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Abstract 
This paper aims to restate, in a decision theory framework, the results of 
some significant contributions of the literature on probability discounting 
that followed the publication of the pioneering article by Rachlin et al. We 
provide a restatement of probability discounting, usually limited to the case 
of 2-issues lotteries, in terms of rank-dependent utility, in which the utilities 
of the outcomes of n-issues lotteries are weighted by probabilities trans-
formed after their transposition into time-delays. This formalism makes the 
typical cases of rationality in time and in risk mutually exclusive, but allows 
looser types of rationality. The resulting attitude toward probability and to-
ward risk are then determined in relation to the values of the two parameters 
involved in the procedure of probability discounting: a parameter related to 
impatience and pessimism, and a parameter related to time-consistency and 
the separation between non-optimism and non-pessimism. A simulation il-
lustrates these results through the characteristics of the transformation of 
probabilities function. 
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1. Introduction 

The existence of significant parallels between decision in time and decision in risk 
is rather intuitive because of the formal similarities between standard discounted 
and expected utility. However, the more specific thesis that delayed reward and 
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probable reward could be treated in the same way because, contrary to a common 
view, they refer to the same matter, which is less familiar. It seems to have been 
first explored by psychologists like Rotter (1954), for whom delays of gratification 
could be regarded as involving risky rewards by their very nature. Later, some 
authors like Prelec & Loewenstein (1991), initiated a large stream of works by 
arguing, on the basis of anomalies observed in both expected utility and 
discounted utility models, that a delayed reward and a probable reward could be 
dealt with in the same way, within a multi-attribute choice model. In the same 
time, Rachlin and his co-authors ((Rachlin, Raineri, & Cross, 1991) in the 
continuation of (Rachlin, Logue, Gibbon, & Frankel, 1986)) developed, in a 
seminal paper which accounts for experiments with college undergraduates, the 
idea that a probable reward could be viewed as a delayed reward1, discounted to 
obtain its present value, provided probabilities, regarded as “odds-against”, are 
transposed into delays. Despite a small audience, this approach took hold (see, for 
instance, (Rachlin & Siegel, 1994; Rachlin, Siegel, & Cross, 1994; Ostaszewski, 
Green, & Myerson, 1998; Rachlin, Brown, & Cross, 2000; Green & Myerson, 2004; 
Takahashi, 2005; Yi, de la Piedad, & Bickel, 2006)) and gave rise to what was first 
called “probabilistic discounting” by Rachlin et al. (1991). 

The discounting function which aimed to account for decision under risk, was 
assumed to be of a hyperbolic kind2 on the basis of arguments either empirical, or 
pertaining to the shape of the relation between the reward and the rate of reward. 
From an analytical viewpoint, something new occurred with the publication of a 
paper by Cajueiro (2006) who first introduced a hyperbolic discounting function 
based on the deformed algebra inspired by Tsallis’ non-extensive thermodynamics 
(Tsallis, 1994), the q-exponential function3, specially relevant to account for 
increasing impatience. In the continuation of Cajueiro (2006), Takahashi, either 
alone (Takahashi, 2007b, 2011) or with various authors (Takahashi et al., 2012, 
2013) took over the q-exponential function to account for time discounting as well 
as probability discounting. Meanwhile, the same authors focused on the nature of 
the delay associated to probabilities in probability discounting, focusing on the 
distinction between physical and perceived waiting time. A classical approach, 
regarding the way an external stimulus is scaled into an internal representation of 
sensation, which was initiated by Weber and Fechner in the second half of the 
19th century in psychophysics, concluded that the relation was logarithmic. 

 

 

1Such relation between probability and delay was already formally in use as early as 1713 in what we 
know as “Bernoulli trials”, named after Jacob Bernoulli in Ars conjectandi. 
2Rachlin, Raineri, & Cross (1991), for instance, explicitly refer to the discounting function ( ) 11 α −+ t  

(with t denoting time and α a discounting parameter) proposed by Mazur (1987). The same function 
was previously introduced in 1981 by Herrnstein. Rachlin, Siegel, & Cross (1994) proposed a general 

hyperbolic discounting function of the type ( )1 βα −+ t —which may be thought rather close to the 

function introduced by Loewenstein & Prelec (1992). 

3The q-exponential function expq  is defined as ( ) ( )( )
1

1exp 1 1α α
−
−= + − q

q t q t . See Cajueiro (2006: p. 

386). 
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Nearly a century later, the issue was revived by Stevens (1957), who discussed the 
possibility of an alternative (power functions) to the logarithmic relation. More 
recently, some authors (see (Dehaene, 2003)) have given a neural basis to the view 
that our mental scaling is logarithmic. In line with this perspective, Takahashi and 
his co-authors supported the view that the perceived waiting time was logari- 
thmically related to the physical waiting time (Takahashi, 2005, 2011; Takahashi 
et al., 2012). In Takahashi (2005) and Takahashi et al. (2012), the reward was 
submitted to an exponential discount, but relatively not to physical waiting time, 
but to perceived waiting time. Relatively to physical waiting time, this resulted in 
a general hyperbolic discounting function in Takahashi (2005) transposed into a 
q-exponential discounting function in Takahashi et al. (2012). It is obvious that, 
as a consequence, the outcome of the operation was, like in Kahneman & Tversky 
(1979) and with similar consequences, a transformation of the decision weight of 
the probability associated with the reward. 

A common point of this literature (with, of course, the notable exception of 
papers like this of Prelec & Loewenstein (1991)) is that its main concern was to 
identify a few typical relations consistent with the results of limited experiments 
related to choices under risk or over time (Somasundaram & Eli, 2022, Scrogin, 
2023). From this point of view, it can rightly be considered a success story. But on 
the other hand, the theoretical support of these experimental results is often 
limited by what is strictly required and presented in a piecemeal way, according 
to the needs of the experiments. For instance, the idea of a logarithmic perception 
of physical time appeared as early as 2005 in Takahashi’s work, in a paper 
devoted to time discounting, not to decision in risk. Its integration to a wider 
representation leading to a probability weighting function of which Prelec (1998) 
was a special case only occurred six years later (Takahashi, 2011; see also (Takahashi 
et al., 2012)). In the same way, the systematic use of 2-issues lotteries in which one 
looses or wins, is appropriate for dealing with issues like the comparison of the 
respective effects of exponential and hyperbolic discounting on the discounted 
value of a reward, or of the distortion of the probability of obtaining a reward 
induced by probability discounting. However, this limitation to simple 2-issues 
lotteries has significant consequences regarding the way probabilities are 
perceived. At last, the issue of the desirability of the reward is not being addressed 
head-on. References to the pioneering work of Kahneman & Tversky (1979) are 
quite frequent, but they usually concern the weighting of probabilities, not the 
value function that would lead us to consider that our preferences relate not to a 
state (through a utility function), but to a difference with respect to the statu quo 
(the value function). 

In the follow-up of this article:  
• We provide a restatement of probability discounting in which probabilities 

are transformed into expected delays before winning, but where i) the usual case 
of a 2-issues lottery is extended to the more general case of discrete random 
variables with finite support and ii) a utility function is explicitly introduced in 

https://doi.org/10.4236/tel.2024.145101


M. A. Diaye et al. 
 

 

DOI: 10.4236/tel.2024.145101 2039 Theoretical Economics Letters 
 

the analysis, so that we come to a rank-dependent utility approach4 (Section 2).  
• We show that the resulting formalism makes the typical standard cases of 

rationality in time and in risk mutually exclusive, but allows looser types of 
rationality, involved in the axiomatisation of generalised hyperbolic discounting 
and of rank-dependent utility, like Thomsen condition of separability and 
comonotonic tradeoff consistency (Section 3.1).  

