a basis
of X, and (e∗i )1≤i≤d is its dual basis, g ∈ NBV ([0, T ],X) if and only if e∗i ◦ g ∈
NBV ([0, T ],R), and so we can use the results on scalar-valued bounded variation
functions as given in [16], [15]. When d = dimX < +∞, f ∈ AC([a, b],X) (AC
means: absolutely continuity) if and only if e∗i ◦f ∈ AC([a, b],R) for all i ∈ {1, ..., d},
and so we can use the results on the scalar-valued absolutely continuous functions
as given in [16], [6].

2.3. Integrals. When E is a real Banach space, a < b in R, and f : [a, b] → E is

a function, the Riemann integral of f on [a, b] is written
∫ b

a
f(t) dt (cf. [9], chapter

8).
We denote by B([a, b]) the Borel tribe of [a, b], and by m1 the canonical positive
measure of Borel on B([a, b]), charactarized by m1([α, β[) = β − α when α < β be-
long to [a, b]. When f : [a, b] → R is a Borel function which is m1-integrable, we say
that f is Borel integrable on [a, b], and we denote its Borel integral by

∫

[a,b] f dm1.

We denote the set of such functions by L1([a, b],B([a, b]),m1;R). Conformly to
[23], we don’t use the term ”Lebesgue integral” since we don’t use the (completed)
Lebesgue tribe, but only the Borel tribe.
When E is finite dimensional, if (ei)1≤i≤d is a basis of E, and (e∗i )1≤i≤d its dual
basis, a function f : [a, b] → E is said to be Borel integrable on [a, b] if and
only if e∗i ◦ f ∈ L1([a, b],B([a, b]),m1;R) for all i ∈ {1, ..., n}. We denote by
L1([a, b],B([a, b]),m1;E) the space of such functions.

3. Static Optimization

Let X and Y be two real normed spaces, and G be an open subset of X. We
consider the following functions f : G×Y → R, gi : G×Y → R for all i ∈ {1, ..., k},
and hj : G × Y → R for all j ∈ {1, ..., ℓ}. We denote by V (π) the value of the
problem (M, π) when π ∈ Y.
Let π0 ∈ Y. We consider the following conditions.

Condition on the dual space X∗.

(Adua) There exists (· | ·)X∗ ∈ C0(X∗ × X∗,R) which is an inner product on X∗.
Conditions on the solutions.
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(Asol1) There exists an open neighborhood P of π0 in Y such that, for all π ∈ P ,
there exists a solution x(π) of (M, π).
(Asol2) There exists ̟ ∈ Y s.t. D+

Gx(π0;̟) exists.

(Asol2-bis) ∀̟ ∈ Y, D+
Gx(π0;̟) exists.

(Asol2-ter) ∀π ∈ P , ∀̟ ∈ Y, D+
Gx(π;̟) exists.

Conditions on the functions of the criterion and of the constraints.
(Afon1) ∀ψ ∈ {f} ∪ {gi : 1 ≤ i ≤ k} ∪ {hj : 1 ≤ j ≤ ℓ}, DHψ(x(π0), π0) exists,
and, for all π ∈ P , DH,1ψ(x(π), π) exists and [π 7→ DH,1ψ(x(π), π)] is continuous
on P .
(Afon2) ∀ψ ∈ {f} ∪ {gi : 1 ≤ i ≤ k} ∪ {hj : 1 ≤ j ≤ ℓ}, ∀π ∈ P , DHψ(x(π), π)
exists and [π 7→ DH,2ψ(x(π), π)] is continuous on P .
Conditions on the constraints functions only.
(Acon1) ∀π ∈ P, ∀j ∈ {1, ..., ℓ}, [x 7→ hj(x, π)] is continuous on a neighborhood of
x(π).
(Acon2) DH,1g1(x(π0), π0),..., DH,1gk(x(π0), π0), DH,1h1(x(π0), π0),...,
DH,1hℓ(x(π0), π0) are linearly independent.

Theorem 3.1. (Envelope Theorem). We assume that (Adua), (Asol1),
(Asol2), (Afon1), (Acon1), (Acon2) are fulfilled. Then the following assertions
hold.

(i) The right derivative of the value function of (M, π) at π0 in the direction
̟ exists and D+

GV (π0;̟) = DH,2f(x(π0), π0) ·̟+
∑

1≤i≤k

λi(π0)DH,2gi(x(π0), π0) ·̟ +
∑

1≤j≤ℓ

µj(π0)DH,2hj(x(π0), π0) ·̟,

where λ1(π0),..., λk(π0), µ1(π0), ..., µℓ(π0) are the Karush-Kuhn-Tucker
multipliers associated to the solution x(π0) of (M, π0).

(ii) If in addition we assume (Asol2-bis) instead of (Asol2), then the value
function is Gâteaux differentiable at π0, and DGV (π0) = DH,2f(x(π0), π0)+
∑

1≤i≤k

λi(π0)DH,2gi(x(π0), π0) +
∑

1≤j≤ℓ

µj(π0)DH,2hj(x(π0), π0).

(iii) If in addition we assume that (Asol2-ter) and (Afon2) are fulfilled, then
the value function is of class Fréchet C1 on an open neighborhood Q of π0,
and for all π ∈ Q, we have DFV (π) = DH,2f(x(π), π)+
∑

1≤i≤k

λi(π)DH,2gi(x(π), π) +
∑

1≤j≤ℓ

µj(π)DH,2hj(x(π), π),

where λ1(π),..., λk(π), µ1(π), ..., µℓ(π) are the Karush-Kuhn-Tucker mul-
tipliers associated to the solution x(π) of (M, π).

We can adapt this result to problems where the domains of the functions are
affine sets instead of to be vector spaces. Now we consider an affine subset A ⊂ X.
The director vector subspace of A is denoted by S. G0 is an open subset of A.
We consider the following functions. f0 : G0 × Y → R, g0i : G0 × Y → R when
i ∈ {1, ..., k}, and h0j : G0 × Y → R when j ∈ {1, ..., ℓ}. With these elements, when
π ∈ Y, we build the following problem.

(M0, π)















Maximize f0(z, π)
subject to z ∈ G

0

∀i = 1, ..., k, g0i (z, π) ≥ 0
∀j = 1, .., ℓ, h0j(z, π) = 0,
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V 0(π) denotes the value of (M0, π). Let π0 ∈ Y. We consider the following list of
conditions.
Condition on the dual space S∗.

(A0dua) There exists (· | ·)S∗ ∈ C0(S∗ × S∗,R) which is an inner product on S∗.
Conditions on the solutions.
(A0sol1) There exists an open neighborhood P of π0 in Y such that, for all π ∈ P ,
there exists a solution z(π) of (M0, π).
(A0sol2) There exists ̟ ∈ Y s.t. D+

Gz(π0;̟) exists.

(A0sol2-bis) ∀̟ ∈ Y, D+
Gz(π0;̟) exists.

(A0sol2-ter) ∀π ∈ P , ∀̟ ∈ Y, D+
Gz(π;̟) exists.

Conditions on the functions of the criterion and of the constraints.
(A0fon1) ∀ψ ∈ {f0} ∪ {g0i : 1 ≤ i ≤ k} ∪ {h0j : 1 ≤ j ≤ ℓ}, DHψ(z(π0), π0) exists,

and, for all π ∈ P , DH,1ψ(z(π), π) exists and [π 7→ DH,1ψ(z(π), π)] is continuous
on P .
(A0fon2) ∀ψ ∈ {f0} ∪ {g0i : 1 ≤ i ≤ k} ∪ {h0j : 1 ≤ j ≤ ℓ}, ∀π ∈ P , DHψ(z(π), π)
exists and [π 7→ DH,2ψ(z(π), π)] is continuous on P .
Conditions on the constraints functions only.

(A0con1) ∀π ∈ P, ∀j ∈ {1, ..., ℓ}, [z 7→ h0j(z, π)] is continuous on a neighborhood
of z(π).
(A0con2) DH,1g1(z(π0), π0),..., DH,1gk(z(π0), π0), DH,1h1(z(π0), π0),...,
DH,1hℓ(z(π0), π0) are linearly independent.
The differentials on the affine subset A are defined (when they exist) on the director
vector subset S which is the tangent vector space at each point of A.

Corollary 3.2. We assume that (A0dua), (A0sol1), (A0sol2), (A0fon1),
(A0con1), (A0con2) are fulfilled. Then the following assertions hold.

(α) D+
GV

0(π0;̟) exists and there exists (λi(π0))1≤i≤k ∈ Rk
+ and

(µj(π0))1≤j≤ℓ ∈ Rℓ such that D+
GV

0(π0;̟) = DH,2f
0(z(π0), π0) ·̟ +

∑

1≤i≤k λi(π0)DH,2g
0
i (z(π0), π0) ·̟+

∑

1≤j≤ℓ µj(π0)DH,2h
0
j(z(π0), π0) ·̟.

(β) If in addition we assume (A0sol2-bis) instead (A0sol2), the value function
is Gâteaux differentiable at π0 and we have DGV

0(π0) = DH,2f
0(z(π0), π0)

+
∑

1≤i≤k λi(π0)DH,2g
0
i (z(π0), π0) +

∑

1≤j≤ℓ µj(π0)DH,2h
0
j(z(π0), π0).

