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On the Robust Measurement of Inequality

Xiangyu Qu *

Abstract

In practice, a dataset used for calculating inequality index does not always present in a sin-

gle statistic fashion. A robust inequality measure, in the face of multi-valued statistic dataset,

is needed and should take into account both inequality and imprecision concerns in a proper

way. However, we find that a commonly used approach is problematic in imprecision reduc-

tion. We therefore suggest a new approach of robust inequality measure which surmounts the

difficulty. This approach naturally generalizes the Atkinson and Gini indices to measure multi-

valued problem. We finally axiomatize two social welfare functions which induce the robust

Atkinson and the robust Gini indices.

JEL classification: D31, D63, D81

Keywords: Robust inequality index; Social welfare function; Multi-valued dataset

1 INTRODUCTION

In the wake of financial crisis, social conflicts and pandemic, inequality has been one of the major
subjects in economics in recent years (Atkinson, Piketty, and Saez [2011]). While inequality is im-
portant, researchers often have to deal with a paucity of data which makes measuring it a daunting
challenge. In theory, if an economic distribution within a population can be precisely and correctly
summarized in a single statistic, then it is straightforward to measure inequality by, to name a few,
the Atkinson [1970], the Gini [1921] and the Theil [1967] indices1. However, in reality, a data
set we rely on typically does not present itself in a precise way such that we can directly obtain a
distribution in a single statistics. For instance, individual incomes, household wealth, educational

*CNRS, Centre d’Economie de la Sorbonne. Address: 106-112 Boulevard de l’Hôpital, 75013 Paris, France.
Email: xiangyuqu@gmail.com

1We refer to Cowell [2011] for a survey of various inequality indices.



achievement scores and housing values are usually presented in multi-valued form to either encour-
age responses or protect confidentiality. In such multi-valued data, the information provided is the
number of observations between lower and upper limits2. Therefore, measuring inequality in the
face of multi-valued data is not straightforward and calls for a reliable methodology. This paper
addresses the key considerations that must be made when measuring inequality of multi-valued
statistic data.

The bulk of the literature on inequality assumes that if multi-valued data is present, one may
reduce the multi-valued problem to the case of single-value. For example, the midpoint estimator
(Heitjan [1989], Henson [1967]) has been widely used in practice. That is, replacing each indi-
vidual multi-valued income by its mean or median value. Then calculating inequality index solely
bases on individual mean or median values. Alternatively, it is envisaged that one may use clas-
sic inequality measurement with respect to every possible single-valued distribution to reduce the
problem to a choice among a set of index values. We claim that the former approach, the midpoint
reduction approach, is an unsatisfactory approach to the measurement of inequality with multiple
values. We also claim that the latter approach avoid the drawback of the former one and should be
a plausible approach to be applied in practice.

To see our claim, consider a society consisting of two individuals, Ana and Bob, for simplicity.
Suppose that the income of Ana is investigated through survey, therefore, the only information we
know is that her income is between $10,000 and $20,000. However, the income of Bob is inves-
tigated through tax account, therefore, we know exactly that his income is $15,000. According
to midpoint reduction approach, income distribution between Ana and Bob is completely equal-
ized. In other words, society ranks multi-valued distribution ([$10,000, $20,000]; $15,000) and
single-valued distribution ($15,000; $15,000) indifferently. However, we argue that a reasonable
social ordering should rank the latter distribution higher than the former one. Clearly, ($15,000;
$15,000) is a definite equality, but not ([$10,000, $20,000]; $15,000). Since the income of Ana is
not precise, society could not rule out the situation of inequality that Ana’s income is not the same
as Bob’s. Any society who tends to avoid such imprecision should prefer the latter distribution. In
this paper, we would develop a novel inequality measurement to avoid unreasonable ranking raised
by middle point reduction approach.