• At last, we show that the attitude toward probabilities expressed in the 
probability weighting function depends primarily on the value of the discounting 
parameter q, giving rise to three alternative situations. When 0 1q< < , pessimism 
toward probabilities prevails, possibly mixed with optimism according to the 
value of the other parameter k. When 0q = , the value of k determines either 
optimism or pessimism. And when 0q < , optimism prevails, possibly mixed 
with pessimism according to the value of k. It is, therefore, the same discounting 
function which, according to the values of parameters which can be interpreted in 
terms of decision in time, displays all possible attitudes vis-à-vis probabilities. In 
combination with the utility function, such probability discounting gives rise to the 
various types of attitudes toward risk (aversion or seeking; strong, monotone or 
weak) (Section 3.2).  

We bring together two pieces of literature: the psychophysics literature and the 
risk and uncertainty literature. We make clear how to go from perceived waiting 
time to physical waiting time to risk and uncertainty, and vice versa. We also 
account for how probability discounting determines attitudes toward probabilities 
and risk. We provide a unifying framework with a full set of properties of the 
probability weighting function commonly recognized in the literature. Our three 
theorems show the link between attitudes toward probabilities, attitudes toward 
outcomes, and attitudes toward risk when the discounting parameter varies on the 
interval ] [,1−∞ . 

2. Extending Probability Discounting 

As an approach to decision under risk through a specific valuation of lotteries, the 
probability discounting approach which emerge from the pioneering work of 
Rachlin et al. (1991) might be viewed as a four steps procedure, involving 1) the 
transposition of a probability into a physical delay; 2) the transformation of this 
physical in a perceived delay; 3) the assessment of a resulting temporal discounting; 
and 4) the transformation of a discounted delayed value into the utility of a 
probable reward. The four steps of this procedure are outlined below. 

2.1. From the Probability of Gain to a Physical Delay Before This Gain:  
A Bernoulli Trial Transposition 

The usual framework of probability discounting is, more or less explicitly, this of 

 

 

4A value function, measuring the differences with a state of reference, could have been used instead of 
a utility function. The result would have been a variant of Kahneman and Tversky’s cumulative pro-
spect theory. We have preferred the methodologically simpler representation of rank-dependent util-
ity, whose transposition to cumulative prospect theory can be easily performed. 
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a representation of decision under risk where the set Λ of probability distributions 
is typically defined over {0, x}, x being the possible gain, of probability p, of a 2-
issues lottery L belonging to Λ. After Rachlin et al. (1991), a common feature of 
the probability discounting contributions is that L is related to the valuation of a 
decision through a waiting time l, which can be interpreted as “odds against” in 
repeated gambles5. Though rather intuitive, this interpretation could be given a 
firmer basis than the usual one, which draws on the comparison with a gambler 
betting on a horse race, in terms of repeated Bernoulli trials. It is well known that 
the expected value of the random variable representing the number of trials before 
winning (the winning trial included) is 1/p. If we take the interval between two 
trials as the unit of time, the expected value of the physical delay l before the 
winning trial is therefore given by:  

1 11 pl
p p

−
= − =                       (1) 

Such representation of the link between probability and physical delay has been 
currently admitted, at least since Rachlin et al. (1991), as the initial moment of a 
procedure leading to transform probabilities. Insofar as we remain in the 
framework of 2-issues lotteries, and as the counterpart of the transformation of 
the probability p of success is a parallel and consistent transformation of the 
probability 1 p−  of failure, the immediate link in (1) between probability and 
delay is not contentious. But regarding the more general case of n-issues lotteries 
is less simple. Assume these lotteries L are the laws of probability of discrete 
random variables X with finite support:  

( )1 1, , , , ; , , , ,i n i nL x x x p p p=                   (2) 

in which the outcomes ix  are ranked in increasing order, 1 i nx x x< < < <  , 
and 1 1ii

n p
=

=∑ . 
Let G be the decumulative distribution function of the random variable X whose 

probability law is given by the lottery L: ( ) ( )Pri iG x X x= ≥ . It is obvious that 
( )1 1G x =  and ( )n nG x p= . Consider now not the isolated probability ip  of 

obtaining ix , but the probability of obtaining at least ix , that is, ( )iG x . We can 
derive from ( )iG x  a Bernoulli trial whose issues are either sucess, with an 
outcome between ix  and nx  both included, or failure, with an outcome 
between 1x  and 1ix −  also included. ( )iG x  is therefore the probability of 
success, and ( ) ( )1i iF x G x= −  the probability of failure ( ( )iF x  standing for 
the usual cumulative distribution function). The expected number of Bernoulli 
trials to obtain one success (that is, getting at least ix ) is ( )1 iG x . And going on 
transposing probability into a physical delay before winning in a repeated gamble 
like in (1), the average delay il  for success, that is for obtaining at least ix  is 
given by:  

( )
( ) ( )

1
1, ,i

i
i

G x
l i n

G x
−

= =                       (3) 

 

 

5As already noted by Rachlin et al. (1986: p. 36). 
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2.2. From a Physical to a Perceived Delay: A Logarithmic Treatment 

As far as p is an objective probability, l can be viewed as “physical waiting time” 

(Takahashi et al., 2012: p. 13.). Drawing on the reintroduction of Fechnerian-like 
perspectives in psychophysics (Dehaene, 2003), Takahashi and his co-authors 
assume that in a 2-issues lottery, the subjectively perceived waiting time τ is a 
logarithmic function of the physical waiting time  

( )ln 1a blτ = +                        (4) 

with , 0a b > 6. The same principles hold in the general case of a n-issues lottery: 
the subjectively perceived waiting time iτ  before winning at least ix  is 
logarithmically related to the physical waiting time:  

( ) ( )ln 1 1, ,i ia bl i nτ = + =                     (5) 

Replacing the physical delay by decumulated probability (i.e., the probability of 
winning at least a certain outcome) like in (3), the probability of winning at least 

ix  is related as follows to the perceived delay before winning at least ix :  

( )
( ) ( )

1
ln 1 1, ,i

i
i

G x
a b i n

G x
τ

 −
= + =  

 
               (6) 

2.3. From Perceived Time Discounting to Physical Time Discounting 

The third step provides a separate treatment of time discounting. In the case of a 
2-issues lottery explored by standard literature on probability discounting, things 
are rather simple. The basic idea is this of an exponential discounting whose 
argument is the perceived delay τ, instead of the physical delay l:  

( )exp rµ τ= −                            (7) 

where μ and r stand respectively for the discounting factor and the discount rate7 
for an outcome x, whose expected perceived delay before winning it, is τ. From 
(4) and (7) we therefore have:  

( )1 rablµ −= +                           (8) 

which amounts to a generalized hyperbolic discounting factor8. Exponential 
discounting, relatively to perceived time, has therefore generated hyperbolic 
discounting, relatively to physical time. 

However, such determination of the discounting factor would be seriously flawed 
if extended as such to n-issues lotteries: if, drawing on (5), ( ) ( )exp 1 ra

i ir blτ −− = +  

 

 

6See, for instance, (Takahashi, 2005: p. 692). 
7A separate discount rate r related to perceived time is generally missing in the usual literature on 
probability discounting (see, for instance, (Takahashi, 2005); but Takahashi et al. (2012: p. 12) seem 
to have done a choice similar to ours). This might be explained by the integration of the relevant 
information in the parameter a in the relation between perceived and physical time. The drawbacks 
of such way of processing is that it does not make any distinction between discounting in time and 
perceiving time. This is why we have chosen to make the discount rate explicit. 

8The generalized hyperbolic discounting factor in Loewenstein & Prelec (1992) writes ( )1
β
αα −+ l . Set-

ting α=b  and β α=ra  enables to find the formulation of (8). 
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can rightly be viewed as a discounting factor, it depends on the expected time 
(perceived or physical) before winning at least ix —not before winning exactly ix . 
The discounting factor associated to the outcome ix  is therefore the difference 
between two discounting factors: the one related to the expected time before 
winning at least ix  and the one related to the expected time before obtaining 
strictly more than ix , that is at least 1ix + . So that, assuming that 1nl + → +∞ :  

( ) ( ) ( )11 1 1, ,ra ra
i i ibl bl i nµ − −

+= + − + =                (9) 

After the work of (Cajueiro, 2006), the expression of the discounting factor has 
been currently rewritten, through a change in the parameters, as a q-exponential 
discounting based on Tsallis’ statistics. This change leads to set a pair of alternative 
parameters, k and q defined as k rab=  and 1 1q ra= − . Extending this 
redefinition to the expression of iµ , (9) can be rewritten as9:  

( ) ( )1i i il lµ ψ ψ += −                        (10) 

where ( ) ( )( ) ( )
1

11 1 1, ,q
i il k q l i nψ

−
−= + − =  . 

