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POROSITY IN THE SPACE OF HÖLDER-FUNCTIONS.

MOHAMMED BACHIR

Abstract. Let (X, d) be a bounded metric space with a base point 0X ,
(Y, ‖·‖) be a Banach space and Lipα

0
(X, Y ) be the space of all α-Hölder-

functions that vanish at 0X , equipped with its natural norm (0 < α ≤

1). Let 0 < α < β ≤ 1. We prove that Lipβ
0
(X, Y ) is a σ-porous subset

of Lipα
0
(X, Y ), if (and only if) inf{d(x, x′) : x, x′ ∈ X; x 6= x′} = 0 (i.e.

d is non-uniformly discrete). A more general result will be given.

2010 Mathematics Subject Classification: 26A16; 54E52; 47L05; 46B25
Keyword, phrase: vector-valued Lipschitz and Hölder-functions, vector-
valued Linear operators, σ-porosity, barrier cone.

1. Introduction

The main result of this note is Theorem 1, which gives a condition for some
class of subsets of Lipschitz functions to be σ-porous subsets. The result in the
abstract, as well as all the other results of this note, are just a very immediate
consequence of this main result. However, the main motivations which led
to the main theorem of this note, was precisely the result mentioned in the
abstract.

Given a metric space (X, d) with a distinguished point 0X (called a base
point of X) and a Banach space (Y, ‖ · ‖), we denote by Lip0(Xd, Y ) (or by
Lip0(X,Y ), if no ambiguity arises) the Banach space of all Lipschitz functions
from X into Y that vanish at the base point 0X , equipped with its natural
norm defined by

‖f‖L := sup{‖f(x)− f(x′)‖
d(x, x′)

: x, x′ ∈ X ;x 6= x}, ∀f ∈ Lip0(Xd, Y ).

We denote simply Lip0(Xd) or Lip0(X), if Y = R. The space L(X,Y ) denotes
the space of all linear bounded operators from X into Y . The space X∗

denotes the topological dual of X . Notice that the space Lip0(X,Y ) can be
isometrically itentified to L(F(X), Y ) where F(X) is the free-Lipschitz space
over X introduced by Godefroy-Kalton in [2]. Let us recall the definition of
σ-porosity.
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2 MOHAMMED BACHIR

Definition 1. Let (F, d) be a metric space and A be a subset of F . A set A
of F is called porous if there is a c ∈ (0, 1) so that for every x ∈ A there are
(yn) ⊂ F with yn → x and so that B(yn, cd(yn, x)) ∩ A = ∅ for every n (We
denote by B(z, r) the closed ball with center z and radius r). A set A is called
σ-porous if it can be represented as a union A = ∪+∞

n=0An of countably many
porous sets (the porosity constant cn may vary with n).

Every σ-porous set is of first Baire category. Moreover, in R
n, every σ-

porous set is of Lebesque measure zero. However, there does exist a non-σ-
porous subset of Rn which is of the first category and of Lebesgue measure
zero (for more informations about σ-porosity, we refer to [8] and [6]).

The property (P). Let (X, d) be a metric space and Y be a Banach space.
Let F be a nonempty (closed) convex cone of Lip0(X,Y ). We say that F
satisfies property (P) if there exists a positive constant KF > 0 depending
only on F such that:

(P) ∀(x, x′) ∈ X ×X, ∃p ∈ F : ‖p‖L ≤ KF and ‖p(x)− p(x′)‖ = d(x, x′).

This property is related to the Hahn-Banach theorem and norming sets.

Examples 1. The property (P) satisfied in the following cases:
(i) if X is a normed space and F contains the space X∗.e := {x 7→ p(x).e :

p ∈ X∗}, where e ∈ Y is a fixed point such that ‖e‖ = 1.
(ii) if (X, d) is a metric space and F contains the functions dz : x 7→

d(x, z).e, for all z ∈ X , where e ∈ Y is a fixed point is such that ‖e‖ = 1.
(iii) In particular, the space Lip0(X,Y ) satisfies the property (P). If more-

over, X is a normed space, then L(X,Y ) has the property (P) too.

Proof. (i) By the Hahn-Banach theorem, for all x ∈ X there exists x∗ ∈ X∗

such that ‖x∗‖ = 1 and x∗(x) = ‖x‖. Then, for each x ∈ X , we consider the
continuous linear map px = x∗.e : X → Y defined by px(z) = x∗(z)e for all
z ∈ X , and the property (P) is satisfied.