(γ) If in addition we assume that (A0sol2-ter) and (A0fon2) are fulfilled, then
the value function is of class Fréchet C1 on an open neighborhood Q of π0,
and, for all π ∈ Q, there exist ((λi(π))1≤i≤k , (µj(π))1≤j≤ℓ) ∈ Rk

+ × Rℓ s.t.
DFV

0(π) = DH,2f
0(z(π), π) +

∑

1≤i≤k λi(π)DH,2g
0
i (z(π), π) +

∑

1≤j≤ℓ µj(π)DH,2h
0
j(z(π), π).

The following corollary only uses the Fréchet differentiability and is more easily
accessible to users for concrete problems issued from modellings.

Corollary 3.3. In the setting of Theorem 3.1, under (Adua), (Asol1), (Asol2-
ter), (Acon2), we assume that the following condition is fulfilled.

[π 7→ x(π)] is continuous on P and ∀ψ ∈ {f} ∪ {gi : 1 ≤ i ≤ k} ∪ {hj : 1 ≤ j ≤ ℓ},
ψ is Fréchet C1 on G× P .

Then (Afon1), (Afon2), (Acon1) are fulfilled, and all the conclusions of Theo-
rem 3.1 hold, replacing the Hadamard differentials by Fréchet differentials in the
formulas.
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Remark 3.4. When X is finite dimensional, the conditions (Adua) and (A0dua)
are automatically fulfilled. Moreover the Hadamard differentiability is equivalent to
the Fréchet differentiability. Hence, without (Adua), the statement of Theorem 3.1
holds and we can replace the Hadamard differentials by Fréchet differentials in the
formulas of the conclusions.

4. Proofs of results of section 3

4.1. Results of topological algebra. E and W are two real normed spaces.

Lemma 4.1. Let w0 ∈ W and W be a neighborhood of w0 in W. Let (bi)1≤i≤m ∈
C0(W,E)m s.t. b1(w0), ..., bm(w0) are linearly independent. Then there exists a
neighborhood W0 of w0, W0 ⊂W , s.t. for all w ∈W0, b1(w), ..., bm(w) are linearly
independent.

Proof. For all w ∈W , we consider the mapping Φw : Rm → E defined by
Φw(u

1, ..., um) :=
∑

1≤i≤m uibi(w) when (u1, ..., um) ∈ Rm. Clearly we have Φw ∈

L(Rm,E), and the linear independence of b1(w), ..., bm(w) is equivalent to have
KerΦw = {0}. This last equality is equivalent to have Φ−1

w ({0}) ∩ S(0, 1) = {0},
where S(0, 1) is the unit sphere of Rm. Proceeding by contradiction, we assume:
∀k ∈ N∗, ∃wk ∈ B(w0,

1
k
), ∃vk ∈ S(0, 1) s.t. Φwk

(vk) = 0. Using the compactness of
S(0,1) and the Weierstras-Bolzano theorem, we obtain the existence of an increasing
function σ : N∗ → N∗ and of u ∈ S(0, 1) s.t. limk→+∞ vσ(k) = u. Hence, we have,

for all k ∈ N∗,
∑

1≤i≤m vi
σ(k)bi(wσ(k)) = 0. Since the bi are continuous, we obtain

∑

1≤i≤m uibi(w0) = 0, and the linear independence of the bi(w0) implies that u = 0

which contredicts u ∈ S(0, 1). �

In the two following lemmas, we assume the existence of functional (· | ·)E ∈
C0(E× E,R) which is an inner product on E. The following lemma is a version of
the Gram-Schmidt’s process (cf. e.g. [18] p. 366) in presence of a parameter.

Lemma 4.2. LetW be an open subset of W, and (ei)1≤i≤n ∈ C0(W,E)n s.t. e1(w),
..., en(w) are linearly independent for all w ∈W .
Then there exists (ǫi)1≤i≤n ∈ C0(W,E \ {0})n s.t. the following properties hold.

(a) ∀w ∈ W , ∀i ∈ {1, ...n}, ǫi(w) ∈ span{e1(w), ..., ei(w)}.
(b) ∀w ∈ W , ∀(i, j) ∈ {1, ...n}2 s.t. i 6= j, (ǫi(w) | ǫj(w))E = 0.
(c) ∀(i, j) ∈ {1, ...n}2, ∃αi

j ∈ C0(W,R) s.t., ∀w ∈W ,

ǫj(w) =
∑

1≤i≤n α
i
j(w)ei(w), where α

j
j(w) = 1 and αi

j(w) = 0 when i > j.

Proof. We proceed by induction on n. When n = 1, we set ǫ1 := e1, and we have
α1
1(w) = 1 for all w ∈ W , and the conclusions (a, b, c) are fulfilled. We do the

assumption of induction on k, and we prove the result for k + 1. We set

ǫk+1(w) := ek+1(w) −
∑

1≤i≤k

(ek+1(w) | ǫi(w))E
‖ǫi(w)‖2e

ǫi(w) (4.1)

where ‖ · ‖e is the norm associated to (· | ·)E.
Hence ǫk+1(w) ∈ span{ek+1(w), ǫ1(w), ..., ǫk(w)} = span{ej(w) : 1 ≤ j ≤ k + 1}
by using the induction assumption, and so (a) is fulfilled. Let i < k + 1. We have
(ǫk+1(w) | ǫi(w))E = (ek+1(w) | ǫi(w))E
−
∑

1≤j≤k,j 6=i

(ek+1(w)|ǫj(w))E
‖ǫj(w)‖2

e
(ǫj(w) | ǫi(w))E − (ek+1(w)|ǫi(w))E

‖ǫi(w)‖2
e

(ǫi(w) | ǫi(w))E
= (ek+1(w) | ǫi(w))E − (ek+1(w) | ǫi(w))E = 0.
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Hence, (b) is fulfilled. Notice that ǫk+1(w) 6= 0 for all w ∈ W , since, proceeding by
contradiction, if there exists w ∈ W s.t. ǫk+1(w) = 0, then, using (4.1), we obtain
ek+1(w) ∈ span{ei(w) : 1 ≤ i ≤ k} which contradicts the linear independence of
the ei(w). When j ∈ {1, ..., k}, we inductively define

α
j
k+1(w) := −

∑

1≤i≤k

(ek+1(w) | ǫi(w))E
‖ǫi(w)‖2e

α
j
i (w), αk+1

k+1(w) := 1 (4.2)

and, when j > k + 1, we set

α
j
k+1(w) := 0. (4.3)

Since (· | ·)E, ‖ · ‖2e, e1, ...,ek, ǫ1, ..., ǫk are continuous, we see that αj
k+1 is contin-

uous as a composition of continuous mappings, for all j. Doing a straightforward
calculation, we obtain

ǫk+1(w) =
∑

1≤j≤k+1

α
j
k+1(w)ej(w) =

∑

1≤j≤n

α
j
k+1(w)ej(w). (4.4)

Hence the reasoning by induction is complete, and the proof of the lemma is com-
plete. �

Lemma 4.3. Let W be an open subset of W and (ei)1≤i≤n ∈ C0(W,E)n s.t. e1(w),
..., en(w) are linearly independent, for all w ∈W . We set Fw := span{ei(w) : 1 ≤
i ≤ n} for all w ∈ W , and F :=

⋃

w∈W

(Fw × {w}). When (x,w) ∈ F , xi(x,w)

denotes the i-th coordinate of x in the basis (ej(w))1≤j≤n.
Then, for all i ∈ {1, ..., n}, xi ∈ C0(F,R).

Proof. We consider (ǫj)1≤j≤n ∈ C0(W,E)n as defined in Lemma 4.2. When w ∈W

and x ∈ Fw, we can write x =
∑

1≤i≤n y
i(x,w)ǫi(w) where yi(x,w) := (x|ǫi(w))E

‖ǫi(w)‖2
e
.

Using Lemma 4.2, we know that ǫi ∈ C0(W,E \ {0}), and using the continuity of
(· | ·)E with respect to the intial norm of E× E, we obtain that yi ∈ C0(F,R) as a
composition of continuous mappings.
Since (ei(w))1≤i≤n and (ǫi(w))1≤i≤n are two bases of the same vector space Fw,
we can consider M(w) the matrix of transition from (ei(w))1≤i≤n to (ǫi(w))1≤i≤n.
Using Lemma 4.2, the elements of the i-th column of M(w) are: αi

1(w), ..., α
i
i−1,

1, 0, ...,0, and since the elements are continuous functions of w, we can assert
that [w 7→M(w)] ∈ C0(W,GL(n,R)) where GL(n,R) is the classical group on the
n× n invertible real matrices. The operator I : GL(n,R) → GL(n,R), defined by
I(L) := L−1, is well know to be continuous. Moreover M(w)−1 is the matrix of
transition from (ǫi(w))1≤i≤n to (ei(w))1≤i≤n. Since we have [x

1(x,w)...xn(x,w)]t =
M(w)−1[y1(x,w)...yn(x,w)]t, where the upper index t denotes the transposition of
the matrices, we obtain the continuity of the xi on F as a composition of continuous
mappings. �

4.2. Proof of Theorem 3.1. Conclusion (i). We use Lemma 4.1, with W = Y,
E = X∗ and (Acon2) to ensure the existence of an open neighborhood Q of π0 in
P such that,

∀π ∈ Q,DH,1g1(x(π), π), ..., DH,1gk(x(π), π), DH,1h1(x(π), π),
..., DH,1hℓ(x(π), π) are linearly independent.

