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ASYMMETRIC NORMED BAIRE SPACE.

MOHAMMED BACHIR

Abstract. We prove that an asymmetric normed space is never a Baire
space if the topology induced by the asymmetric norm is not equivalent
to the topology of a norm. More precisely, we show that a biBanach
asymmetric normed space is a Baire space if and only if it is isomorphic
to its associated normed space.
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1. Introduction

The question of knowing under what conditions quasi-metric spaces are
Baire spaces, has been treated by several authors (the definition of quasi-
metric space will be reminded later). There exist some positive results in
this direction which can be found for example in [13] and [9] (see also [5]).
However, it turns out that in the case of biBanach asymmetric normed spaces,
the result is positive if and only if the topology itself induces a topology of
a norm. Indeed, the main result of this note is precisely to show that if an
asymmetric normed space is not isomorphic to its associated normed space,
then it is not a Baire space (Theorem 2). Consequently, in asymmetric normed
spaces, the conditions given in [9, Theorem 2.1] implicitly implies that these
spaces are isomorphic to their associated normed spaces (in fact, we think that
the condition of quasi-regularity in [9] implies that the index of symmetry
introduced in [3], is strictly bigger than zero and so the asymmetric norm
is equivalent to the associated norm). We do not know if the result of this
paper extends to the general case of quasi-metric spaces (see Open quastion
1). However, we prove using our main result, that the semi-Lipschitz free
space over any quasi-metric space is a Baire space if and only if the quasi-
metric of the space is equivalent to its symmetrized metric. The concept of
semi-Lipschitz free space over a quasi-metric space was introduced recently
by A. Daniilidis, J. M. Sepulcre and F. Venegas in [7], in the same way as the
classical Lipschitz free space of Godefroy-Kalton in [12] (see also Section 3).
It follows easily from the results of this note that if the semi-Lipschitz-free
over a bicomplete quasi-metric space is a Baire space then it will be the same
for the quasi-metric space. The converse of this fact remains an open question

1



2 MOHAMMED BACHIR

(see Open question 2, at the end of the paper). The tool used to establish
our results is based on the use of the index of symmetry introduced recently
in [3].

2. Notation and Definitions

In this section, we will recall the classical notions that will be used sub-
sequently. For literature on quasi-hemi-metric, asymmetric normed spaces,
semi-Lipschitz functions and their applications, we refer to [5], where the de-
velopement of Functional Analysis on these spaces is detailed. We refer also to
the various studies developed in [10, 11], [6], [1, 2], [14] and [8]. Quasi-metric
spaces and asymmetric norms have recently attracted a lot of interest in mod-
ern mathematics, they arise naturally when considering non-reversible Finsler
manifolds [4, 8, 15]. For an introduction and recent study of asymmetric free
spaces (or semi-Lipschitz free spaces), we refer to the recent paper [7].

Definition 1. A quasi-hemi-metric space is a pair (X, d), where X 6= ∅ and

d : X ×X → [0,+∞)

is a function, called quasi-hemi-metric (or quasi-hemi-distance), satisfying:
(i) ∀x, y, z ∈ X : d(x, y) ≤ d(x, z) + d(z, y) (triangular inequality);
(ii) ∀x, y ∈ X : x = y ⇐⇒ [d(x, y) = 0 and d(y, x) = 0].
A quasi-metric space is a pair (X, d) satisfying (i) and the following con-

dition (ii′): ∀x, y ∈ X : x = y ⇐⇒ d(x, y) = 0.

We define respectively the open and closed balls centered at x with radious
r ≥ 0 as follows

B(x, r) := {y ∈ X : d(x, y) < r}.

B[x, r] := {y ∈ X : d(x, y) ≤ r}.

In a similar way, we define asymmetric norms on real linear spaces as follows.

Definition 2. Let X be a real linear space. We say that ‖ · | : X → R
+ is an

asymmetric norm on X if the following properties hold.