(ii) Immediat.
(iii) This part follows from (i) and (ii) respectively. �

2. The main result

We are going to give the proof of the main result of this note. Let (X, d)
be a metric space with a base point 0 and Y be a Banach space. Let F ⊂
Lip0(X,Y ) and φ : X×X → R

+ be a positive function such that φ(x, x′) = 0
if and only if x = x′. For each real number s > 0, we denote:

Nφ,s(F ) := {f ∈ F : sup
x,x′∈X;x 6=x′

‖f(x)− f(x′)‖
φ(x, x′)

≤ s},

Nφ(F ) := {f ∈ F : sup
x,x′∈X;x 6=x′

‖f(x)− f(x′)‖
φ(x, x′)

< +∞}.
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Notice that Nφ(F ) = ∪k∈NNφ,k(F ) and Nψ(F ) ⊂ Nφ(F ) if ψ ≤ φ.

Theorem 1. Let F be a nonempty (closed) convex cone of Lip0(X,Y ) satis-
fying (P). Let φ : X×X → R

+ be any positive function such that φ(x, x′) = 0

if and only if x = x′. Suppose that inf{φ(x,x
′)

d(x,x′) : x, x′ ∈ X ;x 6= x′} = 0, then

for every positive real number s > 0, we have that Nφ,s(F ) is a porous subset
of (F, ‖ · ‖L). Consequently, the following assertions are equivalent.

(1) Nφ(F ) 6= F .

(2) inf{φ(x,x
′)

d(x,x′) : x, x′ ∈ X ;x 6= x′} = 0.

(3) Nφ(F ) is a σ-porous subset of (F, ‖ · ‖L).

Proof. (1) =⇒ (2). Suppose that α := inf{φ(x,x
′)

d(x,x′) : x, x′ ∈ X ;x 6= x′} > 0,

then φ(x, x′) ≥ αd(x, x′) for all x, x′ ∈ X . It follows that for every f ∈ F , we
have that

sup
x,x′∈X;x 6=x′

‖f(x)− f(x′)‖
φ(x, x′)

≤ ‖f‖L sup
x,x′∈X;x 6=x′

d(x, x′)

φ(x, x′)
≤ ‖f‖L

α
< +∞.

Thus, Nφ(F ) = F . Part (3) =⇒ (1) is trivial.

Let us prove that if inf{φ(x,x
′)

d(x,x′) : x, x′ ∈ X ;x 6= x′} = 0, then for every s > 0,

we have that Nφ,s(F ) is a porous subset of (F, ‖ · ‖L), this gives in particular

(2) =⇒ (3). Indeed, if inf{φ(x,x
′)

d(x,x′) : x, x′ ∈ X ;x 6= x′} = 0, then there exists

a pair of sequences (an), (bn) ⊂ X such that 0 < rn := φ(an,bn)
d(an,bn)

→ 0. By

assumption, there exists KF > 0 and a sequence (pn) ⊂ F such that ‖pn‖L ≤
KF and ‖pn(an) − pn(bn)‖ = d(an, bn), for all n ∈ N. Let f ∈ Nφ,s(F ), then

we have that supx,x′∈X;x 6=x′

‖f(x)−f(x′)‖
φ(x,x′) ≤ s. It follows that

‖(f +
√
rnpn)(an)− (f +

√
rnpn)(bn)‖

φ(an, bn)
≥ √

rn
‖pn(an)− pn(bn)‖

φ(an, bn)
− ‖ − (f(an)− f(bn))‖

φ(an, bn)

≥ √
rn
d(an, bn)

φ(an, bn)
− sup
x,x′∈X;x 6=x′

‖f(x)− f(x′)‖
φ(x, x′)

≥ 1√
rn

− s

Since, rn → 0, when n→ +∞, there exists a subsequence (rnm
) such that

1√
rnm

> 4s, ∀m ∈ N.

We set fm = f +
√
rnm

pnm
∈ F , for all m ∈ N. We have that

‖fm − f‖L =
√
rnm

‖pnm
‖L ≤ KF

√
rnm

→ 0 when m→ +∞.
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Let us prove that B(fm,
1

2KF
‖fm−f‖L) ⊂ F \Nφ,s(F ) for all m ∈ N. Indeed,

let g ∈ B(fm,
1
2‖fm − f‖L), then we have using the above informations that

‖g(anm
)− g(bnm

)‖
φ(anm

, bnm
)

≥ ‖fm(anm
)− fm(bnm

)‖
φ(anm

, bnm
)

− ‖(fm − g)(anm
)− (fm − g)(bnm

)‖
φ(anm

, bnm
)

≥ (
1√
rnm

− s)− ‖fm − g‖L
d(anm

, bnm
)

φ(anm
, bnm

)

≥ (
1√
rnm

− s)− 1

2KF

‖fm − f‖L
d(anm

, bnm
)

φ(anm
, bnm

)

≥ (
1√
rnm

− s)− 1

2

√
rnm

1

rnm

=
1

2
√
rnm

− s

> s.