Or, using Cajueiro’s notation for q-exponential discounting:  

( ) ( ) ( )1exp exp 1, ,i q i q ikl kl i nµ += − =               (11) 

The discounting factor iµ  can therefore be equivalently expressed as the 
difference between the values ( )ilψ  and ( )1ilψ +  of two generalized hyperbolic 
discountings (10) or, equivalently, between two q-exponential discountings (11). 
Cajueiro’s presentation introducing in 2006 q-exponential discounting can be 
found in the literature as early as the following year10. It will be considered that, 
because of the definition of a, b and r in (4) and (5), the parameters k and q are, 
by construction, such that 0k ≥  and 1q−∞ < < . The possibility that q is 
negative does not appear in the article by Cajueiro (2006), nor in that of Takahashi 
(2007b). However, when he resumes q-discounting during the same year or the 
following year but in an intertemporal choice framework, Takahashi (2007a, 
2008) explicitly considers the possibility that q is less than 011. The interpretation 
of the parameters k and q will be discussed in Section 3. 

2.4. From a Discounted Delayed Value to the Utility of  
a Probable Reward 

The recourse to an explicit representation of the desirability of the reward is 
lacking in the works on probability discounting cited above. The emphasis placed 

 

 

9Faced with a 2-issues lottery, we find, as a special case, the usual results from the literature on q-
discounting (see, for instance, (Takahashi, 2007b)) with a discounting factor for the outcome in case 

of success ( )( ) ( )
1

11 1 expµ
−
−= + − =q

qk q l kl . 
10See, for instance, Takahashi (2007b) and the colleagues with whom he had partnered (Takahashi, 
2010; Takahashi, 2011; Takahashi et al., 2012; Takahashi, 2013; Takahashi et al., 2013). 
11Cruz Rambaud & Muñoz Torrecillas (2013) went so far as to propose that q is greater than 1 (see also 
(Munoz Torrecillas et al., 2018)). Nonetheless, since this would result in the negativity of r or a, and the 
negativity of b if we want to keep k positive, this possibility is excluded in the following of this paper. 
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on the transposition of probabilities into delays, as well as the binary structure of 
lotteries, justified a minimum treatment allowing to ignore it. It was sufficient to 
work with a simple function ( ),V x t  whose two arguments, the outcome x and 
the delay t before winning had each one only two possible values: 0x =  in case 
of failure or x x=  in case of success; 0t =  for an immediate (because certain) 
gain, t l=  for a delayed reward (because its probability p is such that 

( )1l p p= − ). Assuming that ( )0, 0V t = , the immediate or certain value of the 
reward x  writes ( ),0V x , and its delayed or with probability p, value is 
( ),V x l . This is enough to get  

( ) ( ), ,0V x l V xµ=                       (12) 

which is all we need to focus on the specification and the discussion of the 
discounting factor μ. But such simplicity must be abandoned when moving on to 
the more general case of n-issues lotteries which require comparisons between the 
desirability of the various possible outcomes when they are immediate or certain. 
This desirability can be represented by an increasing utility function u of x, 
calibrated so that ( )0 0u = , and defined up to a positive linear transformation. So 
that the utility of a lottery ( )U L  can be given, like for utility in time, as the sum 
of the undiscounted utilities of each possible outcome ( )iu x  weighted by its 
discounting factor iµ  defined as in (10):  

( ) ( )
1

n

i i
i

U L u xµ
=

=∑                         (13) 

Now, because of the probability discounting perspective, iµ  in (13) can be 
understood either as a discounting factor whose expression is given by 

( ) ( )1i i il lµ ψ ψ += −  in (10), or as probability decision weights. Relying on (3) and 
(10) we get an alternative expression of iµ , as the decision weight for obtaining 
an outcome ix . iµ  is the difference between the transformed probability 
( )iG x  of winning at least ix  and the transformed probability of winning strictly 

more than ix , ( )1iG x + :12  

( )( ) ( )( )1i i iG x G xµ ϕ ϕ += −                   (14) 

where ( )( ) ( ) ( )
( ) ( )

1
11

1 1 1, ,
q

i
i

i

G x
G x k q i n

G x
ϕ

−
− −

= + − =  
 

 . 

It can be shown that the probability weighting function φ is an increasing 
transformation of [ ]0,1  into itself with the following properties:  

( )
( )
0 0

1 1
0

ϕ

ϕ
ϕ

=

=

′ >

                         (15) 

 

 

12Note that in the case where =i n , the probability of obtaining strictly more than nx  is zero, so that

( )1 0+ =nG x . 
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As a result, what was first perceived as discounting factors, the iµ ’s, now 
appear as transposed probabilities whose sum is obviously equal to 1. 

The combination of a utility function u with decision weights iµ  (such that 

1 1ii
n µ
=

=∑ ) determined by a probability weighting function φ, given by (13) and 
(14), amounts to what is currently known as “rank-dependent utility”13:  

( ) ( )

( )( ) ( )( )( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( )

( )
( )

( )
( ) ( )

1

1
1

1 1
1 1

1

1 1

1

1 1

1 1
1 1 1 1

1 1
exp exp

n

i i
i

n

i i i
i

n q q
i i

i
i i i

n
i i

q q i
i i i

U L u x

G x G x u x

G x G x
k q k q u x

G x G x

G x G x
k k u x

G x G x

µ

ϕ ϕ

=

+
=

− −
− −

+

= +

+

= +

=

= −

 
   − − = + − − + −       
    
 
    − −

= −            

∑

∑

∑

∑

  (16) 

It is well-known that when rank-dependent utility prevails, the acknowledged 
drawbacks of a direct transformation of each single probability, like this of the 
probability of success in a 2-issues lottery, (the sum of the decision weights might 
be different from zero and violation of first degree stochastic dominance might 
occur) do not hold anymore (see, for instance, (Abdellaoui, 2009)). The probability 
weighting function φ possesses the expected properties (see (15)) of decision weights 
in rank-dependent utility, but its shape is more specific, since it is generated by the 
whole process of probability discounting14. Some consequences of the properties of 
the probability weighting function are discussed in the following section. 

 

 

13Rank-dependent utility continues the pioneering work by Quiggin (1982). For an introduction fo-
cusing on associated risk perceptions see, among others, Diecidue & Wakker (2001), Abdellaoui 
(2009), and Cohen (2015). With some qualifications, more recent versions of prospect theory also 
belong to this kind of models, at least since (Tversky & Kahneman, 1992)’s paper (see (Wakker, 2010)). 

In several rank-dependent utility models, ( )U L is usually written as the (discrete) Choquet integral

( ) ( )( ) ( ) ( )( )1
1 10ϕ

−
+ +=

= −∑ n
i i iiU L G x u x u x , rather than as its equivalent in (16). 