}

(4.5)

We want to use the multipliers rule of [26] (Theorem 2.2). Notice that our as-
sumption (Afon1) implies that assumptions (i) and (ii) of this multipliers rule are
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fulfilled. Our assumption (Afon1) and Theorem 4.2.6 in [10] imply that the third
assumption of this multipliers rule is fulfilled. (Acon1) and (Afon1) imply that
the last assumption of this multipliers rule is fulfilled. Hence using this multipliers
rule and (4.5), we can ensure the existence of multipliers (λi(π))1≤i≤k ∈ Rk and
(µj(π))1≤j≤ℓ ∈ Rℓ which satisfy the following conditions for all π ∈ Q.

∀π ∈ Q, ∀i ∈ {1, ..., k}, λi(π) ≥ 0. (4.6)

∀π ∈ Q, ∀i ∈ {1, ..., k}, λi(π)gi(x(π), π) = 0. (4.7)

∀π ∈ Q, DH,1f(x(π), π) +
∑

1≤i≤k λi(π)DH,1gi(x(π), π)

+
∑

1≤j≤ℓ µj(π)DH,1hj(x(π), π) = 0.

}

(4.8)

The following result establishes the continuity of the Karush-Kuhn-Tucker multi-
pliers with respect to the parameter π.

Lemma 4.4. For all i ∈ {1, ..., k}, λi ∈ C0(Q,R+) and, for all j ∈ {1, ..., ℓ},
µj ∈ C0(Q,R).

Proof. Under (Afon1), (Adua), with W = Y and E = X∗, we can use Lemma
4.3: we set e1(π) := DH,1g1(x(π), π), ..., ek(π) := DH,1gk(x(π), π), ek+1(π) :=
DH,1h1(x(π), π), ..., ek+ℓ(π) := DH,1hℓ(x(π), π), and using (4.5) and (4.8), the
assumptions of Lemma 4.3 are fulfilled, and we can conclude that the coordinates
λi and µj are continuous. �

Since we have V (π) = f(x(π), π) for all π ∈ Q, and since the Hadamard differential
satisfies the Chain Rule ([10], (4.2.5) p.263), we can calculate

D+
GV (π0;̟) = DH,1f(x(π0), π0) ·D

+
Gx(π0;̟) +DH,2f(x(π0), π0) ·̟. (4.9)

Under (4.8), we also have

DH,1f(x(π0), π0) ·D
+
Gx(π0;̟) =

−
∑

1≤i≤k λi(π0)DH,1gi(x(π0), π0) ·D
+
Gx(π0;̟)

−
∑

1≤j≤ℓ µj(π0)DH,1hj(x(π0), π0) ·D
+
Gx(π0;̟).







(4.10)

If λi(π0) > 0, using Lemma 4.4, we can assert that there exists a neighborhoodN of
π0 in Q such that λi(π) > 0 for all π ∈ N , and using (4.7) we obtain gi(x(π), π) = 0
for all π ∈ N . Differentiating with respect to π, we obtain

DH,1gi(x(π0), π0) ·D
+
Gx(π0;̟) +DH,2gi(x(π0), π0) ·̟ = 0.

To subsume this reasoning, we write

λi(π0) > 0 =⇒ λi(π0)DH,1gi(x(π0), π0) ·D
+
Gx(π0;̟)

= −λi(π0)DH,2gi(x(π0), π0) ·̟.

}

(4.11)

Moreover the following assertion is clear.

λi(π0) = 0 =⇒ λi(π0)DH,1gi(x(π0), π0) ·D
+
Gx(π0;̟)

= −λi(π0)DH,2gi(x(π0), π0) ·̟.

}

(4.12)

From (4.11) and (4.12), we obtain

∀i ∈ {1, ..., k}, λi(π0)DH,1gi(x(π0), π0) ·D
+
Gx(π0;̟)

= −λi(π0)DH,2gi(x(π0), π0) ·̟.

}

(4.13)

Since hj(x(π), π) = 0 when π ∈ Q, differentiating at π0, we obtain the following
assertion.

∀j ∈ {1, ..., ℓ}, µj(π0)DH,1hj(x(π0), π0) ·D
+
Gx(π0;̟)

= −µj(π0)DH,2hj(x(π0), π0) ·̟.

}

(4.14)
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Using (4.13) and (4.14) into (4.10), we have

DH,1f(x(π0), π0) ·D
+
Gx(π0;̟) =

∑

1≤i≤k λi(π0)DH,2gi(x(π0), π0) ·̟
+
∑

1≤j≤ℓ µj(π0)DH,2hj(x(π0), π0) ·̟.

}

(4.15)

Using (4.15) into (4.9), we obtain: D+
GV (π0;̟) = DH,2f(x(π0), π0) ·̟

+
∑

1≤i≤k λi(π0)DH,2gi(x(π0), π0) · ̟ +
∑

1≤j≤ℓ µj(π0)DH,2hj(x(π0), π0) · ̟, and
so the first conclusion of Theorem 3.1 is proven.
Conclusion (ii). Since (Asol2-bis) implies (Asol2), we can use the formula of
D+

GV (π0, ̟) for all the increments ̟; from this formula we see that

[̟ 7→ D+
GV (π0, ̟)], from Y into R, is a linear combination of elements of Y∗.

Consequently V is Gâteaux differentiable at π0, and so the second conclusion of
Theorem 3.1 is proven.
Conclusion (iii). From (Asol2-ter), using the second conclusion at π ∈ Q in-
stead of π0, we know that, for all π ∈ Q, we have DGV (π) = DH,2f(x(π), π) +
∑

1≤i≤k λi(π)DH,2gi(x(π), π) +
∑

1≤j≤ℓ µj(π)DH,2hj(x(π), π).

Using (Afon2), we see that DGV ∈ C0(Q,Y∗), hence ([10], (4.4.7) Corollary 2,
p.257), V is Fréchet differentiable on Q and DFV ∈ C0(Q,Y∗). The proof of
Theorem 3.1 is complete.

4.3. Proof of Corollary 3.2. The strategy to realize this proof is to translate
(M0, π) into a new problem (M1, π) which is a special case of (M, π), to apply
Theorem 3.1 on (M1, π), and to translate the conclusions on (M1, π) into conclu-
sions on (M0, π).
For all ψ0 ∈ {f0} ∪ {g0i : 1 ≤ i ≤ k} ∪ {h0j : 1 ≤ j ≤ ℓ} we introduce the func-

tion ψ : (G0 − z(π0)) × Y → R by setting ψ(x, π) := ψ0(x + z(π0), π). Note that
G0 − z(π0) is an open subset of S. We consider the new following problem.

(M1, π)















Maximize f(x, π)
subject to x ∈ G0 − z(π0)

∀i ∈ {1, ..., k}, gi(x, π) ≥ 0
∀j ∈ {1, ..., ℓ}, hj(x, π) = 0.

This problem is a special case of (M, π) with X = S. It is easy to verify that x
is admissible for (M1, π) if and only if x + z(π0) is admissible for (M0, π), and
x is a solution of (M1, π) if and only if x + z(π0) is a solution of (M0, π). We
set x(π) := z(π) − z(π0). After that, note that the assumptions on (M0, π) were
done to be translatable into assumptions of Theorem 3.1 on (M1, π). Then the
conclusions of Theorem 3.1 are valid on (M1, π). Now it suffices to translate the
conclusions on (M1, π) into conclusions on (M0, π). To do this, it suffices to note
that D+

Gx(π;̟) = D+
Gz(π;̟) and, for all ψ0 ∈ {f0} ∪ {g0i : 1 ≤ i ≤ k} ∪ {h0j : 1 ≤

j ≤ ℓ}, DH,2ψ
0(z(π), π) = DH,2ψ(x(π), π). The proof of the corollary is complete.

5. Calculus of Variations

This section is divided into the following subsections. In a first subsection, we
state an envelope theorem for (V , π) after to specify the assumptions. In a second
subsection, we establish new results on functionals under an integral form. In a
third subsection, we treat of the Euler-Lagrange equation. In the last subsection,
we give a proof of the envelope theorem.
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5.1. An envelope theorem. X = Rn and Y is a real normed space. T ∈ ]0,+∞[
andM is an open subset of Rn. We consider functions L : [0, T ]×M×Rn×Y → R,
gi : [0, T ]×M × Rn × Y → R for all i ∈ {1, ..., k}, hj : [0, T ]×M × Rn × Y → R

for all j ∈ {1, ..., ℓ}. We fix a0, aT ∈M .
We fix π0 ∈ Y and we consider the following list of conditions:
Conditions on the solutions
(Bsol1) There exists an open neighborhood P of π0 in Y s.t., for all π ∈ P , there
exists a solution x(π) of (V , π), and [π 7→ x(π)] is continuous at π0.
(Bsol2) There exists ̟ ∈ Y s.t. D+

Gx(π0;̟) exists.

(Bsol2-bis) For all ̟ ∈ Y , D+
Gx(π0;̟) exists.

(Bsol2-ter) For all π ∈ P , for all ̟ ∈ Y , D+
Gx(π;̟) exists.