Thus, we have that g ∈ F \ Nφ,s(F ) and so that B(fm,
1
2‖fm − f‖L) ⊂

F \ Nφ,s(F ) for all m ∈ N. Thus, Nφ,s(F ) is porous in F (with c = 1
2KF

). It

follows that Nφ(F ) = ∪k∈NNφ,k(F ) is σ-porous in (F, ‖ · ‖L). �

2.1. Immediate consequences. We deduce immediately the result men-
tioned in the abstract.

Corollary 1. Let X1 := (X, d1) and X2 := (X, d2) be a set equipped with
two metrics such that d1 ≤ d2 and let (Y, ‖ · ‖) be a Banach space. Then,
Lip0(X1, Y ) is a σ-porous subset of Lip0(X2, Y ) if (and only if) d1 and d2 are
not equivalent, if and only if Lip0(X1, Y ) 6= Lip0(X2, Y ).

Proof. We use Theorem 1 and part (iii) of Exemple 1 observing the following
equality Lip0(X1, Y ) = Nd1(Lip0(X2, Y )). �

Notice that if 0 < α ≤ 1 and d is a metric, so is dα, hence the above
corollay applies to the space of α-Hölder-functions that vanish at 0X which
is Lipα0 (X,Y ) := Lip0(Xdα , Y ). Notice also that if 0 < α < β ≤ 1 and d

is bounded, then Lipβ0 (X,Y ) ⊂ Lipα0 (X,Y ). The metrics dα and dβ are not

equivalent if and only if, inf{ d
β(x,x′)
dα(x,x′) : x, x′ ∈ X ;x 6= x′} = 0, if and only if

inf{d(x, x′) : x, x′ ∈ X ;x 6= x′} = 0 (since β > α). Thus, we get the result of
the abstract.

Corollary 2. Let (X, d) be a bounded metric space with a base point 0X ,

(Y, ‖·‖) be a Banach space and 0 < α < β ≤ 1. Then, Lipβ0 (X,Y ) is a σ-porous
subset of Lipα0 (X,Y ), if and only if inf{d(x, x′) : x, x′ ∈ X ;x 6= x′} = 0.

Similarly to the case of lipschitz spaces, we obtain the following results in
the linear case.
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Corollary 3. Let X1 := (X, ‖ · ‖1) and X2 := (X, ‖ · ‖2) be a linear space
equipped with two norms such that ‖ · ‖1 ≤ ‖ · ‖2 and let (Y, ‖ · ‖) be a Banach
space. Then, L(X1, Y ) is a σ-porous subset of L(X2, Y ) if and only if ‖ · ‖1
and ‖ · ‖2 are not equivalent if and only if L(X1, Y ) 6= L(X2, Y ).

Proof. We use Theorem 1 and part (iii) of Exemple 1 after observing that
L(X1, Y ) = N‖·‖1

(L(X2, Y )). �

Example 1. Let i : (l1(N), ‖ · ‖1) → (l1(N), ‖ · ‖∞) be the continuous identity
map. Then the image of the adjoint i∗ of i is a σ-porous subset of (l∞(N), ‖ ·
‖∞).

We give in the following corollary a connexion between the surjectivity
of the adjoint T ∗ of a one-to-one bounded linear operator T and the non-
σ-porosity of its image (see in this sprit, the open mapping theorem in [7,
Theorem 2.11]).

Proposition 1. Let (X, ‖ · ‖X) and (Z, ‖ · ‖Z) be Banach spaces. Let T :
X → Z be a one-to-one bounded linear operator and T ∗ its adjoint. Then,
the following assertions are equivalent.

(i) T ∗(Z∗) is not a σ-porous subset of X∗.
(ii) There exists α > 0 such that α‖x‖X ≤ ‖T (x)‖Z for all x ∈ X.
(iii) T ∗ is onto.

Proof. Since T : X → Z is a one-to-one bounded linear operator, then, the
following map define another norm on X :

‖x‖ :=
‖T (x)‖Z
‖T ‖ ≤ ‖x‖X , ∀x ∈ X.