(i) For every λ ≥ 0 and every x ∈ X, ‖λx| = λ‖x|.
(ii) For every x, y ∈ X, ‖x+ y| ≤ ‖x|+ ‖y|.
(iii) For every x ∈ X : ‖x| = ‖ − x| = 0 ⇐⇒ x = 0.

An asymmetric norm on a real linear space (X, ‖ · |) naturally induced a
quasi-hemi-metric as follows :

d(x, y) = ‖y − x|, ∀x, y ∈ X.

Notice that a sequence (xn) converges to x if d(x, xn) = ‖xn − x| → 0 but in
general we dont have that ‖x− xn| → 0.

Every quasi-hemi-metric space (X, d) has an associated metric space (X, ds)
where ds(x, y) := max{d(x, y), d(y, x)} for every x, y ∈ X . An asymmetric
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normed space (X, ‖ · |) has also an associated normed space (X, ‖ · ‖s), where
‖x‖s := max(‖x|, ‖ − x|) for all x ∈ X .

Definition 3. A quasi-hemi-metric space (X, d) is said to be bicomplete if its
associated metric space is complete. An asymmetric normed space is said to
be a biBanach space if its associated normed space is a Banach space.

The space of continuous linear functionals. Let (X, ‖ · |) be an asym-
metric normed spaces and (R, ‖ · |R) be the asymmetric normed real line
equipped with the asymmetric norm ‖t|R = max{t, 0}. A linear functional
p : (X, ‖ · |) → (R, ‖ · |R) is called bounded if there exists C ≥ 0 such that

p(x) ≤ C‖x|, ∀x ∈ X.

In this case, we denote ‖p|♭ := sup‖x|≤1 p(x). We denote X♭ the convex cone

of all bounded functionals from (X, ‖ · |X) into (R, ‖ · |R). It is known (see
[5, Proposition 2.1.2]) that a linear functional p is bounded if and only if it is
continuous, which in turn is equivalent to being continuous at 0. It is easy to
see that p ∈ X♭, if and only if p : (X, ‖ · |) → (R, | · |) is upper semicontinuous.
The constant ‖p|♭ can be calculated also by the formula (see [5, Proposition
2.1.3])

‖p|♭ = sup
‖x|=1

‖p(x)|R.

The topological dual of the associated normed space Xs := (X, ‖ · ‖s) of
X is denoted X∗ and is equipped with the usual dual norm denoted ‖p‖∗ =
sup‖x‖s≤1〈p, x〉, for all p ∈ X∗. Note, from [5, Theorem 2.2.2], that the convex

cone X♭ is not trivial, that is, X♭ 6= {0} whenever X 6= {0}. We always have
that

X♭ ⊂ X∗ and ‖p‖∗ ≤ ‖p|♭, for all p ∈ X♭.

Thus, X♭ is a convex cone included in (X∗, ‖ · ‖∗) but is not a vector space
in general. We say that (X, ‖ · |X) and (Y, ‖ · |Y ) are isomorphic and we use
the notation (X, ‖ · |X) ≃ (Y, ‖ · |Y ), if there exists a bijective linear operator
T : (X, ‖ · |X) → (Y, ‖ · |Y ) such that T and T−1 are bounded.
The space of semi-Lipschitz functions. Let (X, d) be a quasi-hemi-metric
space equipped with a distinguished point x0 (called a base point of X) and
(R, ‖ · |R) be the asymmetric normed real line equipped with the asymetric
norm ‖t|R = max{t, 0}. A function f : (X, d) → (R, ‖ · |R) is said to be
semi-Lipschitz if, there exists a positive real number Cf ≥ 0 such that

‖f(x)− f(y)|R = max{f(x)− f(y), 0} ≤ Cfd(x, y), ∀x, y ∈ X.

In general −f is not semi-Lipschitz function, when f is. The convex cone of
all semi-Lipschitz functions that vanish at x0 will be denoted by SLip0(X).
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We denote

‖f |L := sup
d(x,y)>0

‖f(x)− f(y)|R
d(x, y)

; ∀f ∈ SLip0(X),

3. The main result

We define the index of symmetry of a quasi-hemi-metric space (X, d) in the
same way as that introduced in [3] for asymmetric normed spaces:

c(X) := inf
d(y,x)>0

d(x, y)

d(y, x)
∈ [0, 1].