Conditions on the integrand of the criterion and of the constraints

(Bint1)There exist ρ > 0 and ξ ∈ L1([0, T ],B([0, T ]),R+,m1) s.t., for all ψ ∈ {L}∪
{gi : 1 ≤ i ≤ k} ∪ {hj : 1 ≤ j ≤ ℓ}, for all t ∈ [0, T ], for all u, u1 ∈ B(x(π0)(t), ρ),
for all v, v1 ∈ B(x(π0)

′(t), ρ), for all π, π1 ∈ B(π0, ρ),
|ψ(t, u, v, π)− ψ(t, u1, v1, π1)| ≤ ξ(t)(‖u − u1‖+ ‖v − v1‖+ ‖π − π1‖).
(Bint2) For all ψ ∈ {L} ∪ {gi : 1 ≤ i ≤ k} ∪ {hj : 1 ≤ j ≤ ℓ}, ψ is continuous on
[0, T ]×M × Rn × P , and for all t ∈ [0, T ], for all π ∈ P ,
DH,(2,3,4)ψ(t, x(π)(t), x(π)

′(t), π) exists.
(Bint3) For all ψ ∈ {L} ∪ {gi : 1 ≤ i ≤ k} ∪ {hj : 1 ≤ j ≤ ℓ}, for all t ∈ [0, T ],
[π 7→ DH,(2,3)ψ(t, x(π)(t), x(π)

′(t), π)] is continuous from B(π0, ρ) into (R
n∗, ‖·‖∗)2.

(Bint3-bis) For all ψ ∈ {L} ∪ {gi : 1 ≤ i ≤ k} ∪ {hj : 1 ≤ j ≤ ℓ}, for all t ∈ [0, T ],
[π 7→ DH,(2,3,4)ψ(t, x(π)(t), x(π)

′(t), π)] is continuous on B(π0, ρ).
(Bint4) For all ψ ∈ {L} ∪ {gi : 1 ≤ i ≤ k} ∪ {hj : 1 ≤ j ≤ ℓ}, for all π ∈ B(π0, ρ),
[t 7→ DH,(2,3,4)ψ(t, x(π)(t), x(π)

′(t), π)] is measurable from ([0, T ],B([0, T ])) into
((Rn × Rn × Y )∗,B((Rn × Rn × Y )∗).
Conditions on the integrands of the constraints only

(Bcon) For all λ = (λi)1≤i≤k ∈ Rk and for all µ = (µj)1≤j≤ℓ ∈ Rℓ s.t. (λ, µ) 6=
(0, 0), x(π0) is not a solution of the Euler equation in Dubois-Reymond form ([14]
p.106) DH,3ψλ,µ(t, x(t), x

′(t), π0) =
∫

[0,t]
DH,2ψλ,µ(t, x(t), x

′(t), π0) dm1(t) + cλ,µ

m1-a.e. t ∈ [0, T ], where
ψλ,µ(t, x, v, π) :=

∑

1≤i≤k λigi(t, x, v, π) +
∑

1≤j≤ℓ µjhj(t, x, v, π) and cλ,µ ∈ Rn∗ is
a constant.

Theorem 5.1. (Envelope Theorem). We assume that (Bsol1), (Bsol2),
(Bint1), (Bint2), (Bint3) and (Bcon) are fulfilled. Then the following assertions
hold.

(I) The value function of (V , π) admits a right directional derivative at π0 in
the direction ̟ exists and we have

D+
GV (π0;̟) =

∫

[0,T ]DH,4L(t, x(π0)(t), x(π0)
′(t), π0) ·̟ dm1(t)+

∑

1≤i≤k λi(π0)
∫

[0,T ]DH,4gi(t, x(π0)(t), x(π0)
′(t), π0) ·̟ dm1(t)+

∑

1≤j≤ℓ µj(π0)
∫

[0,T ]
DH,4hj(t, x(π0)(t), x(π0)

′(t), π0) ·̟ dm1(t)

where (λi(π0))1≤i≤k and (µj(π0))1≤j≤ℓ are the Karush-Kuhn-Tucker muti-
pliers associated to the solution x(π0) of the problem (V , π0).
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(II) If in addition we replace (Bsol2) by (Bsol2-bis), the value function is
Gâteaux differentiable at π0 and for all ̟ ∈ Y , we have

DGV (π0) ·̟ =
∫

[0,T ]DH,4L(t, x(π0)(t), x(π0)
′(t), π0) ·̟ dm1(t)+

∑

1≤i≤k λi(π0)
∫

[0,T ]DH,4gi(t, x(π0)(t), x(π0)
′(t), π0) ·̟ dm1(t)+

∑

1≤j≤ℓ µj(π0)
∫

[0,T ]
DH,4hj(t, x(π0)(t), x(π0)

′(t), π0) ·̟ dm1(t)

(III) If in addition we assume that (Bsol2-ter), (Bint3-bis), and (Bint4) are
fulfilled, then the value function is of class Fréchet C1 on an open neighbor-
hood of π0, and for all π which belongs to this neighborhood, for all ̟ ∈ Y ,
we have

DFV (π) ·̟ =
∫

[0,T ]DH,4L(t, x(π)(t), x(π)
′(t), π) ·̟ dm1(t)+

∑

1≤i≤k λi(π)
∫

[0,T ]
DH,4gi(t, x(π)(t), x(π)

′(t), π) ·̟ dm1(t)+
∑

1≤j≤ℓ µj(π)
∫

[0,T ]
DH,4hj(t, x(π)(t), x(π)

′(t), π) ·̟ dm1(t)

5.2. Nonlinear Integral Functionals.

Lemma 5.2. Let E be a real normed space, G be an open subset of E, f : [0, T ]×
G→ R be a function, and z0 ∈ C0([0, T ], G). We consider the following conditions.

(i) f ∈ C0([0, T ]×G,R).
(ii) There exist ρ > 0 and ζ ∈ L1([0, T ],B([0, T ]),m1;R+) s.t., for all t ∈ [0, T ],

for all u1, u2 ∈ B(z0(t), ρ), |f(t, u1)− f(t, u2)| ≤ ζ(t)‖u1 − u2‖.
(iii) For all t ∈ [0, T ], DH,2f(t, z0(t)) exists.

We consider the functional F : C0([0, T ], G) → R defined by F (z) :=
∫ T

0 f(t, z(t))dt

when z ∈ C0([0, T ], G).
Then the following conclusions hold.

(a) Under (i-ii), F is well defined and Lipschitzean on the ball B‖·‖∞
(z0, ρ).

(b) Under (i-iii), F is Hadamard differentiable at z0, and for all
h ∈ C0([0, T ], E), [t 7→ DH,2f(t, z0(t)) · h(t)] ∈ L1([0, T ],B([0, T ]),m1;R)
and we have DHF (z0) · h =

∫

[0,T ]
DH,2f(t, z0(t)) · h(t) dm1(t).

Proof. (a) Let z ∈ C0([0, T ], G). Under (i), since f ∈ C([0, T ] × G,R), we have
[t 7→ f(t, z(t))] ∈ C0([0, T ],R); hence this function is Riemann integrable on [0, T ],
and so F (z) is well defined. Doing a straightforward majorization, we obtain the
following inequality.

∀z, w ∈ B‖·‖∞
(z0, ρ), |F (z)− F (w)| ≤ ‖ζ‖L1 · ‖z − w‖∞. (5.1)

and so the conclusion (a) is proven.
(b) When z ∈ C0([0, T ], G), since z([0, T ]) is compact and since the function
[u 7→ d(u,E \ G) := inf{‖u − v‖ : v ∈ E \ G}] is continuous (since Lipschitzean),
using the Optimization Theorem of Weierstrass and the closedness of E \ G, we
can assert that αz := inf{d(u,E \ G) : u ∈ z([0, T ])} > 0. We can verify that
B‖·‖∞

(z, 2−1αz) ⊂ C0([0, T ], G).

Let h ∈ C0([0, T ], E), h 6= 0 ( the case h = 0 is evident).
We set θ0 := ‖h‖−1

∞ min{ρ, 2−1αz0} > 0. Hence, for all θ ∈ ]0, θ0[, for all t ∈ [0, T ],
we have z0(t) + θh(t) ∈ B(z0(t), ρ). Let (θm)m∈N ∈ ]0, θ0[N which converges to 0.
Using (iii), since the Hadamard differentiability implies the Gâteaux differentiabil-
ity, we have:

DH,2f(t, z0(t)) · h(t) = D+
G,2f(t, z0(t);h(t))

= limm→+∞
1
θm

(f(t, z0(t) + θmh(t))− f(t, z0(t))).

}

(5.2)
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Since [t 7→ f(t, z0(t) + θmh(t))] and [t 7→ f(t, z0(t))] belong to C0([0, T ],R), they are
Borel functions and therefore, for allm ∈ N, [t 7→ 1

θm
(f(t, z0(t)+θmh(t))−f(t, z0(t)))]

is also a Borel function. Since a pointwise limit of a sequence of Borel functions is
a Borel function, using (5.2), we obtain:

[t 7→ DH,2f(t, z0(t)) · h(t)] ∈ L0([0, T ],B([0, T ]);R). (5.3)

Using (ii), we obtain, for all m ∈ N,
∣

∣

∣

∣

1

θm
(f(t, z0(t) + θmh(t))− f(t, z0(t)))

∣

∣

∣

∣

≤ ζ(t)‖h(t)‖ ≤ ζ(t)‖h‖∞. (5.4)

Doing m → +∞, we deduce from (5.2) and (5.4) that |D+
G,2f(t, z0(t);h(t))| ≤

ζ(t)‖h‖∞, and consequently, for all t ∈ [0, T ], we have

|DH,2f(t, z0(t)) · h(t)| ≤ ζ(t)‖h‖∞. (5.5)

From (5.3) and (5.5), we obtain the following property.