Let us denote X1 := (X, ‖ · ‖). By Corollary 3, applied with Y = R, we
have that X∗

1 is a σ-porous subset of X∗ if and only if ‖ · ‖ and ‖ · ‖X are
not equivalente. Thus, if (ii) is not satisfied (that is, ‖ · ‖ and ‖ · ‖X are not
equivalente) then, since T ∗(Z∗) ⊂ X∗

1 we get that T ∗(Z∗) is contained in a
σ-porous subset of X∗. Hence, (i) =⇒ (ii) is proved. Now, suppose that
(ii) holds, it follows that T (X) is closed in Y . Let x∗ ∈ X∗ and define φ on
T (X) by φ(T (x)) := x∗(x) for all x ∈ X . Clearly φ is well defined (since T
is one-to-one) and linear continuous on T (X). Thus, φ extends to a linear
continuous functional y∗ ∈ Y ∗ and we have T ∗(y∗) = y∗ ◦ T = x∗. Hence, T ∗

is onto and (ii) =⇒ (iii) is proved. Part (iii) =⇒ (i), is trivial. �

Let (X, ‖ · ‖) be a normed space, and let S be a nonempty subset of the
dual space X∗. The set S is called separating if: x∗(x) = 0 for all x∗ ∈ S

implies that x = 0. It is called norming if the functional

NS(x) = sup
x∗∈S;x∗ 6=0

|x∗(x)|
‖x∗‖ ,

is an equivalent norm on X (see [2] for the use of this notion).
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Proposition 2. Let (X, ‖ · ‖) be a normed space. Every separating subset
S ⊂ X∗ which is not a σ-porous subset of X∗, is norming.

Proof. It is clear that N(x) ≤ ‖x‖ for all x ∈ X . On the other hand, we have
that

S ⊂ NNS
(X) := {x∗ ∈ X∗ : sup

NS(x)=1

|x∗(x)| < +∞}.

Since S is not contained in a σ-porous subset of X∗, then Nφ(X) must be
non-σ-porous, which implies from Theorem 1 that inf‖x‖=1NS(x) > 0. Hence
NS is equivalent to ‖ · ‖. �

2.2. Coarse Lipschitz function and Lipschitz-free space. Given a met-
ric space (X, d) with a base point 0X , the free space F(X) is constructed as
follows: we first consider as pivot space the Banach space (Lip0(X), ‖ · ‖L) of
real-valued Lispchitz functions vanishing at the base point. Then each x ∈ X

is identified to a Dirac measure δx acting linearly on Lip0(X) as evaluation.
Then the mapping

δX : X → Lip0(X)∗

x 7→ δx

that maps x to δx is an isometric embedding. The Lipschitz-free space F(X)
over X is defined as the closed linear span of δ(X) in Lip0(X). Furthermore,
the free space is a predual for Lip0(X), meaning that F(X)∗ is isometrically
isomorphic to Lip0(X). Let (X, d) and (Y, d′) be two metric spaces, each one
with a base point (0X and 0Y , respectively) and F : X → Y a Lipschitz
function such that R(0X) = 0Y . Then, it is well known (see [2, Lemma 2.2])

that there exists a unique linear operator F̂ : F(X) → F(Y ) such that ‖F‖L =

‖F̂‖ and δY ◦F = F̂ ◦δX . The adjoint of F̂ , namely F̂ ∗ : Lip0(Y ) → Lip0(X),

satisfies F̂ ∗(f) = f ◦ F for all f ∈ Lip0(Y ).
A map F : (X, d) → (Y, d′) is said to be a coarse Lipschitz, if there exist

α, β > 0 such that

αd(x, x′) ≤ d′(F (x), F (x′)) ≤ βd(x, x′), ∀x, x′ ∈ X.

Combining Proposition 1 together with a similar proof, we obtain in the fol-
lowing proposition, a characterization of coarse Lipschitz maps.

Proposition 3. Let (X, d) and (Y, d′) be metric spaces with base points 0X
and 0Y respectively and let F : (X, d) → (Y, d′) be a one-to-one Lipschitz map
such that F (0X) = 0Y . Then the following assertions are equivalent.

(i) The image of F̂ ∗ is not σ-porous in Lip0(X).
(ii) The map F is coarse Lipschitz.

(iii) The adjoint F̂ ∗ is onto.

(iv) The linear map F̂ : F(X) → F(Y ) is coarse Lipschitz.
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Proof. Since, F is one-to-one, we define the following metric on X

d1(x, x
′) :=

1

LF
d′(F (x), F (x′)) ≤ d(x, x′), ∀x, x′ ∈ X,

where LF denotes the constant of Lipschitz of F . Suppose that F is not coarse
Lipschitz, then the metric d1 is not equivalent to the metric d. It follows, using
Corollary 1, that Lip0(X1) is σ-porous subset of Lip0(X), whereX1 = (X, d1).