The conjugate of c(X) is defined by c(X) := supd(y,x)>0
d(x,y)
d(y,x) . In the case

of asymmetric normed space, using the quasi-metric d(x, y) = ‖y− x|, we see
that c(X) = inf‖x|=1 ‖ − x|.

This index measures the degree of symmetry of the quasi-hemi-metric d,
it was firstly introduced and studied in the assymetric normed space in [3],
where a topological classification of asymmetric normed spaces has been given
according to this index. Similarly to the framework of asymmetric normes
spaces, we have the following proposition.

Proposition 1. Let (X, d) be a quasi-hemi-metric space. Then, the following
assertions hold.

(i) c(X) ∈ [0, 1].
(ii) If c(X) > 0, then c(X) = 1

c(X) ∈ [1,+∞[. If moreover, (X, d) is a

quasi-metric space (that is d(x, y) = 0 iff x = y) then, this formula extends to
the case when c(X) = 0, with c(X) = +∞.

(iii) d is a metric if and only if c(X) = 1.

Proof. (i) It is clear that c(X) ≥ 0. Suppose by contradiction that c(X) > 1.
Then, for every x, y ∈ X such that d(y, x) > 0 we have that d(x, y) > d(y, x) >
0. Thus, since d(x, y) > 0, we also have that d(y, x) > d(x, y) which is a
contradiction. Thus, c(X) ∈ [0, 1]. To see (ii), we observe by definition that
c(X)d(y, x) ≤ d(x, y) for all x, y ∈ X (even if c(X) = 0). If, c(X) > 0,
then we get that c(X) ≤ 1

c(X) < +∞. On the other hand, we have that

d(x, y) ≤ c(X)d(y, x) for all x, y ∈ X . This implies that 1
c(X) ≤ c(X). Hence,

we have that c(X) = 1
c(X) ∈ [1,+∞[. If c(X) = 0, then, there exists a pair

of sequences (an, bn) ∈ X × X such that d(bn, an) > 0 and d(an,bn)
d(bn,an)

→ 0.

Since (X, d) is a quasi-metric space and d(bn, an) > 0, then d(an, bn) > 0.

Thus, d(bn,an)
d(an,bn)

→ +∞ and so c(X) = +∞ = 1
c(X) . For part (iii), suppose

that c(X) = 1. In this case, we have that d(x, y) ≥ d(y, x) for all x, y ∈ X ,
which implies that d(x, y) = d(y, x) for all x, y ∈ X . Hence d is a metric. The
converse is trivial. �
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Recently, we proved in [3], the following result that we will use. The difficult
part in this theorem is (iii) =⇒ (i).

Theorem 1. ([3, Corollary 3]) Let (X, ‖ · |) be an asymmetric normed space.
The following assertions are equivalent.

(i) c(X) > 0.
(ii) (X, ‖ · |) is isomorphic to its associated normed space.
(iii) X♭ is a vector space.

Now, we give our main result.

Theorem 2. Let (X, ‖ · |) be an asymmetric normed space. Suppose that
c(X) = 0. Then, (X, ‖ · |) is not a Baire space. If moreover, we assume that
(X, ‖ · |) is biBanach, then the converse is also. Consequently, a biBanach
asymmetric normed space is a Baire space if and only if it is isomorphic to
its associated normed space.

Proof. Suppose that c(X) = 0, it follows using Theorem 1, that X♭ is not a
vector space. Thus, there exists a linear functional p ∈ X♭ such that −p 6∈ X♭.
Since p ∈ X♭, then p is upper semicontinuous from (X, ‖ · |) into (R, | · |). For
each n ∈ N, let Fn := {x ∈ X : −p(x) ≤ n}. Then Fn is a closed subset of
(X, ‖ · |) (since −p is lower semicontinuous) and we have that X = ∪n∈NFn.
Suppose by contradiction that (X, ‖ · |) is a Baire space. Then, there exists
n0 ∈ N such that Fn0

has a non empty interior. Let ε > 0 and x0 ∈ X

such that B‖·|(x0, ε) ⊂ Fn0
. For each h ∈ B‖·|(0, 1), we have that x0 + εh ∈

B‖·|(x0, ε). Thus,

−p(x0 + εh) ≤ n0.