14The above analysis reveals an equivalence between decision weights µi  expressing time discounting 

(10) and probability discounting (14). Nonetheless, whereas the interpretation of the latter in terms of 
the weighting function of probabilities in a rank dependent utility framework is quite intuitive, that of 

the former is far less obvious: in (10), the utility ( )iu x  of each possible gain is discounted by a difference 

between the discounting factors ψ i  and 1ψ +i . The difficulty comes not only from the meaning of this 

difference, but also from the spontaneous interpretation of the sequence of ix ’s from 1x  to nx  - as if, 

after obtaining 1x  immediately ( 1 0=l ), we will have also 2x  provided we wait 2l , etc., till nx  after 

a delay nl . This difficulty vanishes from the moment (10) is rewritten equivalently as a standard discrete 

Choquet integral (see supra n. 13): ( ) ( ) ( ) ( )( )1
1
ψ −

=

= −∑
n

i i i
i

U L l u x u x Such expression makes clear that 

what is obtained after il  is not ix , whose discounted utility would come in addition to the discounted 

utility of 1,− ix , and 1x : the decision maker is supposed to get ix  after il , but not 1 + + ix x . So 

that he or she obtains an increase in gain 1−−i ix x  and the corresponding additional utility 

( ) ( )1−−i iu x u x , weighted by the discount factor ( )ψ il . 
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3. Attitudes Conveyed by Probability Discounting  

The properties of the probability weighting function in (14) are controlled by the 
two parameters k and q. The latter were introduced as a recombination of the 
parameters a and b used in the transformation of physical into perceived delay (4) 
and of the discount rate in perceived time r (7), and their main virtue seems to 
have been rendering possible an expression of time or probability discounting 
through q-discounting. However, they also support the discussion of the 
underlying attitudes toward rationality, probability and risk. 

3.1. Time-Rationality and Risk-Rationality in  
Probability Discounting  

A common way to approach time-rationality and risk-rationality is to agree that 
they rest, respectively, on the fulfillment of axiomatic properties regarding the 
underlying preferences: stationarity for decision in time, and independence for 
decision in risk15. Stationarity and independence enter crucially in the axiomatic 
basis which make, respectively, preferences in time represented by discounted 
(exponential) utility, and preferences over random variables (lotteries) represented 
by expected utility. Both are, in their respective domain, a condition for avoiding 
preference reversal: stationarity guarantees time-consistency, i.e. the constancy of 
preferences between two gains at different dates, whether close or remote, 
provided they are separated by the same interval of time; independence preserves 
our order of preference between two lotteries, whatever the proportions in which 
they are combined with a third lottery. 

Since the decision weights iµ  can be viewed equivalently as discounting 
weights ( ( ) ( )1i i il lµ ψ ψ += − ; see (10) or the reformulation of n. 13 supra) or as 
probability weights ( ( )( ) ( )( )1i i iG x G xµ ϕ ϕ += − ; see (14)), a peculiarity of 
probability discounting is that the issue of rationality is raised simultaneously in 
relation to time and in relation to risk. 

Now, on the one hand, time-rationality is obtained only when q is tending to 1, 
which yields exponential discounting (and therefore, stationarity and time-
consistency) because the ratio between ψ in (10) and its first derivative is a 
constant equal to −k, so that ( ) ( )1exp expi i ikl klµ += − − − . On the other hand, 
risk-rationality is a special case of simple hyperbolic discounting like in 
Herrnstein (1981) or Mazur (1987), obtained with 0q =  in ψ (10). In this case, 

( ) ( )1 1
11 1i i ikl klµ − −
+= + − + : it occurs with the additional condition that 1k = , 

which makes that φ in (14) is such that ( )( ) ( )i iG x G xϕ = , whatever ix . As a 
result, when 0q =  and 1k = , i ipµ = , so that probability discounting has 

 

 

15Stationarity and independence read as follows. Stationarity: assume x and y are two outcomes re-

spectively available at dates 1t  and 1t s+ . If ( )1,x t  and ( )1,y t s+  are indifferent, ( )2,x t  and 

( )2,y t s+  are also indifferent for any 2 1t t≠ . Independence: assume three lotteries 1L , 2L  and 

3L , and any [ ]0,1λ ∈ . If 1L  is preferred to 2L , then ( )1 31L Lλ λ+ −  is also preferred to 

( )2 31L Lλ λ+ − . An intuitive interpretation is that λ  is a probability of obtaining either 1L  or 2L , 

and 1 λ−  a probability of obtaining 3L . 
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generated expected utility (and hence, independence). 
This sheds light on the relationship between time-rationality and risk-

rationality generated by the transposition of a decision in risk into a decision in 
time. When moving from the first to the second, we loose time-rationality if the 
parameters are such that they preserve risk-rationality. Conversely, if we reach 
time-rationality, we have to give up risk-rationality. Such a conclusion might seem 
disturbing, but it should not be overestimated. The simple fact that iµ  can be 
understood at the same time as a discount factor and as a probability weight, 
referring respectively to a specific case of generalized hyperbolic discounting (10) 
and of a probability weighting function in rank-dependent utility (14), means that 
probability discounting should satisfy the criteria of rationality, obviously weaker, 
which characterize each of these two approaches: the Thomsen condition of 
separability (Fishburn & Rubinstein, 1982: pp. 686-687) for time-rationality16, and 
comonotonic tradeoff consistency (Wakker, 1994: p. 13) for risk-rationality17. 
Taking seriously the idea on which probability discounting is based, namely that 
deciding in risk might be viewed as a way of deciding in time, entails that 
something has to be abandoned in our requirements in terms of rationality: either 
one of the two types of rationality (in time or in risk), when the parameters k and 
q are given appropriate values or, in the general case, the strong versions of risk-
rationality and time-rationality, in favour of the weaker versions consistent with 
rank-dependent utility and generalized hyperbolic discounting. 

3.2. The Probability Discounting Determination of Attitudes Toward 
Probabilities and Risk 

3.2.1. The Shape of the Probability Weighting Function 
Let us start with the properties of the probability weighting function φ defined as 
in (14). We know that this function is increasing, since its first derivative is 
positive on [ ]0,1 : 

( ) ( )
2
1

2 11 1 0

q
qpp kp k q

p
ϕ

−
−

−
−  −′ = + − > 
 

              (17) 

 

 

16Thomsen condition of separability (Fishburn & Rubinstein, 1982) is based on the idea that when decid-
ing in time, we compensate differences in outcomes by differences in dates, and that these differences are 

additive. So that given three outcomes x, y and z and three dates r, s and t, if ( ),x t  and ( ),y s  are 

indifferent to a decision-maker, as well as ( ),y r  and ( ),z t , it means that x y−  is compensated by 

t s−  and, on the other hand, y z−  by r t− . This means that ( ) ( )x z x y y z− = − + −  is compen-

sated by ( ) ( )r s r t t s− = − + − . And therefore, ( ),x r  is also indifferent to ( ),z s . 

17Comonotonic tradeoff consistency (Wakker, 1994) reads as follows. Assume two sets of pairwise lot-

teries defined as ( )1 1, , , , ; , , , ,n i nL x x p p pα α=     , ( )1 1, , , , ; , , , ,n i nL y y p p pβ β=      and 

as ( )1 1, , , , ; , , , ,n i nL x x p p pγ γ=     , ( )1 1, , , , ; , , , ,n i nL y y p y pδ δ=     . If for some i, there 

exists outcomes , , ,α β γ δ  so that Lα  is preferred to Lβ  and Lδ  is preferred to Lγ , then for two 

other alternative sets of lotteries defined in the same way, there is no i′  for which Lα′  is preferred 

to Lβ′  and, contrary to the previous case, Lγ′  is strictly preferred to Lδ′ . Alternative key axioms are 

given by (Chateauneuf, 1999: pp. 25-27). 
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Its second derivative is  

( ) ( ) ( ) ( )
2 1
1

4 1 11 1 2 2 1 1

q
qp pp kp k q p k q k q

p p
ϕ

−
− −

−
−

    − −′′  = − + − − − + −        
 (18) 

The part played by the parameters k and q is crucial. According to their values, 
ϕ′′  is either positive, or negative, or of alternate signs, so that φ is either convex, 
or concave, or inverse S-shaped (firstly concave, then convex), or S-shaped (firstly 
convex then concave). 

ϕ′′  can be rewritten: ( ) ( ) ( )p A p B pϕ′′ = ×   

where ( ) ( )
2
1

4 11 1

q
qpA p kp k q

p

−
−

−
−  −

= − + − 
 

 and  

( ) ( ) ( )
1

12 2 1 1 pB p p k q k q
p

−  − = − − + −    
 

( )A p  is always negative. Hence, the sign of ( )pϕ′′  depends on the sign of 
( )B p , which writes also: 

( )
( )( )

( )( )
2 1 1

1 1
p k q kq

B p
p k q p

− − −
=

+ − −
                    (19) 

Let us analyse the sign of ( )B p  with respect to the values of q. 

a) If 0q =  then replacing q by 0 in ( )B p  leads to ( ) ( )
( )

2 1
1

p k
B p

p k p
−

=
+ −

.  