We observe that the alternative approach may capture the preferences of aversion to both in-
equality and imprecision if we first calculate the inequality of possible distributions and then select
one value based on the set of index values. For instance, suppose that the Gini index is the accepted

2Multi-valued data can be either an interval, like [$10,000, $15,000] for income bracket, or a finite possible num-
bers, like {80, 85, 90} for educational scores.
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measure of inequality. Suppose that lower and upper limits of Ana’s income are most relevant pos-
sible incomes. Therefore, the Gini indices of lower distribution ($10,000; $15,000) and upper
distribution ($20,000; $15,000) are strictly positive and larger than that of ($15,000; $15,000),
which is zero. If a society adopts a (weighted) average of Gini indices of lower and upper dis-
tributions as an inequality measure between Ana and Bob, then it must rank ($15,000; $15,000)
above ([$10,000, $20,000]; $15,000). We therefore aim to develop a novel measure of inequality
that take into account both inequality reduction and aversion to imprecision, and in particular, that
include the above mentioned method.

Our goal is to propose a class of robust measures that is a natural generalization of those widely
used for the measurement of inequality with respect to single-valued distribution. More precisely,
consider a multi-valued distribution F . Let F (F ) define the upper (lower) limit distribution. We
suggest that a society could measure the inequality of F in the following way:

I(F ) = λF · φ(F ) + (1− λF ) · φ(F ),

where φ is a measure of single-valued distribution. The parameter 0 ≤ λF ≤ 1 can be interpreted
as a measure of the social attitude toward inequality of upper limit distribution of F .

We start with Atkinson [1970]- Kolm [1969]- Sen [1973] approach to characterize a class of
social welfare functions that would induce the above measurement. We are particularly interested
in two special cases of function φ, namely the Atkinsion index and the Gini index. On the one
hand, both indices are widely used in inequality literature, the robust version of them, therefore,
should be empirically relevant. On the other hand, their associated social welfare functions are
theoretically meaningful. First, robust Atkinson social welfare function has a separably additive
form, which is normatively appealing. In single value problem, Chambers [2012] demonstrated
that if a social welfare function has a Bergenson-Samuelson form, then more inequality averse
society implies more risk aversion. However, in robust form, though separably additive social
welfare function is a sum of individual utilities, individual utility itself is defined on set of values
rather than singleton value. Therefore, inequality aversion is related to not only risk aversion
but also imprecision aversion. Second, robust Gini social welfare function is non-additive. In
single-valued problem, Gini social welfare function belongs to a family of Choquet integration à
la Schmeidler [1989], which is comonotonically additive. To maintain this plausible property, we
extend this concept from single value to multiple values and demonstrate that our robust Gini index
satisfies this property. Third, both robust indices may potentially connect to political economy
models. In single-valued problem, Salas and Rodríguez [2013] showed that in a class of separably
additive social welfare functions, Atkinson social welfare function accords with the majority voting
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scheme. In a subclass of non-additive social welfare functions, Rodríguez and Salas [2014] showed
that Gini social welfare function accords with majority voting scheme. Therefore, our construction
of robust social welfare function would facilitate to establish the connection between inequality
and political economy models.

We furthermore seek a set of ethical axioms that characterizes the robust Atkinson and robust
Gini social welfare functions. Our axioms are equally plausible in the contexts of both single-
valued and multi-valued situations. That is, our axioms coincide with Atkinson axioms or Gini ax-
ioms in the face of single-valued distribution. However, our axioms would reflect both inequality
and imprecision considerations in the face of multi-valued distribution. There are clearly alterna-
tive indices that can take into account both inequality and imprecision. We delay our comparison
discussions about the strength and weakness with other possibilities in conclusion section.