In other words, for each h ∈ B‖·|(0, 1) we have that −p(h) ≤ n0+p(x0)
ε

. This

implies that ‖−p|♭ ≤
n0+p(x0)

ε
< +∞ which contradict the fact that −p 6∈ X♭.

Now, to see the second part, if c(X) > 0, then we have that (see [3,
Proposition 3.]):

c(X)‖x‖s ≤ ‖x| ≤ ‖x‖s, ∀x ∈ X.

Thus, as (X, ‖ · ‖s) is a Banach space, it is a Baire space and so (X, ‖ · |) is
also a Baire space, since its topology is equivalent to the norm topology by
the above inequality. The equivalence between the condition c(X) > 0 and
the fact that (X, ‖ · |) is isomorphic to its associated normed space, is trivial
from the above inequalities. �

Example 1. LetX = l∞(N∗) equipped with the asymmetric norm ‖·|∞ defined
by

‖x|∞ = sup
n∈N∗

‖xn| 1

n
≤ ‖x‖∞,
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where for each t ∈ R and each n ∈ N
∗, ‖t| 1

n
= t if t ≥ 0 and ‖t| 1

n
= − t

n
if

t ≤ 0. Then, for each n ∈ N
∗, we have ‖en|∞ = 1 and ‖ − en|∞ = 1

n
, where

(en) is the canonical basis of c0(N
∗). It follows that c(l∞(N∗)) = 0 and so by

the above theorem, (l∞(N∗), ‖ · |∞) is not a Baire space.

Remark 1. The above theorem extends easily to asymmetric normed cone
with the same proof, replacing ”biBanach” by ”bicomplete” (we refer to [7, 5]
for more informations about asymmetric normed cones and their duals).

Notice that it is easy to see that for any quasi-hemi-metric space (X, d), we
have that c(X)ds ≤ d ≤ ds (c(X) my be equal to zero). Thus, if c(X) > 0 and
(X, d) is bicomplete (equivalently (X, ds) is a complete metric space), then
(X, d) is a Baire space as d is equivalent to the complete metric ds. We dont
know if the converse remains true. We have the following open question.

Open question 1. Does the result of Theorem 2 extends to any quasi-hemi-
metric space? More precisely, if (X, d) is any quasi-hemi-metric space, does
c(X) = 0 implies that (X, d) is not a Baire space?

We are going to prove in Theorem 3 bellow, that the condition c(X) = 0
in quasi-hemi-metric space, is however always equivalent to the fact that the
semi-Lipschitz free space Fa(X) over (X, d) (introduced recently in [7]) is not
a Baire space. We recall below the notion of semi-Lipschitz free space and we
refer to [7] for more details.

The semi-Lipschitz free space. The semi-Lipschitz free space over a quasi-
hemi-metric space Xd := (X, d) was recently introduced and studied in [7].
Its construction is analogous to the classical Lipschitz free space over a metric
space introduced by Godefroy-Kalton in [12]. Notice that the cone SLip0(Xd)
in our paper corresponds to the cone SLip0(Xd) in the paper [7], where d

denotes the conjugate of d defined by d(x, y) = d(y, x) for all x, y ∈ X . For
every x ∈ X we consider the corresponding evaluation mapping

δx : SLip0(Xd) → R

f 7→ f(x)

It is shown in [7, Proposition 3.1] that for each x ∈ X , both the evaluation
functional δx and its opposite −δx belong to the dual cone of SLip0(Xd). The
semi-Lipschitz free space over (X, d), denoted by Fa(X), is defined as the
(unique) bicompletion of the asymmetric normed space (span{δx : x ∈ X}, ‖ ·
|∗), where ‖ · |∗ is the restriction of the norm of the dual cone of SLip0(Xd)
(corresponding to ‖ · |♭ in our notation). It is proved in [7, Theorem 3.5] that
the dual cone of the asymmetric normed space Fa(X) (that is Fa(X)♭, also
denoted by Fa(X)∗ in [7]) is isometrically isomorphic to SLip0(Xd) and that
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(see [7, Proposition 3.3])

δ : (X, d) → (Fa(X), ‖ · |∗)

x 7→ δx

is an isometry onto its image. Therefore, for any x, y ∈ X , we have

d(x, y) = d(y, x) = ‖δx − δy|
∗.