[t 7→ DH,2f(t, z0(t)) · h(t)] ∈ L1([0, T ],B([0, T ]),m1;R). (5.6)

Note that, for all m ∈ N, using (a) and the linearity of the Riemann integral, we
have, for all m ∈ N, 1

θm
(F (z0 + θmh)− F (z0)) =

∫ T

0
1
θm

(f(t, z0(t) + θmh(t))− f(t, z0(t)))dt =
∫

[0,T ]
1
θm

(f(t, z0(t) + θmh(t)) − f(t, z0(t))) dm1(t). Then, using (5.4) and (5.2), we

can use the Dominated Convergence Theorem of Lebesgue to obtain that
limn→+∞

1
θm

(F (z0 + θmh)− F (z0)) =
∫

[0,T ]DH,2f(t, z0(t)) · h(t) dm1(t). Using the

sequential characterization of the limit, we obtain the existence of D+
GF (z0;h) and

D+
GF (z0;h) =

∫

[0,T ]

DH,2f(t, z0(t)) · h(t) dm1(t). (5.7)

Using the linearity of the Borel integral and the linearity of the Hadamard differen-
tial at a point, we see that D+

GF (z0; ·) is a linear functional from C0([0, T ], E) into

R. Note that, using (5.7) and (5.5), we have: |D+
GF (z0;h)| = |

∫

[0,T ]
DH,2f(t, z0(t)) ·

h(t) dm1(t)| ≤
∫

[0,T ]
|DH,2f(t, z0(t)) · h(t)| dm1(t) ≤

∫

[0,T ]
(ζ(t)‖h‖∞) dm1(t)

= ‖ζ‖L1‖h‖∞, and so D+
GF (z0; ·) is linear continuous. Hence we have proven

DGF (z0) exists. (5.8)

Since F is Lipschitzean, we can use ([10], p.259) to assert that F is Hadamard
differentiable at z0, and the formula of this Hadamard differential is given by this
one of its Gâteaux differential. �

Remark 5.3. Under the assumptions of Lemma 5.2, the following assertions hold.

(i) If E is separable, then [t 7→ ‖DH,2f(t, z0(t))‖∗] is Borel integrable on [0, T ].
(ii) If E = Rn, then [t 7→ DH,2f(t, z0(t))] is Borel integrable on [0, T ]

Proof. To abridge the writing, we set Λ(t) := DH,2f(t, z0(t)).

(i) Since E is separable (and metric), the closed unit ball of E, BE(0, 1), is
also separable ([9], (3.10.9), p.45), hence there exists A ⊂ BE(0, 1) which is at
most countable and dense in BE(0, 1). Using (5.6), for all t ∈ [0, T ], ‖Λ(t)‖∗ =
sup{|Λ(t) · v| : v ∈ BE(0, 1)} = sup{|Λ(t) · v| : v ∈ A} ∈ L0([0, T ],B([0, T ]);R)
as a supremum of a sequence of functions which belong to L0([0, T ],B([0, T ]);R)N.
Using (5.5) we obtain that, for all t ∈ [0, T ], ‖Λ(t)‖∗ ≤ ζ(t), which implies that
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‖Λ(·)‖∗ ∈ L1([0, T ],B([0, T ]),m1;R+).
(ii) Since dimRn∗ is finite, the m1-integrability of Λ is equivalent to the m1-
integrability of its coordinate functions. Let (ei)1≤i≤n be the canonical basis of
Rn and (e∗i )1≤i≤n its dual basis. Note that we have Λ(t) =

∑

1≤i≤n(Λ(t) · ei)e
∗
i .

From (5.6) we know that, for all i ∈ {1, ..., n}, Λ(·) · ei is m1-integrable on [0, T ],
and consequently we obtain that Λ ∈ L1([0, T ],B([0, T ]),m1;R

n∗). �

Remark 5.4. Consider the following strengthened condition:
(St): f ∈ C0([0, T ] × G,R), DF,2f(t, ·) exists on G for all t ∈ [0, T ], and DF,2f ∈
C0([0, T ]×G,E∗).
Under (St), the Nemytskii operator Nf : C

0([0, T ], G)) → C0([0, T ],R), defined by
Nf(z)(t) := f(t, z(t)) for all t ∈ [0, T ] and for all z ∈ C0([0, T ], G), is Fréchet
C1 and (DFNf(z) · h)(t) = DF,2f(t, z(t)) · h(t) for all t ∈ [0, T ] and for all h ∈
C0([0, T ], E). This result is proven in [3] (Lemma 12). Since the Riemann integral
defines a linear continuous functional I on C0([0, T ],R), the functional F , defined

by F (z) :=
∫ T

0
f(t, z(t)) dt, verifies F = I ◦Nf, and therefore F is Fréchet C1, and,

using the Chain Rule, we have DFF (z) ·h =
∫ T

0
DF,2f(t, z(t)) ·h(t) dt. Under (St),

the assumptions (i) and (iii) of Lemma 5.2 are fulfilled. Using Lemma 12 of [3], the
Nemytskii operator NDF,2f is continuous, and since a mapping which is continuous
at a point is bounded on a neighborhood of this point, and using the Mean Value
Inequality we see that (ii) of Lemma 5.2 is fulfilled. Hence Lemma 5.2 contains
a contribution to improve the results of [3] on the differentiability of the nonlinear
integral functionals.

Lemma 5.5. let M be an open subset of Rn, P be an open subset of Y , φ :
[0, T ]×M ×Rn ×P → R be a function, π0 ∈ P and [π 7→ x(π)] be a mapping from
P into C1([0, T ],M). We consider the following conditions.

(i) φ ∈ C0([0, T ]×M × Rn ×P,R).
(ii) [π 7→ x(π)] is continuous at π0.
(iii) There exist ̺ > 0 and γ ∈ L1([0, T ],B([0, T ]),m1;R+) s.t. ∀t ∈ [0, T ],

∀u, u1 ∈ B(x(π0)(t), ̺), ∀v, v1 ∈ B(x(π0)
′(t), ̺), ∀π, π1 ∈ B(π0, ̺),

|φ(t, u, v, π) − φ(t, u1, v1, π1)| ≤ γ(t)(‖u− u1‖+ ‖v − v1‖+ ‖π − π1‖).
(iv) For all t ∈ [0, T ], for all π ∈ B(π0, ̺), DH,(2,3,4)φ(t,x(π)(t),x(π)

′(t), π)
exists.

(v) For all t ∈ [0, T ], [π 7→ DH,(2,3)φ(t,x(π)(t),x(π)
′(t), π)] is continuous on

B(π0, ̺).
(vi) For all t ∈ [0, T ], [π 7→ DH,(2,3,4)φ(t,x(π)(t),x(π)

′(t), π)] is continuous on
B(π0, ̺).

(vii) For all π ∈ B(π0, ̺), [t 7→ DH,(2,3,4)φ(t,x(π)(t),x(π)
′(t), π)] belongs to

L0([0, T ],B([0, T ]); (Rn × R
n × Y )∗).

We consider the functional Φ : C1([0, T ],M) × P → R defined by Φ(x, π) :=
∫ T

0 φ(t,x(t),x′(t), π) dt. Then the following conclusions hold.

(a) Under (i-iii), there exists σ ∈ ]0, ̺] s.t. for all π ∈ B(π0, σ), [x 7→ Φ(x, π)]
is Lipschitzean on BC1(x(π), σ).

(b) Under (i-iv), for all π ∈ B(π0, σ), DHΦ(x(π), π) exists, and for all h ∈
C1([0, T ],Rn), for all ̟ ∈ Y ,
[t 7→ DH,(2,3,4)φ(t,x(π)(t),x(π)

′(t), π) · (h(t),h′(t), ̟)] belongs to
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L1([0, T ],B([0, T ]),m1;R) and

DHΦ(x(π), π) · (h, ̟) =
∫

[0,T ]
DH,2φ(t,x(π)(t),x(π)

′(t), π) · h(t) dm1(t)

+
∫

[0,T ]DH,3φ(t,x(π)(t),x(π)
′(t), π) · h′(t) dm1(t)

+
∫

[0,T ]DH,4φ(t,x(π)(t),x(π)
′(t), π) ·̟ dm1(t).

(c) Under (i-v), [π 7→ DH,1Φ(x(π), π)] is continuous from B(π0, σ) into
(C1([0, T ],Rn))∗.

(d) Under (i-vii), [π 7→ DHΦ(x(π), π)] is continuous from B(π0, σ) into
(C1([0, T ],Rn)× Y )∗.

Proof. Let ̺ be given by (iii). Using (ii), there exists σ ∈ ]0, ̺2 ] s.t. ‖x(π) −
x(π0)‖C1 ≤ ̺

2 when ‖π − π0‖ < σ. Using (iii), we obtain the following property.

∀π ∈ B(π0, σ), ∀t ∈ [0, T ], ∀u1, u2 ∈ B(x(π)(t), σ), ∀v1 , v2 ∈ B(x(π)′(t), σ),
∀π1, π2 ∈ B(π, σ), |φ(t, u1, v1, π1)− φ(t, u2, v2, π2)| ≤
γ(t)(‖u1 − u2‖+ ‖v1 − v2‖+ ‖π1 − π2‖).