This paper can also be viewed as an attempt to provide a complementary method for studying
epistemic uncertainty to that developed within subjective uncertainty by Ben-Porath, Gilboa, and
Schmeidler [1997], Gajdos and Tallon [2002], Gajdos and Maurin [2004], Chew and Sagi [2012]
and many others. As Fox and Ülkümen [2011] point out, epistemic uncertainty is about the state
of the world that we do not know but could know in theory, such as uncertainty due to limitations
of the data; and subjective uncertainty is about the state of the world that we cannot know, such
as randomness or chance. It is important to emphasize that multi-valued problem we study be-
longs to the category of epistemic uncertainty. Furthermore, it is not clear what the state space is
under our framework. Although psychological study suggests that people intuitively distinguish
between these two kinds of uncertainty, much less inequality study, in particular theoretical study,
has specifically focused on epistemic uncertainty. Therefore, this paper suggests a novel inequal-
ity index with theoretical foundation under uncertainty when the state space cannot be naturally
constructed.

At least since Atkinson [1970], inequality literature is well connected to decision theory. With
no exception, our robust social welfare functions are related to the concept of maxmin expected
utility of Gilboa and Schmeidler [1989] and other similar concepts, such as α-maxmin expected
utility of Ghirardato, Maccheroni, and Marinacci [2004] and Hurwicz expected utility of Gul and
Pesendorfer [2015]. However, we consider the environment where no state space is presented. In
that sense, objective ambiguity model of Olszewski [2007] is closer to ours. Though concepts are
similar, the motivation and application are significantly different. At a technical level, the main
distinction is that we allow for non-additive measure φ with respect to single-valued distribution.

The next section explores a social welfare approach to construct a robust measure of inequality.
We also discuss how to extend two widely used inequality indices, namely Atkinson and Gini
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indices, to robust indices. Section 3 focus on the robust Atkinson index and the robust Gini index.
We axiomatize the robust Atkinson (Gini) social welfare function, which would induce the robust
Atkinson (Gini) index. Section 4 concludes and discusses alternative measurements. The appendix
contains all proofs.

2 INEQUALITY MEASUREMENT

2.1 Setup

Consider a society N consists of n ≥ 2 individuals. Let X = R+ be the set of individual alloca-
tions. We denote by X the collection of all non-empty compact subsets of X . An allocation profile
is denoted by F = (F1, . . . , Fn), where each Fi ∈ X contains all the possible allocations of indi-
vidual i. An allocation profile is deterministic (or called a distribution), written as f = F , if each
Fi is a singleton, i.e. Fi ∈ X . Let F be the collection of all the possible allocation profiles and let
Xn denote the set of all the deterministic allocation profiles. We denote 1 ∈ Xn the deterministic
profile f where fi = 1 for all i. If no confusion arises, we write deterministic profile f ∈ F if
fi ∈ Fi for each i.

For Y, Z ∈ X , we write Y ≥ Z if y ≥ z for all y ∈ Y and z ∈ Z. For F ∈ F , we denote F the
upper limit distribution in F if F ∈ F and F i ≥ Fi for all i. Similarly we denote F the lower limit
distribution in F if F ∈ F and F i ≤ Fi for all i. Also, for F,G ∈ F , we write F ≥ G if Fi ≥ Gi

for all i.
For f ∈ Xn, we write µ(f) = 1

n

∑n
i=1 fi for the mean of f . Also, let f̃ be the determin-

istic allocation profile obtained from f by rearranging the allocation in an increasing order, i.e.

{f1, . . . , fn} = {f̃1, . . . , f̃n} and f̃1 ≤ . . . ≤ f̃n.

2.2 Robust Inequality Index

To construct a robust inequality index, we adopt Atkinson [1970]- Kolm [1969]- Sen [1973] (AKS)
approach that an inequality index should be a transformation of a social welfare function which
emphasizes the welfare loss due to the inequality in the allocation profile. Formally, a social

welfare function (SWF) W : F → R maps allocation profiles to real numbers.
In order to present a development on welfare theoretic approache to the measurement of in-

equality, we focus on the class of SWF which displays inequality reduction property. To this end,
we assume that SWF should satisfy the following three assumptions. We say a SWF W is Schur-
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concave on deterministic profiles if for all f ∈ Xn and all bistochastic matrices M of order n3,
W (fM) ≥ W (f). We say a SWF W is monotonic if for all F,G ∈ F , W (F ) ≥ W (G) whenever
F ≥ G. We refer to a SWF as regular if it is continuous with respect to Hausdorff distance4,
monotonic and Schur-concavity on deterministic profiles. We assume throughout this section that
W is regular.