Proposition 2. Let (X, d) be a quasi-hemi-metric space and Fa(X) be the
semi-Lipschitz free space over (X, d). Then, we have that c(Fa(X)) ≤ c(X).
Moreover, we have that

(i) c(X) = 0 if and only if c(Fa(X)) = 0.
(ii) c(X) = 1 if and only if c(Fa(X)) = 1.

Proof. By the definition of the index of symmetry, we have that

c(Fa(X)) := inf
Q∈Fa(X);‖Q|∗>0

‖ −Q|∗

‖Q|∗

≤ inf
x,y∈X;‖δx−δy|∗>0

‖δy − δx|
∗

‖δx − δy|∗

= inf
d(y,x)>0

d(x, y)

d(y, x)

= c(X).

Clearly c(X) = 0 implies that c(Fa(X)) = 0. To see the converse, suppose
that c(Fa(X)) = 0. By applying Theorem 1 to the asymmetric normed space
Fa(X), we get that Fa(X)♭ is not a vector space. Thus, there exists f ∈
Fa(X)♭ = SLip0(Xd) such that −f 6∈ Fa(X)♭ = SLip0(Xd). Thus, there
exists a pair of sequences ((an), (bn)) ⊂ X ×X such that for all n ∈ N \ {0},
we have

nd(an, bn) < f(an)− f(bn) ≤ ‖f |Ld(bn, an).

This implies that: ∀n ∈ N \ {0}, d(bn, an) > 0 and d(an,bn)
d(bn,an)

<
‖f |L
n

→ 0. This

shows that c(X) = 0.
For the second part, if c(Fa(X)) = 1, then clearly c(X) = 1 since the index

of symmetry belongs to the segment [0, 1]. Now, suppose that c(X) = 1,
then by part (iii) of Proposition 1, we have that (X, d) is a metrci space. It
follows that SLip0(Xd) = Lip0(Xd) is the classical Banach space of real-valued
Lipschitz functions on (X, d) that vanish at x0 and so Fa(X) coincides with
the classical Lipschitz-free space which is a Banach space. Thus c(Fa(X)) = 1
by part (iii) of Proposition 1. �

We dont know if c(Fa(X)) = c(X), but it probably seems true.
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Theorem 3. Let (X, d) be a quasi-hemi-metric space and Fa(X) be the semi-
Lipschitz free space over (X, d). Then, c(X) = 0 if and only if (Fa(X), ‖ · |∗)
is not a Baire space.

Proof. The proof follows from Proposition 2 and Theorem 2, noting that
(Fa(X), ‖ · |∗) is a biBanach space by construction. �

From the above result, we can reformulate the remark just before the Open
question 1, as follows.

Proposition 3. Suppose that (X, d) is a bicomplete quasi-hemi-metric space
such that (Fa(X), ‖ · |∗) is a Baire space. Then (X, d) is also a Baire space.

We dont know if the converse in the above proposition is true in general.

Open question 2. Let (X, d) be a quasi-hemi-metric space. Suppose that
(X, d) is a Baire space, does (Fa(X), ‖ · |∗) is also a Baire space?

It is clear that Open question 1 and Open question 2, are in fact equivalent.
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10. L.M. Garćıa-Raffi, S. Romaguera, and E.A. Sánchez-Pérez, The dual space of an asym-
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90 rue Tolbiac, 75634 Paris cedex 13, France

Email address: Mohammed.Bachir@univ-paris1.fr