Since the denominator is always positive, then the sign of ( )B p  depends on the 
sign of its numerator. As a consequence, ( )B p  is positive if and only if 1k ≤ . 
Hence when 0q = , φ is concave if and only if 1k ≤ , and φ is convex otherwise. 

b) If ] [0,1q∈  then according to equation (19), two cases can occur: the case 

where 
1

1
k

q
<

−
 and the case where 

1
1

k
q

≥
−

.  

• If 
1

1
k

q
≥

−
 then ( )B p  is negative whatever [ ]0,1p∈ . This leads to 

( ) 0pϕ′′ ≥  ( ( )pϕ  convex) on the interval [ ]0,1 .  

• If 
1

1
k

q
<

−
 then ( )B p  is negative (see the numerator of ( )B p ) on the 

interval [ ]00, p  and is positive on the interval [ ]0 ,p +∞ , where 

( )( )0 2 1 1
kqp
k q

=
− −

. However p (a probability) cannot go beyond 1. This means 

that 0p  is either less than 1 or higher than 1. 0p  is less than 1 if and only if 
1

1
2

k q<
−

. Hence:  

- when ] [0,1q∈ , if 
1

1
k

q
<

−
 and 1

1
2

k q<
−

 then ( )B p  is negative on the  

interval [ ]00, p  and positive on the interval [ ]0 ,1p ; that is, ( ) 0pϕ′′ ≥  ( ( )pϕ  
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convex) on the interval [ ]00, p  and ( ) 0pϕ′′ ≤  ( ( )pϕ  concave) on the interval 
[ ]0 ,1p ; 

- when ] [0,1q∈ , if 
1

1
k

q
<

−
 and 1

1
2

k q≥
−

 then ( )B p  is negative on the  

interval [ ]0,1 ; that is, ( ) 0pϕ′′ ≥  ( ( )pϕ  convex) on the interval [ ]0,1 .  
c. If 0q <  then according to equation (19), two cases can occur: the case 

where 
1

1
k

q
≤

−
 and the case where 

1
1

k
q

>
−

.  

• If 
1

1
k

q
≥

−
 then ( )B p  is positive whatever [ ]0,1p∈ . This leads to 

( ) 0pϕ′′ ≤  ( ( )pϕ  concave) on the interval [ ]0,1 .  

• If 
1

1
k

q
>

−
 then ( )B p  is positive (see the numerator of ( )B p ) on the 

interval [ ]00, p  and is negative on the interval [ ]0 ,p +∞ , where 

( )( )0 2 1 1
kqp
k q

=
− −

. However p (a probability) cannot go beyond 1. This means 

that 0p  is either less than 1 or higher than 1. 0p  is less than 1 if and only if 
1

1
2

k q>
−

. Hence:  

- when 0q < , if 
1

1
k

q
>

−
 and 1

1
2

k q>
−

 then ( )B p  is positive on the  

interval [ ]00, p  and negative on the interval [ ]0 ,1p ; that is, ( ) 0pϕ′′ ≤  ( ( )pϕ  
concave) on the interval [ ]00, p  and ( ) 0pϕ′′ ≥  ( ( )pϕ  convex) on the interval 
[ ]0 ,1p ;  

- when 0q < , if 
1

1
k

q
>

−
 and 1

1
2

k q≤
−

 then ( )B p  is positive on the 

interval [ ]0,1 ; that is, ( ) 0pϕ′′ ≤  ( ( )pϕ  concave) on the interval [ ]0,1 .  

What are the implications of the above results on the shape and properties of 
the graph of φ?  

Since ( )0 0ϕ =  and ( )1 1ϕ = , then it is obvious that ( ) ,p p pϕ ≤ ∀  
(respectively: ( ) ,p p pϕ ≥ ∀ ) when φ is (fully) convex (resp., concave) on the 
interval [ ]0,1 . 

However when φ is firstly convex then concave (S-shaped; case with 0 1q< <  

and 1

1
2

k q<
−

) or when it is firstly concave then convex (inverse S-shaped; case 

with 0q <  and 1

1
2

k q≥
−

), it is not straightforward to conclude whether its  

graph crosses the first bisector, or whether it does not cross it, because it lies 
entirely above or under this bisector. The difference between the two situations (φ 
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crossing the bisector, or not crossing it) amounts to the existence (in the first 
situation) or to the non-existence (in the second) of ] [* 0,1p ∈  such that  

( )* *p pϕ =                          (20) 

Remind (see (14)) that ( ) ( )
1

111 1
qpp k q

p
ϕ

−
− −

= + − 
 

. Hence equation (20) 

writes: 

( )
1

111 1
qpk q p

p

−
− −

+ − = 
 

                   (21) 

Since ( )pϕ  is a positive and monotonic function on its domain of definition, 

(21) writes: ( ) ( )111 1 qpk q p
p

−−
+ − = . That is,  

( )( ) ( )1 1 1
0

qk q p k q p
p

− − + − −
=  

As a consequence, we want to know if the below equation (22) admits a root 
belonging to the interval ] [0,1 , in which case it crosses the first bisector 
(otherwise, it does not):  

( )( ) ( )1 1 1 0qp k q p k q− + − − + − =                (22) 

Denote ( ) ( )( ) ( )1 1 1qp p k q p k qη = − + − − + − . 

• Let us take the case of φ S-shaped, with 0 1q< <  and 1

1
2

k q<
−

. We can see 

that ( ) ( )0 1 0k qη = − > , ( )1 0η = , and ( ) ( )( )1( ) 1 1qp q p k qη −= − + − −′ .  

So that ( ) 0pη′ ≥  if and only if 
( )

1
1

1 1

qqp
k q

− 
≥   − − 

.  

- If 1k <  then 
( )

1
1

1
1 1

qq
k q

− 
<  − − 

. As a consequence η  will decrease on 

the interval ( )

1
1

0,
1 1

qq
k q

−
 

     − −   

 and will increase on the interval  

( )

1
1

,1
1 1

qq
k q

−
 
     − −   

. However since ( )0 0η > , and ( )1 0η =  then it is  

necessarily the case that there exist 
( )

1
1

*

1 1

qqp
k q

− 
<   − − 

 such that ( )* 0pη = . 

This proves that when 0 1q< < , 1

1
2

k q<
−

 and 1k < , there exists *p  such 
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that ( )* *p pϕ = . This means that φ is S-shaped and crosses the bisector at 

( )

1
1

*

1 1

qqp
k q

− 
<   − − 

.  

- If 1k ≥  then 
( )

1
1

1
1 1

qq
k q

− 
≥  − − 

, and η  decreases on the interval 

[ ]0,1 . This means that when 0 1q< < , 1

1
2

k q<
−

 and 1k ≥ , then φ is S-

shaped and fully under the bisector.  

• Likewise if we take the case of φ inverse S-shaped, with 0q <  and 1

1
2

k q≥
−

.  

- if 1k > , there exists *p  such that ( )* *p pϕ =  - i.e. φ crosses the bisector;  
- if 1k ≤ , φ is fully above the bisector.  
We can therefore write, in the following propositions, the first line after the 

headers, from which the rest of the tables proceeds (see comments below, in 
Section 3.2.3). 

3.2.2. Propositions 
Proposition 1 The table below indicates the link between attitude toward 

probabilities, attitude toward outcomes and attitude toward risk when the 
discounting parameter q lies on the interval ] [0,1  (Table 1). 
 