Given a regular SWF W , for any allocation profile F we define the equally distributed equiva-

lent ξ(F ) ∈ R as follows:
W (ξ(F ) · 1) = W (F ).

Therefore, ξ(F ) is the level of allocation which if given to each individual will make the existing
profile F socially indifferent. Since W satisfies regularity conditions, this can be used to yield the
equally distributed equivalent as a function ξ : F → R. In other words, given a profile F , ξ(F )

can be uniquely extracted from the above equation. In particular, note ξ is also regular. Further, it
is immediate to see ξ(c · 1) = c for all c > 0.

Due to monotonicity, for F ∈ F , we have

ξ(F ) ≤ ξ(F ) ≤ ξ(F ).

So there exists a unique λF ∈ [0, 1] such that λF ξ(F ) + (1 − λF )ξ(F ) = ξ(F ). Accordingly, we
propose a simple transformation of regular SWF as an index of inequality.

Definition 1. A function I : F → R is said to be a robust index of inequality if, for all F ∈ F
with F 6= 0,

(1) I(F ) = 1−
{
λF

ξ(F )

µ(F )
+ (1− λF )

ξ(F )

µ(F )

}
.

This definition coincides with AKS whenever profile is deterministic. Note that I is defined
on profiles in which each individual has zero allocation is not feasible. Our proposal is plausible
because this index has important properties as the classical index requires.

3A n×n matrix M with nonnegative entries is called a bistochastic matrix order n if each of its rows and columns
sums to unity.

4For every pair of deterministic allocation profiles f, g, the distance between f and g can be induced by a natural
topology, written as d(f, g), onRn. Therefore, the set of allocation profilesF can be equipped with Hausdorff distance
in the following way: for F,G ∈ F ,

dist(F,G) = max
{
max
f∈F

min
g∈G

d(f, g),max
g∈G

min
f∈F

d(f, g)
}
.
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Proposition 1. A robust index of inequality I has the following properties:

(i) Betweeness: Each I(F ) lies between I(F ) and I(F ).

(ii) Schur convexity on deterministic profiles: I(f) ≥ I(fM) for every bistochastic matrix M and

deterministic profile f .

(iii) Normalization: Each I(F ) lies in [0, 1]; and I(F ) = 0 iff F = c · 1 and F = c′ · 1 for some

c ≥ c′ > 0.

We actually can rewrite index I in a weighted average of I(F ) and I(F ).

I(F ) = λF I(F ) + (1− λF )I(F ).

Using this, we can express ξ(F )as

ξ(F ) = λF
[
µ(F )(1− I(F ))

]
+ (1− λF )

[
µ(F )(1− I(F ))

]
.

As noted, the function ξ itself or any increasing transformation function of it can be regarded as
a regular SWF. Thus, ξ implies and is implied inequality indices. However, ξ(F ) is not directly
implied by I(F ), but through I(F ), I(F ) and I(F ). This welfare function is represented as an
increasing function of a weighted sum of one product of the mean of upper limit distribution and
the shortfall of its inequality index from unity, and another product of the mean of lower limit
distribution and the shortfall of its inequality index from unity. It expresses welfare as a trade-off
between equity and efficiency. Such a welfare function is referred to as a boundary reduced-form
welfare function because its arguments summarize the entire distribution in terms of the mean and
inequality of upper limit and lower limit distributions.