Now, we observe that Im(F̂ ∗) := {f ◦ F : f ∈ Lip0(Y )} ⊂ Lip0(X1), which

implies that Im(F̂ ∗) is a σ-porous subset of (Lip0(X), ‖·‖L). Thus, we proved
that (i) =⇒ (ii). Let us prove that (ii) =⇒ (iii). Let g ∈ Lip0(X), we need
to show that there exists f ∈ Lip0(Y ) such that g = f ◦ F . Indeed, define
φ : F (X) → R by φ(F (x)) := g(x) for all x ∈ X . The map φ is well defined
since F is one-to-one. On the other hand, φ is Lipschitz on F (X) since F
is coarse Lipschitz. Thus, φ extends to a Lipschitz function f from Y into
R with the same constant of Lipschitz, by the inf-convolution formula (Lφ
denotes the constant of Lipschitz of φ on F (X)): ∀y ∈ Y

f(y) := inf{φ(y′) + Lφd(y, y
′) : y′ ∈ F (X)}.

Hence, f ∈ Lip0(Y ) and f ◦ F (x) = φ(F (x)) = g(x) for all x ∈ X and so
(ii) =⇒ (iii) is proved. Part (iii) =⇒ (i) is trivial. Now, from Proposition1,
we see (iii) ⇐⇒ (iv). �

2.3. Application to the barrier cone and polar of sets. Let X be a
normed space and K be a nonempty subset of X . The barrier cone of K is
the subset B(K) of the topological dual X∗ defined by

B(K) = {x∗ ∈ X∗ : sup
x∈K

x∗(x) < +∞}.

The polar set of K is a subset of the barrier cone of K defined as follows:

K◦ = {x∗ ∈ X∗ : sup
x∈K

x∗(x) ≤ 1}.

The study of barrier cones has interested several authors. It is shown
in [5, Theorem 3.1.1] that for a closed convex subset K of X , we have that
B(K) = X∗ if and only if K is bounded, on the other hand, B(K) is dense
in X∗ if and only if K does not contain any halfline. In general, we know
that B(K) 6= X∗ (see example in [1]). A study of the closure of the barrier
of a closed convex set is given in [1]. As an immediat consequence of main
theorem, we obtain bellow that the barrier cone of some general class of
unbounded subsets is a σ-pourous subset of the dual X∗. This shows that in
general, the barrier cone may be a ”very small” subset of X∗.

We define the classe Φ(X) of positive functions on X (not necessarily con-
tinuous) as follows: φ ∈ Φ(X) if and only if, φ : X → R

+ and satisfies
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(i) φ(λx) = |λ|φ(x) for all x ∈ X and all λ ∈ R

(ii) φ(x) = 0 if and only if x = 0

For every φ ∈ Φ(X), we denote Sφ := {x ∈ X : φ(x) = 1} and Cφ :=
{x ∈ X : φ(x) ≤ 1}. Notice, that in general Cφ is not a convex set (resp. not
closed), if we do not suppose that φ is a convex function (resp. a continuous
function). It is easy to see that

Cφ is bounded ⇐⇒ Sφ is bounded ⇐⇒ inf
x∈X:‖x‖=1

φ(x) > 0.(1)

Thanks to the symmetry of φ ∈ Φ(X) and the fact that B(Cφ) = B(Sφ), we
have using the notation of Theorem 1, that

B(Cφ) = Nφ(X
∗).(2)

The polar of Sφ coincides with Nφ,1(X
∗) and we have

C◦
φ ⊂ S◦

φ = Nφ,1(X
∗).(3)

Now, using (1), (2) and (3) and applying Theorem 1 to the spaces F = X∗

and Y = R (using Exemple 1), we get directly the following informations
about the size of the barrier cone, as well as the polar of a set of the form Cφ
in the dual space.

Corollary 4. Let X be a normed space and φ ∈ Φ(X). If Cφ is not bounded
in X, then the polar C◦

φ is contained in a porous subset of X∗. Moreover, the
followin assertions are equivalent.

(i) B(Cφ) 6= X∗.
(ii) Cφ is not bounded in X.
(iii) B(Cφ) is a σ-porous subset of X∗.

We deduce that, if K is any nonempty subset of X such that Sφ ⊂ K, for
some φ ∈ Φ(X) with Sφ not bounded, then the polar K◦ is contained in a
porous subset of X∗ and the barrier cone B(K) is contained in a σ-porous
subset ofX∗. Notice that ifK is a closed absorbing disk inX , does not contain
a non-trivial vector subspace and is a neighborhood of the origin in X , then
the Minkowski functional φK of K is a continuous norm (with respect to the
norm ‖ · ‖, but not equivalent to it, if K is not bounded) hence φK ∈ Φ(X)
and we have that K = CφK

.
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