Table 1. 0 1< <q —Attitudes toward probabilities, outcomes and risk. 

k 0 1 
1

1
2
q

−
 +∞ 

φ 
S-shaped, crossing bisector 

(see Figure 1) 
S-shaped, under bisector 

(see Figure 2) 
Convex 

(see Figure 3) 

Attitude toward Probability (Strong) 
Local Strong Pessimism and local Strong Optimism 

(unlikelihood insensitivity) 
Strong Pessimism 

Attitude toward Probability (Weak) 
Local Weak Pessimism 

and local Weak Optimism 
Weak Pessimism 

u concave 
(decreasing sensitivity) 

Attitude toward 
Risk (Strong) 

Neither Strong Risk Averse,  
nor Strong Risk Seeker 

Strong Risk Averse 

Attitude toward 
Risk (Monotone) 

Not Monotone Risk Averse Monotone Risk Averse 

Attitude toward 
Risk (Weak) 

Not Weak Risk Averse Weak Risk Averse 

https://doi.org/10.4236/tel.2024.145101


M. A. Diaye et al. 
 

 

DOI: 10.4236/tel.2024.145101 2051 Theoretical Economics Letters 
 

Continued 

u convex 
(increasing sensitivity) 

Attitude toward 
Risk (Strong) 

Neither Strong Risk Averse,  
nor Strong Risk Seeker 

Attitude toward 
Risk (Monotone) 

Not Monotone Risk Averse 
Monotone Risk Averse when uG k≤  

Not Monotone Risk Averse when uG k>  

Attitude toward 
Risk (Weak) 

Not Weak Risk Averse 
Weak Risk Averse if  

uG k≤ , or there exists 1g ≥  

Remarks: • 
( )
( )

supu
y x

u x
G

u y<

′
=

′
; • 1g ≥  is such that ( ) ( ) ( )u x u y

u x g
x y
−

′ ≤
−

, for x y> , and ( ) gp pϕ ≤ . 

 
Proposition 2 The table below indicates the link between attitude toward 

probabilities, attitude toward outcomes and attitude toward risk when the 
discounting parameter 0q =  (Table 2). 
 

Table 2. 0q = —Attitudes toward probabilities, outcomes and risk. 

k 0 
11

1
2
q

=
−

 +∞ 

φ Concave (see Figure 4) Convex (see Figure 5) 

Attitude toward Probability (Strong) Strong Optimism Strong Pessimism 

Attitude toward Probability (Weak) Weak Optimism Weak Pessimism 

u concave 
(decreasing sensitivity) 

Attitude toward 
Risk (Strong) 

Neither Strong Risk Averse,  
nor Strong Risk Seeker 

Strong Risk Averse 

Attitude toward 
Risk (Monotone) 

Monotone Risk Seeker if 1uT k≤  

Not Monotone Risk Seeker if 1uT k>  
Monotone Risk Averse 

Attitude toward 
Risk (Weak) 

Weak Risk Seeker if 1uT k≤ ,  
or there exists 1h ≥  

Weak Risk Averse 

u convex 
(increasing sensitivity) 

Attitude toward 
Risk (Strong) 

Strong Risk Seeker 
Neither Strong Risk Averse, nor Strong Risk 

Seeker 

Attitude toward 
Risk (Monotone) 

Monotone Risk Seeker 
Monotone Risk Averse when uG k≤  

Not Monotone Risk Averse if uG k>  

Attitude toward 
Risk (Weak) 

Weak Risk Seeker 
Weak Risk Averse if uG k≤ , or there exists 

1g ≥  

Remarks: • 
( )
( )

supu
y x

u y
T

u x<

′
=

′
;  • 1h ≥  is such that ( ) ( ) ( )u x u y

u y h
x y
−

′ ≤
−

, for x y> , and ( ) ( )1 1 hp pϕ ≤ − − ; • 
( )
( )

supu
y x

u x
G

u y<

′
=

′
; 

• 1g ≥  is such that ( ) ( ) ( )u x u y
u x g

x y
−

′ ≤
−

, for x y> , and ( ) gp pϕ ≤ . 
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Proposition 3 The table below indicates the link between attitude toward 
probabilities, attitude toward outcomes and attitude toward risk when the 
discounting parameter q is strictly negative (Table 3). 
 

Table 3. 0q < —Attitudes toward probabilities, outcomes and risk. 

k 0 
1

1
2
q

−
 1 +∞ 

φ Concave (see Figure 6) 
Inverse S-shaped, above 
bisector (see Figure 7) 

Inverse S-shaped, crossing  
bisector (see Figure 8) 

Attitude toward Probability (Strong) Strong Optimism 
Local Strong Optimism and local Strong Pessimism 

(likelihood insensitivity) 

Attitude toward Probability (Weak) Weak Optimism 
Local Weak Optimism  

and local Weak Pessimism 

u concave 
(decreasing sensitivity) 

Attitude toward 
Risk (Strong) 

Neither Strong Risk Averse,  
nor Strong Risk Seeker 

Attitude toward 
Risk (Monotone) 

Monotone Risk Seeker if 1uT k≤  

Not Monotone Risk Seeker if 1uT k>  
Not Monotone Risk Seeker 

Attitude toward 
Risk (Weak) 

Weak Risk Seeker if 1uT k≤ ,  
or there exists 1h ≥  

Not Weak Risk Seeker 

u convex 
(increasing sensitivity) 

Attitude toward 
Risk (Strong) 

Strong Risk Seeker 
Neither Strong Risk Averse,  

nor Strong Risk Seeker 

Attitude toward 
Risk (Monotone) 

Monotone Risk Seeker Not Monotone Risk Seeker 

Attitude toward 
Risk (Weak) 

Weak Risk Seeker Not Weak Risk Seeker 

Remarks: • 
( )
( )

supu
y x

u y
T

u x<

′
=

′
; • 1h ≥  is such that ( ) ( ) ( )u x u y

u y h
x y
−

′ ≤
−

, for x y> , and ( ) ( )1 1 hp pϕ ≤ − − . 

3.2.3. Comments 
a) On the attitudes toward probabilities 
Drawing on (18), the properties of the probability weighting function in relation 

to the parameters q and k are listed in the first lines of the tables in Propositions 1, 
2 and 3.  

The block of lines which follows immediately the header in each table deals 
with the attitude toward probabilities embodied in the probability weighting 
function. Generally speaking, it amounts to pessimism or optimism, which can be 
approached from two different points of view, each one is linked to a way of 
considering the generic term in the expression of the rank-dependent utility of a 
lottery: either a utility multiplied by a difference between transformed probabilities, 
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or a transformed probability multiplied by a difference between utilities.  
 

 
Figure 1. Probability weighting function: φ S-shaped, crossing the bisector. 0.8q = , 

0.6k = , 0 0.27p = , * 0.32p = . 
 

 
Figure 2. Probability weighting function: φ S-shaped, under the bisector. 0.8q = , 

1.05k = , 0 0.53p = . 

https://doi.org/10.4236/tel.2024.145101


M. A. Diaye et al. 
 

 

DOI: 10.4236/tel.2024.145101 2054 Theoretical Economics Letters 
 

 
Figure 3. Probability weighting function: φ convex. 0.8q = , 2k = , 0 1.33=p . 

 

 
Figure 4. Probability weighting function: φ concave. 0q = , 0.3k = . 
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Figure 5. Probability weighting function: φ convex. 0q = , 3k = . 

 

 
Figure 6. Probability weighting function: φ concave. 0.5q = − , 0.4k = , 0 0.25p = − . 
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Figure 7. Probability weighting function: φ inverse S-shaped, above the bisector. 2.5q = − , 

0.9k = , 0 0.52p = . 
 