2.3 Lorenz Dominance and Robust Inequality

Lorenz [1905] uses a Lorenz curve to present deterministic allocation profile in an illuminating
fashion. The Lorenz domination criterion is widely acknowledged as a fundamental principle to
rank alternative profiles in terms of comparative inequality. In this subsection, we explore the
extension of Lorenz domination from deterministic profiles to general profiles and develop its
relation with SWF.
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Figure 1: {f, f ′} Lorenz dominates g.

Recall that a deterministic profile f is said to Lorenz dominate5 g if

1

nµ(f)

k∑
i=1

f̃i ≥
1

nµ(g)

k∑
i=1

g̃i,

for all k = 1, 2 . . . , n. That is, f Lorenz dominates g if the Lorenz curve of f is nowhere below the
Lorenz curve of g. Now we extend this definition on deterministic profiles to the general profiles.

Definition 2. A profile F Lorenz dominates another profileG, write as F %L G, if for every f ∈ F
and g ∈ G, f Lorenz dominates g.

A profile F Lorenz dominates G if every feasible deterministic profile in F Lorenz dominates
every deterministic allocation inG. Thus, as we can see in Figure (1), if F = {f, f ′} andG = {g},
then F Lorenz dominates G. However, the ranking of profiles generated by the Lorenz domination
comparison is incomplete since, assuming F ′ = {f, g} andG′ = {f ′, g}, we cannot rank F ′ andG′

by the Lorenz domination criterion. Though, %L is incomplete, but it satisfies transitivity. Below
we state the relation between the Lorenz domination criterion and social welfare functions.

Proposition 2. Let F andG be two profiles such that minf∈F µ(f) ≥ maxg∈G µ(g). Then F %L G

if and only if W (F ) ≥ W (G), and W (f) ≥ W (g) for each f ∈ F and g ∈ G.

This result says that a profile and any deterministic profiles in this one rank higher than another
profile and any deterministic profiles in it, respectively, by regular SWF if and only if the Lorenz

5The classic definition of Lorenz domination, such as Atkinson [1970] and Dasgupta, Sen, and Starrett [1973],
assumed that the compared profiles have the same mean, which does not fit in our setting. Therefore, our definition is
an extension of their concept, which has referred to as generalized Lorenz dominance by Shorrocks [1980].
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curves of first profile are nowhere lower than those of latter profile. It also indicates that a regular
SWF is compatible with Lorenz domination criterion. Therefore, restricting attention on regular

SWF to develop robust inequality index is plausible.

2.4 Two Robust Indices

In this section, we extend two of the most popular indices, namely, the Atkinson index and the
Gini index, to the robust indices6. To discuss about the two specific indices, we need to restrict
our robust inequality index I further. An inequality index I is a relative or scale invariant index
if for all F ∈ F and c > 0, I(cF ) = I(F ). To make I a relative index7, further assumption on
SWF W is required. We say W is homothetic if for all F , W (F ) = Φ(Ŵ (F )), where Ŵ is linear
homogeneous, i.e. Ŵ (cF ) = cŴ (F ) for c > 0, and Φ is an increasing transformation.

Proposition 3. A robust index of inequality I defined as in eq (1) is a relative index if and only if

W is homothetic.

Since the following indices we consider are relative, we restrict our attention to SWF that is
both regular and homothetic.

Robust Atkinson index

We first consider a regular and homothetic SWF, so-called robust Atkinson SWF, which would
characterize a robust Atkinson index, namely,

(2) WA(F ) = α
n∑
I=1

u(F i) + (1− α)
n∑
i=1

u(F i).

where 0 ≤ α ≤ 1 and u : X → R is defined by

(3) u(x) =

a+ b · x
r

r
for 0 < r < 1,

a+ b · log x for r = 0;

with constant number a and positive number b. Using the SWF above, we get the explicit form of

6We refer to chapter 2 of Moulin [1991] for a discussion of two classic indices developed on AKS approach.
7We refer to Blackorby and Donaldson [1980] for detailed discussion about relative index.