(5.9)
We want to use Lemma 5.2. We set E := Rn × Rn × Y and G := M × Rn × P
which is an open subset of E. At each π ∈ P we associate the constant mapping
πc := [t 7→ π] ∈ C0([0, T ],P). We define the function f : [0, T ] × G → R by
setting f(t, (u, v, π)) := φ(t, u, v, π). When x ∈ C1([0, T ],M) and π ∈ P, setting

z(t) := (x(t),x′(t), πc(t)), we have z ∈ C0([0, T ], G), and F (z) =
∫ T

0 f(t, z(t)) dt =
∫ T

0 φ(t,x(t),x′(t), π) dt = Φ(x, π). Hence Φ can be viewed as a restriction of F to
an open subset of a closed (since complete) vector subspace.
Proof of (a). Let π ∈ B(π0, σ); we set z0(t) := (x(π)(t),x(π)′(t), (π)c(t)). Now we
verify that that the assumptions of Lemma 5.2 are fulfilled. Note that (i) implies
that the assumption (i) of Lemma 5.2 is fulfilled. After (5.9), the assumption (ii)
of Lemma 5.2 is fulfilled. Hence we can use the conclusion (a) of Lemma 5.2 to
ensure that [x 7→ Φ(x, π)] is Lipschitzean on BC1(x(π), σ), and so the conclusion
(a) is proven.
Proof of (b). We arbitrarily fix π ∈ B(π0, σ), and we set
z0(t) := (x(π)(t),x(π)′(t), πc(t)). We can verify that assumptions of Lemma 5.2
are fulfilled for z0. In the proof of (a) we have yet proved that assumptions (i)
and (ii) of Lemma 5.2 are fulfilled. Moreover assumption (iv) of Lemma 5.5 im-
plies that the assumption (iii) of Lemma 5.2 is fulfilled. Hence we can use the
conclusion (b) of Lemma 5.2 and assert that DHΦ(x(π), π) = DHF (z0) exists. We
introduce the operator Ψ : C1([0, T ],Rn)×Y → C0([0, T ],Rn)×C0([0, T ],Rn)×Y

defined by Ψ(x, π) := (x,x′, π). Ψ is linear continuous, hence it is Fréchet dif-
ferentiable, and consequently Hadamard differentiable. We set Ψ0 the restriction
of Ψ to C1([0, T ],M) × P and we note that Φ = F ◦ Ψ0. Using Lemma 5.2, we
know that [t 7→ DH,2f(t, z0(t)) · w(t)] belongs to L1([0, T ],B([0, T ]),m1;R) for all
w ∈ C0([0, T ], E), and DHF (z0) ·w =

∫

[0,T ]
DH,2f(t, z0(t)) ·w(t) dm1(t). Note that

DH,2f(t, z0(t)) = DH,(2,3,4)φ(t,x(π)(t),x(π)
′(t), π) and DHΨ0(x(π), π) · (h, ̟) =

Ψ(h, ̟) = (h,h′, ̟), and using the Chain Rule, we obtain the following formula.

DHΦ(x(π), π) · (h, ̟) =
∫

[0,T ]DH,(2,3,4)φ(t,x(π)(t),x(π)
′(t), π) · (h(t),h′(t), ̟) dm1(t).

}

(5.10)
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From this last relation we deduce the formula of the conclusion (b).
Proof of (c). From (5.10) we deduce the following formula.

DH,1Φ(x(π), π) · h =
∫

[0,T ]
DH,(2,3)φ(t,x(π)(t),x(π)

′(t), π) · (h(t),h′(t)) dm1(t).

}

(5.11)

Let π ∈ B(π0, σ) and (πk)k∈N ∈ B(π0, σ)
N which converges to π. When k ∈ N, and

t ∈ [0, T ], we set

Γk(t) := ‖DH,(2,3)φ(t,x(πk)(t),x(πk)
′(t), πk)−DH,(2,3)φ(t,x(π)(t),x(π)

′(t), π)‖∗

where the norm is the norm of (Rn × Rn)∗. From (5.9) and (v), we obtain the
following properties.

∀t ∈ [0, T ], Γk(t) ≤ 2γ(t), and lim
k→+∞

Γk(t) = 0. (5.12)

Let p ∈ {π} ∪ {πk : k ∈ N}. Since, for all h,k ∈ C0([0, T ],Rn),
[t 7→ DH,(2,3)φ(t,x(p)(t),x(p)

′(t), p) · (h(t),k(t))] ∈ L1([0, T ],B([0, T ]),m1;R), we

have that [t 7→ DH,(2,3)φ(t,x(p)(t),x(p)
′(t), p)·(h(t),k(t))] ∈ L0([0, T ],B([0, T ]);R).

Hence, for all v, w ∈ R
n,

[t 7→ DH,(2,3)φ(t,x(p)(t),x(p)
′(t), p)·(v, w)] ∈ L0([0, T ],B([0, T ]);R). Let (ei)1≤i≤2n

be the canonical basis of Rn×Rn, and (e∗i )1≤i≤2n denotes its dual basis. Note that,
for all t ∈ [0, T ], we have

DH,(2,3)φ(t,x(p)(t),x(p)
′(t), p) =

∑

1≤i≤2n

(DH,(2,3)φ(t,x(p)(t),x(p)
′(t), p) · ei)e

∗
i ,

hence, as a composition of Borel functions, we obtain

[t 7→ DH,(2,3)φ(t,x(p)(t),x(p)
′(t), p)] ∈ L0([0, T ],B([0, T ]); (Rn × R

n)∗).

As compositions of Borel functions, we deduce of this property that

∀k ∈ N, [t 7→ Γk(t)] ∈ L0([0, T ],B([0, T ]);R). (5.13)

Since γ is m1-integrable on [0, T ], from (5.13) and (5.12), we obtain that Γk is m1-
integrable on [0, T ] for all k ∈ N. Hence we can do the following majorizations. For
all k ∈ N, for all h ∈ C1([0, T ],Rn) s.t. ‖h‖C1 ≤ 1, we have

|DH,1Φ(x(πk), πk) · h−DH,1Φ(x(π)), π) · h|
= |

∫

[0,T ]
(DH,(2,3)φ(t,x(πk)(t),x(πk)

′(t), πk)

−DH,(2,3)φ(t,x(π)(t),x(π)
′(t), π)) · (h(t),h′(t)) dm1(t)|

≤
∫

[0,T ]
(Γk(t)‖(h(t),h′(t))‖ dm1(t) ≤ (

∫

[0,T ]
Γk(t) dm1(t))‖h‖C1 .

Taking the supremum on the h ∈ C1([0, T ],Rn) s.t. ‖h‖C1 ≤ 1, we obtain

‖DH,1Φ(x(πk), πk)−DH,1Φ(x(π)), π)‖(C1([0,T ],Rn))∗ ≤

∫

[0,T ]

Γk(t) dm1(t). (5.14)

Using (5.14) and (5.12) we can apply the dominated convergence theorem of Lebesgue
to obtain that
limk→+∞ ‖DH,1Φ(x(πk), πk) − DH,1Φ(x(π)), π)‖(C1([0,T ],Rn))∗ = 0, and using the
sequential characterization of the continuity, we have proven the conclusion (c).
Proof of (d). Let π ∈ B(π0, σ) and (πk)k∈N ∈ B(π0, σ)

N which converges to π.
When k ∈ N and t ∈ [0, T ], we set

∆k(t) := ‖DH,(2,3,4)φ(t,x(πk)(t),x(πk)
′(t), πk)−DH,(2,3,4)φ(t,x(π)(t),x(π)

′(t), π)‖∗,



16 J. BLOT, H. YILMAZ

where the norm is the norm of (Rn × Rn × Y )∗. Using (vii), as compositions of
Borel functions we have

∀k ∈ N, [t 7→ ∆k(t)] ∈ L0([0, T ],B([0, T ]);R+). (5.15)

Proceeding as in the proof of (c) to establish (5.14), we obtain, for all ̟ ∈ Y and
for all h ∈ C1([0, T ],Rn) s.t. ‖h‖C1 + ‖̟‖ ≤ 1,
|DHΦ(x(πk), πk) · (h, ̟)−DHΦ(x(π)), π) · (h, ̟)| ≤ (

∫

[0,T ] ∆k(t) dm1(t))(‖h‖C1 +

‖̟‖), and taking the l.u.b. on the (h, ̟) s.t. ‖h‖C1 + ‖̟‖ ≤ 1, we obtain, for all
k ∈ N,

‖DHΦ(x(πk), πk)−DHΦ(x(π), π)‖(C1([0,T ],Rn)×Y )∗ ≤

∫

[0,T ]

∆k(t) dm1(t). (5.16)

From assumption (vi), we deduce that limk→+∞ ∆k(t) = 0 for all t ∈ [0, T ].
Proceeding as in the proof of (c), we obtain 0 ≤ ∆k(t) ≤ 2γ(t) for all k ∈ N

and for all t ∈ [0, T ]. Then we can use the dominated convergence theorem of
Lebesgue to obtain limk→+∞

∫

[0,T ] ∆k(t) dm1(t) = 0. From (5.14), we deduce that

limk→+∞ ‖DHΦ(x(πk), πk) − DHΦ(x(π), π)‖(C1([0,T ],Rn)×Y )∗ = 0, and using the
sequential characterization of the continuity, (d) is proven. �

Remark 5.6. Working as in the proof of Remark 5.3, if Y is separable, under
the assumption (vii) we obtain that [t 7→ ∆k(t)] is a Borel function without to use
assumption (vii).