 
Figure 8. Probability weighting function: φ inverse S-shaped, crossing the bisector. 2.5q = − , 

3k = , 0 0.39p = , * 0.5p = . 
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The first point of view (Yaari, 1987; Chateauneuf & Cohen, 1994) contrasts strong 
pessimism with strong optimism (which meets (Wakker, 1994)’s distinction between 
“probabilistic risk aversion” and “probabilistic risk seeking”), associated respectively 
to the convexity and to the concavity of φ. The weight of a typical element ( )iu x  
in (16) is given by a transformed probability ( )( ) ( )( )1i i iG x G xµ ϕ ϕ += − . In 
particular, a finite variation of G in the neighborhood of 1 or of 0, corresponding to 
the lowest or to the highest outcomes, indicates its decisional weight iµ  at the 
endpoints of the domain of definition of φ by the corresponding variation in 
ordinate. The convexity (Figure 3 or Figure 5) (resp., the concavity (Figure 4 or Figure 

6)) of φ therefore amounts to strong pessimism (resp., strong optimism), insofar 
as the probability of the lowest outcomes is overweighted (resp., underweighted), 
whereas the probability of the highest outcomes is underweighted (resp., over- 
weighted). Strong pessimism (resp., strong optimism) can be interpreted as in- 
creasing (resp., decreasing) sensitivity to probability changes when moving from the 
low probabilities of getting at least the higher outcomes to the high probabilities of 
getting at least the lower outcomes. This makes easier the interpretation of the 
intermediate situations of an inverse S-shaped (first concave, then convex; see Figure 

7 and Figure 8) or S-shaped (first convex, then concave; see Figure 1 and Figure 2) 
probability weighting function (see the seminal paper of (Gonzalez & Wu, 1999). In 
the case of an inverse S-shaped function (Figure 7 and Figure 8), the probabilities of 
the lowest and of the highest outcomes are overweighted relatively to those of the 
medium outcomes (in the neighbourhood of the inflexion point 0p ) which are 
underweighted. This boils down to strong optimism toward medium to high 
outcomes (the concave part of φ), and strong pessimism toward low to medium 
outcomes (its convex part). Commonly used in cumulative prospect theory (see 
(Tversky & Kahneman, 1992)), the inverse S-shaped probability weighting function 
is interpreted in terms of cognitive ability after Wakker (2010: pp. 203 sqq) who called 
it “likelihood insensitivity”, in the sense that people fail to distinguish sufficiently 
variations of probabilities for medium, usual outcomes, but are overly sensitive when 
these changes concern best ranked and worst ranked unusual outcomes. Obviously, 
a symetrical interpretation can be given to the less common S-shaped probability 
weighting function (Figure 1 and Figure 2), which can be viewed as an expression of 
what might be called “unlikelihood insensitivity”. 

The second point of view makes a distinction between what is usually refered to 
as weak pessimism and weak optimism (Cohen, 1995). At the difference of strong 
pessimism and strong optimism, weak pessimism and weak optimism are implicitly 
based on the interpretation of ( )( )iG xϕ  as the transformed probability which we 
associate to a minimum additional utility ( ) ( )1i iu x u x −−  (see supra n. 13). In an 
expected utility framework, we know that ( )( ) ( )i iG x G xϕ =  for each i. So that 
pessimism can be seen as doing worse than expected utility, and optimism as doing 
better than it. Weak pessimism therefore occurs (resp., weak optimism) when 

( )( ) ( )i iG x G xϕ ≤  (resp., ( )( ) ( )i iG x G xϕ ≥ ), the probabilities of additional 
utilities being underweighted (resp., overweighted). It is obvious that strong 
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pessimism implies weak pessimism (and strong optimism implies weak optimism), 
whereas the reverse is not true. The previous issue of the convexity or concavity of 
the probability weighting function is here replaced by the question of knowing 
whether φ lies below the bisector (weak pessimism) (see Figure 2, Figure 3, Figure 5) 
or above it (weak optimism) (see Figure 4, Figure 6, Figure 7). Consequently, S-shaped 
or inverse S-shaped probability weighting functions are now significant only when 
they cross the bisector. When φ is inverse S-shaped crossing the bisector (Figure 8), 
weak optimism prevails locally for relatively high outcomes (with probabilities of 
winning at least this outcome belonging to the interval between 0 and the abciss *p  
of the point of intersection of φ and the bisector) because the corresponding part of 
φ lies above the bisector; and weak pessimism prevails locally for relatively low 
outcomes (with probabilities of winning at least this outcome belonging to the 
interval between *p  and 1) because the corresponding part of φ lies below the 
bisector. Of course, an S-shaped φ crossing the bisector (Figure 1) is interpreted in a 
symetrical way. 

b) On the attitudes toward risk 
Following (Rothschild & Stiglitz, 1970)’s seminal paper, we are used to 

distinguish weak and strong risk-aversion (resp., risk-seeking; risk-neutrality 
being equivalent to risk-aversion and risk-seeking). Both provide answers to 
different questions. A decision-maker is said to be weakly risk-averse (resp., 
weakly risk-seeker), if he or she prefers a lottery L to its expected value ( )LE x  
(resp., the expected value ( )LE x  of a lottery L to this lottery). By contrast, a 
decision-maker is strongly risk-averse (resp., strongly risk-seeker) when, given a 
pair of lotteries L1 and L2 with equal means such that L1 is stochastically 
dominating L2 at degree 218, L1 (resp., L2) is preferred to L2 (resp., L1). Weak risk 
attitude is the result of a comparison between a risky distribution and a certain 
outcome, whereas strong risk attitude denotes a comparison between two risky 
distributions. An intermediary concept was introduced by Quiggin (1992) in 
relation to what was to become known as rank-dependent utility: monotone risk-
aversion (resp., monotone risk-seeking) denotes a situation where a decision-
maker prefers L1 to a lottery L2 (resp., L2 to L1) when L2 is a monotone increase in 
risk of L1

19. Strong, monotone and weak risk attitudes are equivalent in standard 
expected utility, when the decision weights are equal to the corresponding 
probabilities, since they all depend on the concavity (risk-aversion) or the 
convexity (risk-seeking) of the utility function, which incorporates the whole 
relevant information on the attitude toward risk. Such is the case when 0q =  
and 1k = , so that the decision weights iµ  are equal to the corresponding 

 

 

18A lottery 1L  (whose cumulative distribution function is 1F ) is stochastically dominating another 

lottery 2L  (whose cumulative distribution function is 2F ) at degree 2 when, for all x belonging to 

[ ]1, nx x , ( ) ( )( )
1

1 2 d 0
x

x
F s F s s− ≤∫ . 

19
2L  is a monotone increase in risk of 1L  if 2 1L L Z= + , with Z being comonotone to 1L  and 

( ) 0E Z = . On the different concepts of attitude toward risk, see (Cohen, 1995). 
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probabilities ip . Because his or her behaviour boils down to expected utility 
when 1k = , a simple hyperbolic probability discounter ( 0q = ) who is weakly 
risk-averse (weakly risk-seeker) is also strongly risk-averse (strongly risk-seeker) 
and monotonely risk-averse (monotonely risk seeker). 

But in all other cases, when the utility of a lottery is given by (16), the properties 
of the utility function u alone are not sufficient to determine the attitude toward 
risk: it now depends on the properties of both the utility function u and the 
probability weighting function φ. Let us therefore turn to the properties of the 
utility function. Assume, for sake of simplicity, that it is bi-differentiable, and 
either concave or convex. The concavity and the convexity of u are currently 
interpreted as, respectively, a decreasing sensitivity and an increasing sensitivity 
to outcomes. In a probability discounting framework like the one of (16), the risk 
attitude carried on by the utility function can be either reinforced or thwarted by 
the attitude toward probabilities carried on by the probability weighting function. 
We rely explicitly on some results concerning rank-dependent utility and adapted 
to q-discounting in order to account for the effects on risk attitude of the 
interaction between the sensitivity to outcomes (u) and the attitude toward 
probability (φ). 