9



the robust Atkinson index according to eq (1):

(4) IA(F ) =


1− α

[ 1

n
·

n∑
i=1

( F i

µ(F )

)r]1/r − (1− α)
[ 1

n
·

n∑
i=1

( F i

µ(F )

)r]1/r for 0 < r < 1,

1− α
[ n∏
i=1

( F i

µ(F )

)1/n]− (1− α)
[ n∏
i=1

( F i

µ(F )

)1/n] for r = 0.

This index is a weighted average of indices of lower limit and upper limit distributions. The param-
eter α can be interpreted as the social confidence that upper limit distribution is the real distribution.
Therefore, as α increases, society becomes more confident that upper limit distribution is the real
distribution. The parameter r plays the similar role as in classic Atkinson index that r represents
the degree of inequality aversion to transfers of allocation at different levels.

Robust Gini index

We now consider a SWF that characterizes a robust Gini index.

WG(F ) = α
{
µ(F )−

∑n
i=1

∑n
j=1 |F i − F j|
2n2

}
+ (1− α)

{
µ(F )−

∑n
i=1

∑n
j=1 |F i − F j|
2n2

}
= α ·

∑n
i=1

[
2(n− i) + 1

]
· F̃ i

n2
+ (1− α) ·

∑n
i=1

[
2(n− i) + 1

]
· F̃ i

n2
,

(5)

where 0 ≤ α ≤ 1. Hence, the robust Gini index defined below corresponds to the above SWF.

IG(F ) = α ·
∑n

i=1

∑n
j=1 |F i − F j|

2n2µ(F )
+ (1− α) ·

∑n
i=1

∑n
j=1 |F i − F j|

2n2µ(F )

= 1− α ·
∑n

i=1

[
2(n− i) + 1

]
· F̃ i

n2µ(F )
− (1− α) ·

∑n
i=1

[
2(n− i) + 1

]
· F̃ i

n2µ(F )

(6)

The Gini index might be the most widely used index of inequality and our robust Gini index pro-
vides a way to measure Gini index whenever allocation profile is not deterministic. The parameter
α, once again, can be regarded as the confident weight that society assigns to upper limit distribu-
tion in a profile.

3 AXIOMATIZATION

In this section, we discuss the axioms that a society should satisfy in order to have a robust Atkinson
or a robust Gini SWF. Based on the characterization, a transformation method we introduced in
the previous section would lead to the robust Atkinson index and the robust Gini index. Formally,
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a social preference over a set of allocation profiles is denoted by %⊂ F × F . We say a SWF
W : F → R represents social preference % if for all F,G ∈ F , W (F ) ≥ W (G) if and only if
F % G.

3.1 Regular Axioms

We first state five regular axioms. These axioms with respect to deterministic profiles are widely
assumed in the inequality literature. Also the five axioms are necessary for both robust Atkinson
and robust Gini SWF.

A1 (Weak order) % is complete and transitive.

A2 (Continuity) For all F ∈ F , the sets {G : G % F} and {G : F % G} are closed in F with
respect to Hausdorff distance.

A1 is commonly required conditions and do not need further elaboration. A2 generalizes tra-
ditional continuity for deterministic profiles and can be interpreted in a similar manner.

For a permutation π : N → N and F ∈ F , define π ◦ F ∈ F by (π ◦ F )i = Fπ(i) for every
i ∈ N .

A3 (Symmetry) For all F,G ∈ F , if there is a permutation π such that F = π ◦G, then F ∼ G.

A3 says that every permutations of individual labels are regarded as allocation equivalent. It
requires that the social ranking use only the information about the allocated variable and not about,
for example, some other characteristic which might be discernible among society. Thus, according
to symmetry, the identities of individuals are totally irrelevant to social decision process. Despite
that it is not self-evident, this axiom is prevalently assumed in the literature.