Remark 5.7. We fix π ∈ B(π0, σ). The property on the integrability of [t 7→
DH,(2,3,4)φ(t,x(π)(t),x(π)

′(t), π) · (h(t),h′(t), ̟)] given in the conclusion (b) of
Lemma 5.5 implies the two following properties.

(b1) [t 7→ DH,2φ(t,x(π)(t),x(π)
′(t), π)] ∈ L1([0, T ],B([0, T ]),Rn∗;m1).

(b2) [t 7→ DH,3φ(t,x(π)(t),x(π)
′(t), π)] ∈ L1([0, T ],B([0, T ]),Rn∗;m1).

To prove them we consider (ei)1≤i≤n the canonical basis of Rn; we denote by ei the
constant function on [0, T ] equal to ei. We have ei ∈ C1([0, T ],Rn) and e′i = 0.
Hence the function [t 7→ DH,2φ(t,x(π)(t),x(π)

′(t), π) · ei =
DH,(2,3,4)φ(t,x(π)(t),x(π)

′(t), π) · (ei(t), 0, 0)] is m1-integrable on [0, T ] for all i ∈
{1, ..., n}, and so (b1) is proven.
Now we consider the function ai := [t 7→ tei] ∈ C1([0, T ],Rn) for all i ∈ {1, ..., n}.
Hence the function [t 7→ DH,2φ(t,x(π)(t),x(π)

′(t), π) · ai(t)+
DH,3φ(t,x(π)(t),x(π)

′(t), π)·ei) = DH,(2,3,4)φ(t,x(π)(t),x(π)
′(t), π)·(ai(t), a′i(t), 0)]

is m1-integrable on [0, T ] for all i ∈ {1, ..., n}.
Note that [t 7→ DH,2φ(t,x(π)(t),x(π)

′(t), π)·(tei)] is a Borel function, and we have,
for all t ∈ [0, T ],
|DH,2φ(t,x(π)(t),x(π)

′(t), π) · (tei)| ≤ ‖DH,2φ(t,x(π)(t),x(π)
′(t), π)‖T ‖ei‖ which

is m1-integrable on [0, T ]. Therefore [t 7→ DH,2φ(t,x(π)(t),x(π)
′(t), π) · (tei)] is

m1-integrable on [0, T ]. Since DH,3φ(t,x(π)(t),x(π)
′(t), π) · ei =

[DH,2φ(t,x(π)(t),x(π)
′(t), π) · (tei)

+DH,3φ(t,x(π)(t),x(π)
′(t), π) · ei −DH,2φ(t,x(π)(t),x(π)

′(t), π) · (tei)], we obtain
that [t 7→ DH,3φ(t,x(π)(t),x(π)

′(t), π) · ei] is m1-integrable on [0, T ] as a difference
of m1-integrable functions for all i ∈ {1, ..., n}; and so (b2) is proven.
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5.3. Euler equation.

Lemma 5.8. In the setting of Lemma 5.5, let π ∈ B(π0, α). Under conditions
(i-iv) of Lemma 5.5, The two following assertions are equivalent.

(i) ∀h ∈ C1
0,0([0, T ],R

n), DH,1Φ(x(π), π) · h = 0.
(ii) There exists c ∈ Rn∗ s.t. m1-a.e. t ∈ [0, T ],

DH,3φ(t,x(π)(t),x(π)
′(t), π) =

∫

[0,t]
DH,2φ(s,x(π)(s),x(π)

′(s), π) dm1(s)+
c.

Proof. Setting M(t) := DH,2φ(t,x(π)(t),x(π)
′(t), π) and

N(t) := DH,3φ(t,x(π)(t),x(π)
′(t), π) when t ∈ [0, T ], using Lemma 5.5, we obtain

that, for all h ∈ C∞
c ([0, T ],Rn),

DH,1Φ(x(π), π) · h =

∫

[0,T ]

(M(t) · h(t) +N(t) · h′(t)) dm1(t). (5.17)

From Remark 5.7, we know that M,N ∈ L1([0, T ],B([0, T ]),m1;R
n∗). We define

P(t) :=
∫

[0,t]
M(s) dm1(s); we have P ∈ AC([0, T ],Rn∗) and P′(t) = M(t) m1-a.e.

t ∈ [0, T ]. When h ∈ C∞
c ([0, T ],Rn), P · h ∈ AC([0, T ],R) and the formula of

integration by parts ([13], Annexe) holds:
∫

[0,T ] P
′(t) ·h(t) dm1(t) = P(T ) ·h(T )−

P(0) · h(0)−
∫

[0,T ] P(t) · h′(t) dm1(t), and since h(T ) = h(0) = 0, we have
∫

[0,T ]

P′(t) · h(t) dm1(t) = −

∫

[0,T ]

P(t) · h′(t) dm1(t). (5.18)

[(i) =⇒ (ii)] From (i), (5.17) and (5.18), for all h ∈ C∞
c ([0, T ],Rn), we have

0 =
∫

[0,T ](M(t) · h(t) +N(t) · h′(t)) dm1(t)

=
∫

[0,T ]
(P′(t) · h(t) +N(t) · h′(t)) dm1(t)

=
∫

[0,T ]
(−P(t) · h′(t) +N(t) · h′(t)) dm1(t)

=
∫

[0,T ](N(t)−P(t)) · h′(t) dm1(t).

Hence using the DuBois-Reymond lemma ([6], Lemma 1.8, p.15) we obtain that
there exists c ∈ Rn∗ s.t. N(t) = P(t) + c m1-a.e. t ∈ [0, T ] which is (ii).

[(ii) =⇒ (i)] For all h ∈ C1
0,0([0, T ],R

n), note that
∫

[0,T ]
c · h′(t) dm1(t) =

∫

0,T ]
(c ·

h)′(t) dm1(t) = c·h(T )−c·h(0) = 0. Using (ii) and (5.17), we haveDH,1Φ(x(π), π)·
h =

∫

[0,T ](M(t)·h(t)+N(t)·h′(t)) dm1(t) =
∫

[0,T ](P
′(t)·h(t)+P(t)·h′(t)) dm1(t)+

∫

[0,T ] c · h
′(t) dm1(t), and using (5.18), we obtain DH,1Φ(x(π), π) · h = 0 which is

(i). �

Lemma 5.9. Under (Bsol1), (Bint1), (Bint2) and (Bint3), the condition (Bcon)
is equivalent to the linear independence of DH,1G1(x(π0), π0), ..., DH,1Gk(x(π0), π0),
DH,1H1(x(π0), π0), ..., DH,1Hℓ(x(π0), π0) on C

1
0,0([0, T ],R

n).

Proof. We want to use Lemma 5.8 with φ = ψλ,µ, where ψλ,µ is defined in (Bcon).
About the assumptions (i-iv) of Lemma 5.5, note that (i) is a consequence of
(Bint2), (ii) is a consequence of (Bsol1), (iii) is a consequence of (Bint1), (iv) is a
consequence of (Bint2). Hence from Lemma 5.5, we know that Φ : C1([0, T ],M)×

P → R, defined by Φ(x, π) :=
∫ T

0
φ(t,x(t),x′(t), π) dt =

∫ T

0
ψλ,µ(t,x(t),x

′(t), π) dt,
is Hadamard differentiable at x(π0). To realize a proof, we proceeed doing a double
contraposition. The negation of (B6) is equivalent to: ∃(λ, µ) ∈ Rk ×Rℓ \ {(0, 0)},
∃cλ,µ ∈ R

n∗ s.t.
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DH,3ψλ,µ(t, x(π0)(t), x(π0)
′(t), π0) =

∫

[0,t]DH,2ψλ,µ(s, x(π0)(s), x(π0)
′(s), π0) dm1(s) + cλ,µ m1-a.e. t ∈ [0, T ]. Using

Lemma 5.8, this last assertion is equivalent to: ∃(λ, µ) ∈ R
k × R

ℓ \ {(0, 0)} s.t.
DH,1Φ(x(π0), π0) = 0 on C1

0,0([0, T ],R
n), i.e.

∑

1≤i≤k λiDH,1Gi(x(π0), π0)+
∑

1≤j≤ℓ µjDH,1Hj(x(π0), π0) = 0 on C1
0,0([0, T ],R

n).

This last assertion means the linear dependence of DH,1G1(x(π0), π0), ...,
DH,1Hℓ(x(π0), π0) on C

1
0,0([0, T ],R

n). �

5.4. The dual space of C1
0,0([0, T ],R

n).

Lemma 5.10. Let V and W be two real normed spaces. When (v∗, w∗) ∈ V ∗ ×
W ∗, we consider the direct sum of v∗ and w∗, v∗ ⊕ w∗ ∈ (V ×W )∗, defined by
v∗ ⊕ w∗(v, w) := v∗(v) + w∗(w) for all (v, w) ∈ V ×W . We define the operator
S : V ∗×W ∗ → (V ×W )∗ by setting S(v∗, w∗) := v∗⊕w∗ when (v∗, w∗) ∈ V ∗×W ∗.
Then S is a topological isomorphism from V ∗ ×W ∗ onto (V ×W )∗.