The first result is from Quiggin (1992) and Cohen (1995). It shows that strong 
risk aversion implies monotone risk aversion which implies weak risk aversion and, 
in the same way, that strong risk seeking implies monotone risk seeking which 
implies weak risk seeking. The second result, from Hong, Karni, & Safra (1987) 
states on the one hand, that decreasing sensitivity and strong pessimism is 
equivalent to strong risk aversion, on the other it states that increasing sensitivity 
and strong optimism is equivalent to strong risk seeking. The third result is due to 
Chateauneuf & Cohen (1994). It highlights the link between weak attitude toward 
risk and weak attitude toward probability, in the sense that weak risk aversion 
implies weak pessimism and weak risk seeking implies weak optimism. The fourth 
result is also from Chateauneuf & Cohen (1994). It aims at finding the extent of 
weak pessimism (resp., weak optimism), which can overcome increasing sensitivity 
(resp., decreasing sensitivity) so that weak risk aversion (resp., weak risk seeking) is 
made possible. It states that whatever ,x y , with x y> , whatever [ ]0,1p∈ , if  

there exists 1g ≥  such that ( ) ( ) ( )u x u y
u x g

x y
−

′ ≤
−

 and ( ) gp pϕ ≤ , then weak 

risk aversion is satisfied. Likewise, whatever ,x y , with x y> , whatever [ ]0,1p∈ , 

if there exists 1h ≥  such that ( ) ( ) ( )u x u y
u y h

x y
−

′ ≤
−

 and ( ) ( )1 1 hp pϕ ≥ − − ,  

then weak risk seeking is satisfied. The fifth result is from Quiggin (1982, 1992); see 
also (Chateauneuf & Cohen, 1994)). It says that when u is concave (resp., convex), 
monotone risk aversion, weak risk aversion and weak pessimism are equivalent 
(respectively, monotone risk seeking, weak risk seeking and weak optimism are 
equivalent). Finally the last result that we use is due to Chateauneuf, Cohen, & 
Meilijson (2005). It improves Chateauneuf & Cohen (1994) by relying on indexes of 
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pessimism or optimism on the one hand, and on indexes of non-concavity or non 
convexity of the utility function on the other hand. This result states that monotone 
risk aversion is equivalent to uG Pϕ≤ , and monotone risk seeking is equivalent to  

uT Oϕ≤ , where 
( )
( )

supu
y x

u x
G

u y<

′
=

′
 is an index of non-concavity ( 1uG ≥  and is equal 

to 1 when u is concave), 
( )
( )

supu
y x

u y
T

u x<

′
=

′
 is an index of non-convexity ( 1uT ≥  and 

is equal to 1 when u is convex), 

( )
( )

0 1

1

inf 11p

p
p

P p
p

ϕ

ϕ
ϕ

< <

−

= ≥
−  is an index of pessimism, 

and 

( )
( )

0 1

1
inf

1
p

p
p

O p
p

ϕ

ϕ
ϕ

< <

−
=

−

 an index of optimism. The result of Chateauneuf, Cohen, 

& Meilijson (2005) therefore expresses situations where pessimism (resp. optimism)  
compensates the convexity (resp. concavity) of the utility function. It can be shown 
that when q-discounting occurs, P kϕ =  and 1O kϕ = , which are both obtained 
when p tends to 1. So that the result of Chateauneuf, Cohen, & Meilijson (2005) can 
be reformulated as:  

Monotone Risk Aversion
Monotone Risk Seeking 1

u

u

G k
T k

⇔ ≤
 ⇔ ≤

 

Drawing on the above results from the literature, it it has become possible to 
determine, in Propositions 1, 2 and 3, the various types of attitudes toward risk 
generated by the combination between an attitude toward probabilities expressed 
by the properties of φ, and an attitude toward output which comes from the 
properties of u. 

It is commonsense to claim that all this depends on the action of the two 
parameters, k and q. In the case of decision in time, their respective function 
seems rather clear (see, for instance, (Takahashi, 2007a: pp. 639-640) and (Munoz 
Torrecillas et al., 2018: pp. 191-192)). k is usually perceived as a parameter of 
“impulsivity”, which we can understand as “impatience”, since it increases the 
discounting weight of physical waiting time. And q is a parameter of (time-) 
consistency, since when it moves away from 1, it also makes exponential 
discounting more and more distant. Regarding decision in risk, q separates 
situations of non-optimism (in which global risk-seeking of any type is 
impossible) when it is greater than 0 and smaller than 1 (Proposition 1) from 
situations of non-pessimism (in which global risk-aversion, also of any type, is 
impossible) when it is less than 0 (Proposition 3). Rather than a parameter of 
“risk-aversion”, as Takahashi et al. (2013: p. 877) first called it, k plays a crucial 
part as a sophisticated parameter of pessimism: it constitutes the upper-bound 
for the index of non-concavity uG  in order to obtain monotone risk-aversion; 
or it represents, through 1/k, the upper-bound for the index of non-convexity uT  
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to produce monotone risk-seeking. This shows that appropriate values of k can 
compensate either the concavity or the convexity of the utility function to produce 
either monotone risk-seeking in the first case, or monotone risk-aversion in the 
second case. And if k is either too large or too small for this, it remains possible 
to have at least sufficient conditions to obtain weak risk-aversion or weak-risk 
seeking (Chateauneuf & Cohen, 1994). When it is smaller than 1 (when 0 1q< < ) 
or greater than 1 (when 0q < ), k generates S-shaped or inverse S-shaped 
probability weighting functions φ which cross the bisector, so that none of the 
basic global attitudes toward risk can exist. In all other cases, at least weak 
optimism or weak pessimism occurs, so that the necessary condition for any 
conception of risk aversion or risk seeking is satisfied (Chateauneuf & Cohen, 
1994). At last, the relation between both parameters, k and q, allows determining 
the range of their relative values for which strong risk attitudes are possible: if q  

lies between 0 and 1, 1

1
2

k q≥
−

 generates strong pessimism, thus determining 

strong risk-aversion with u concave; symmetrically, if q is less than 0, 1

1
2

k q≤
−

  

generates strong optimimism, and strong risk-seeking with u convex (Hong, 
Karni, & Safra, 1987). 

4. Concluding Remarks 

Emerging from the intuition that probability entails a more or less long delay 
before winning, probability discounting has shown to be fruitful. Though usually 
avoiding the use of an explicit utility function, it could integrate it and give rise to 
a more complete representation of risky choices. Originally presented in the 
framework of 2-issues lotteries, its cautiousness extension to the case of n-issues 
lotteries would face today’s well-known drawbacks associated with a one-to-one 
transformation of probabilities, like the violation of stochastic dominance of 
degree 1. This is why the same kind of transformation as the one in use for rank-
dependent utility has been employed. The transformation therefore concerns not 
a single delay or a single probability before winning, but the average delay before 
obtaining at least a certain reward, or the (decumulated) probability of getting at 
least this reward. The effects of this transformation on the rationality of behaviour 
and the attitude towards risk depend on the shape of the q-discounting function, 
which applies to both time and probability. 

An immediate conclusion can be drawn regarding rationality both in time 
and in risk. Whereas appropriate values of the parameters of the q-discounting 
function allow reaching the standard criteria of time-rationality (stationarity, 
through exponential discounted utility) and risk-rationality (independence, 
through expected utility), they cannot be fulfilled together, the latter being a 
particular case of hyperbolic discounted utility. The attitude toward risk depends 
on both the attitude toward outcomes, embedded in the utility function, and on 

https://doi.org/10.4236/tel.2024.145101


M. A. Diaye et al. 
 

 

DOI: 10.4236/tel.2024.145101 2062 Theoretical Economics Letters 
 

the attitude toward probabilities expressed in extended probability discounting. 
In a trivial way, the concavity or convexity of the utility function brings respectively 
risk-aversion or risk-seeking. But these have to be combined with the attitude 
toward probabilities shown by the q-discounting function in a rank-dependent 
utility framework. Now, in this paper, we provide a unifying framework in which 
according to the values of its parameters, we obtain the whole range of the 
properties of the probability weighting function that is usually acknowledged in 
the literature. This allows for the distinguishing between the different types (weak 
and strong) of pessimism and optimism toward probability, and to determine the 
various attitudes toward risk generated by the combination of a utility function 
and probability discounting. 

Over the last thirty years or so, probability discounting has shown that in a large 
variety of cases, it is an experimentally relevant procedure to account for behaviour 
under risk. From a theoretical point of view, our generalisation leads to extending 
its scope and clarifying its meaning in terms of rationality and attitude toward 
risk. The main limitation of our work is that it does not explain how external 
factors (such as social interactions or an exogenous shock) can modify the way 
risk and time interact (Bergeot & Jusot, 2024). 
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