This result is given in [1] (Lemme 2, p.114) where its proof is left as an exercice
since it is very easy. We consider Af([0, T ],Rn), the set of the restrictions to [0, T ] of
the affine functions from R into Rn. Note that α ∈ Af([0, T ],Rn) means that there
exists (η, σ) ∈ Rn × Rn s.t. α(t) = tη + σ for all t ∈ [0, T ]. Clearly Af([0, T ],Rn)
is a vector subspace of C1([0, T ],Rn).

Lemma 5.11. C1([0, T ],Rn) = Af([0, T ],Rn)⊕ C1
0,0([0, T ],R

n) (topological direct
sum).

Proof. When ϕ ∈ Af([0, T ],Rn) ∩ C1
0,0([0, T ],R

n), we have ϕ(t) = tη + σ for all

t ∈ [0, T ]. Since ϕ ∈ C1
0,0([0, T ],R

n) we have 0 = ϕ(0) = σ and 0 = ϕ(T ) = Tη + σ

which imply σ = η = 0, and consequently ϕ = 0. Hence we have established the
following property on the algebraic direct sum : Af([0, T ],Rn)⊕aC1

0,0([0, T ],R
n) ⊂

C1([0, T ],Rn). When ϕ ∈ C1([0, T ],Rn), we set η := − 1
T
(ϕ(0) − ϕ(T )), σ := ϕ(0)

and α(t) := tη + σ for all t ∈ [0, T ]. Hence we have α ∈ Af([0, T ],Rn). We define
ψ : [0, T ] → Rn by setting ψ(t) := ϕ(t) + t

T
(ϕ(0) − ϕ(T )) − ϕ(0) for all t ∈ [0, T ].

Note that ψ ∈ C1([0, T ],Rn), ψ(0) = ϕ(0)− ϕ(0) = 0, and ψ(T ) = ϕ(T ) + (ϕ(0)−
ϕ(T ))−ϕ(0) = 0. Hence we have ψ ∈ C1

0,0([0, T ],R
n). We see that α(t)+ψ(t) = ϕ(t)

for all t ∈ [0, T ], i.e. α + ψ = ϕ. And so we have proven that Af([0, T ],Rn) ⊕a

C1
0,0([0, T ],R

n) = C1([0, T ],Rn). Since dimAf([0, T ],Rn) < +∞ the subspace

Af([0, T ],Rn) is complete, since C1
0,0([0, T ],R

n) is closed in C1([0, T ],Rn) which is
complete, when obtain the announced conclusion (cf. [19], Corollary 1.5, p.388) �

From this lemma, we can write

C1([0, T ],Rn) = Af([0, T ],Rn)× C1
0,0([0, T ],R

n). (5.19)

Using Lemma 5.10 for V = Af([0, T ],Rn) and W = C1
0,0([0, T ],R

n), and de-

noting S1 : (Af([0, T ],Rn))∗ × (C1
0,0([0, T ],R

n))∗ → (C1([0, T ],Rn))∗, defined by
S1(χ,Λ) := χ⊕ Λ, we obtain

S1 ∈ Isom((Af([0, T ],Rn))∗ × (C1
0,0([0, T ],R

n))∗, (C1([0, T ],Rn))∗). (5.20)

Using Lemma 5.10 for V = R
n and W = C0([0, T ],Rn), and denoting S2 : (Rn)∗ ×

(C0([0, T ],Rn))∗ → (Rn×C0([0, T ],Rn))∗, defined by S2(β,Θ) := β⊕Θ, we obtain

S2 ∈ Isom((Rn)∗ × (C0([0, T ],Rn))∗, (Rn × C0([0, T ],Rn))∗). (5.21)
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The operator T : C1([0, T ],Rn) → Rn×C0([0, T ],Rn), defined by T (x) := (x(0), x′),
is a topological isomorphism. Hence (cf. [12], Theorem 4.13.4, p.173), its adjoint
satisfies the following property.

T ∗ ∈ Isom((Rn × C0([0, T ],Rn)∗, (C1([0, T ],Rn))∗). (5.22)

We denote by RF : (Rn)∗ → R
n the isomorphism of F. Riesz and Fréchet ([23],

p. 81), and by RM : (C0([0, T ],Rn))∗ → NBV ([0, T ],Rn) the topological isomor-
phism of F. Riesz and Markov ([16], p. 365). We define the operator (RF ,RM ) :
(Rn)∗ × (C0([0, T ],Rn))∗ → Rn ×NBV ([0, T ],Rn), defined by (RF ,RM )(β,Θ) :=
(RF (β),RM (Θ)). We easily verify the following property.

(RF ,RM ) ∈ Isom((Rn)∗ × (C0([0, T ],Rn))∗,Rn ×NBV ([0, T ],Rn)). (5.23)

Now we can establish the following result.

Lemma 5.12. There exists an inner product on (C1
0,0([0, T ],R

n)∗×(C1
0,0([0, T ],R

n)∗

which is continuous with respect to the usual topology of the product space.

Proof. We consider the operator

in : (C1
0,0([0, T ],R

n)∗ → (Af([0, T ],Rn))∗ × (C1
0,0([0, T ],R

n)∗, in(Λ) := (0,Λ).
(5.24)

This operator is linear continuous and injective. We introduce the following oper-
ator:

Γ := (RF ,RM ) ◦ S−1
2 ◦ (T ∗)−1 ◦ S1 ◦ in. (5.25)

From (5.20), (5.21), (5.22), (5.23) and (5.24), we obtain that Γ is linear con-
tinuous and injective. Now we build the operator ∆ from (C1

0,0([0, T ],R
n)∗ ×

(C1
0,0([0, T ],R

n)∗ into (Rn ×NBV ([0, T ],Rn)× (Rn ×NBV ([0, T ],Rn)) by setting

∆ := (Γ ◦ pr1,Γ ◦ pr2) (5.26)

where pr1 and pr2 are the projections of (C
1
0,0([0, T ],R

n)∗×(C1
0,0([0, T ],R

n)∗. From

(5.25), we obtain that ∆ is continuous on (C1
0,0([0, T ],R

n)∗ × (C1
0,0([0, T ],R

n)∗.
We consider the inner product (· | ·)0 on Rn ×NBV ([0, T ],Rn) defined by

((ξ1, g1) | (ξ2, g2))0 := (ξ1 | ξ2)Rn +

∫ T

0

(g1(t) | g2(t))Rn dt+ (g1(T ) | g2(T ))Rn .

(5.27)
This inner product is continuous withe respect to the usual norm of
Rn × NBV ([0, T ],Rn). The functional (· | ·) := (· | ·)0 ◦ ∆ is an inner product
on (C1

0,0([0, T ],R
n)∗ × (C1

0,0([0, T ],R
n)∗ which is continuous as a composition of

continuous mappings. �

5.5. Proof of Theorem 5.1. Conclusion (I). Our strategy is to use Corollary
3.2. We start by doing the dictionary between the notation of Corollary 3.2 and
the notation of Theorem 5.1. Let X := C1([0, T ],Rn), A := C1

a0,aT
([0, T ],Rn), S :=

C1
0,0([0, T ],R

n), G := C1([0, T ],M), f0(x, π) = J(x, π) =
∫ T

0 L(t, x(t), x′(t), π) dt,

g0i (x, π) = Gi(x, π) =
∫ T

0
gi(t, x(t), x

′(t), π)dt when 1 ≤ i ≤ k, h0j(x, π) = Hj(x, π) =
∫ T

0
hj(t, x(t), x

′(t), π) dt when 1 ≤ j ≤ ℓ, and z(π) = x(π).

Now we consider the assumptions of Corollary 3.2. (A0dua) is fulfilled by using
Lemma 5.12. (A0sol1) is a consequence of (Bsol1), and (A0sol2) is a consequence
of (Bsol2).
To show that (A0fon1) is fulfilled, we want to use Lemma 5.5, hence we ought
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to prove that the assumptions of Lemma 5.5 are fulfilled. In the proof of Lemma
5.9, we have noted that (Bsol1), (Bint1), (Bint2) and (Bint3) ensure that the
conditions (i-v) of Lemma 5.5 are fulfilled and consequently the conclusions (a),
(b) and (c) of Lemma 5.5 hold. Hence (A0fon1) results from the conclusions (b)
and (c) of Lemma 5.5. (A0con1) results from the conclusion (a) of lemma 5.5.
(A0con2) results from (Bcon) and of Lemma 5.8. Then we can use the conclusion
(α) of Corollary 3.2 which permits to ensure that the conclusion (I) of Theorem 5.1
is proven.
Conclusion (II). In the proof of the conclusion (I), we have yet proven that
(A0sol1), (A0sol2), (A0fon1), (A0con1) and (A0con2) are fulfilled. Replacing
(Bsol2) by (Bsol2-bis), (A0sol2-bis) is fulfilled, and we can use the conclusion
(β) of Corollary 3.2 to obtain the conclusion (II) of Theorem 5.1.
Conclusion (III). After the proofs of the previous conclusions, we know that the
assumptions (i), (ii), (iii), (iv) and (v) of Lemma 5.5 are fulfilled. Note that (Bint3-
bis) implies that assumption (vi) of Lemma 5.5 holds. Also note that (Bint4)
implies that the assumption (vii) of Lemma 5.5 holds. Hence we can use the con-
clusion (d) of Lemma 5.5. From this conclusion (d) we deduce that (A0fon2) holds.
Note that (Bsol2-ter) implies (A0sol2-ter). Hence we can use the conclusion (γ)
of Corollary 3.2 to obtain the conclusion (III) of Theorem 5.1.
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