A4 (Unanimity) For all F,G ∈ F , if F ≥ G, then F % G.

A4 says that if each individual has higher allocations in F than in G, then society should prefer
allocation profile F to G.

We say profile F dominates profile G if (i) for every f ∈ F , there exists a g ∈ G such
that f % g, and (ii) for every g ∈ G, there exists f ∈ F such that f % g. In other words,
if profile F dominates G, then for any deterministic allocation in F , there must exist a worse
deterministic allocation in G; further, for any deterministic allocation in G, there must exist a
better deterministic profile in F . The next axiom simply states that a dominant profile is always
preferred to a dominated profile.

11



A5 (Dominance.) If one allocation profile F dominates another one G, then F % G.

The above five axioms are intuitive assumptions in the inequality literature. Below we discuss
further the very axioms that would characterize either robust Atkinson SWF or robust Gini SWF.

3.2 Robust Atkinson SWF

We now want to state the required axioms that characterize robust Atkinson SWF. To state next
axiom, we need some notation first. If F ∈ F and T ⊂ N , we write FT = (Fi)i∈T and FT c =

(Fi)i∈N\T .

A6 (Separability) For all F,G ∈ F and nonempty T ⊂ N , if (FT , FT c) % (GT , FT c), then
(FT , GT c) % (GT , GT c)

Separability basically says that when considering social welfare ordering, if two profiles only differ
in subset T of individuals, then the allocation of T c the rest individuals would not affect social
ordering. In other words, social rankings are independent of nonconcerned individuals.

Along with the first four axioms, separability implies that social welfare function has a separa-
bly additive form, which is defined as below.

Definition 3. We say a SWFW : F → R is separably additive if there exist an increasing function
u : X → R such that, for all F ∈ F ,

W (F ) =
n∑
i=1

u(Fi).

Proposition 4. A social preference % satisfies A1-4 and A6 if and only if there exists a separably

additive SWF represents %.

This result says that a social preference that satisfies A1-4 and A6 is equivalent to the existence
of a utility function defined on a set of possible allocation X such that any allocation profile is
evaluated by the utility sum over every individual allocation. Furthermore, this utility function
is increasing in X . In contrast, the classic separably additive SWF is defined over deterministic
allocation profile. Our result can be regarded as a direct extension of classic one.

Actually, robust Atkinson SWF is separably additive in which function u has the following
form: there exists α ∈ [0, 1] such that for Y ∈ X ,

u(Y ) = αmax
x∈Y

u(x) + (1− α) min
x∈Y

u(x).
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Along with A5, the next axiom will characterize function u with the above expression. The last
two axioms will guarantee function u on X has the expression as in eq (3).

For Y ∈ X , we say an allocation e(Y ) ∈ X is equivalent to Y , if profile (Y, . . . , Y ) ∼
(e(Y ), . . . , e(Y )). In words, if a profile has the same allocation Y for every individual, then a
deterministic profile with allocation e(Y ) for every individual is socially equivalent.

A7 (Commutativity.) For x1, x2, y1, y2 ∈ X , if x1 ≥ {x2, y1} ≥ y2, then F ∼ G whenever
Fi = {e(x1, x2), e(y1, y2)} and Gi = {e(x1, y1), e(x2, y2)} for all i.

To better understand the commutativity, see Figure (2) for the indifference curves over profiles
(Y, . . . , Y ) in which Y contains at most two values. Any point (x, y) in the quadrant represents
profile (Y, . . . , Y ) where Y = {x, y}. Therefore, the diagonal represents the deterministic profiles
(c, . . . , c). Take any four possible allocation x1, x2, y1, y2, in which x1 is the best allocation and
y2 is the worst allocation. Consider two allocation profiles. In the first profile, every individual
allocations consist of the one equivalent to {x1, x2} and the other one equivalent to {y1, y2}. In the
other profile, every individual allocations consist of the one equivalent to {x1, y1} and the other
one equivalent to {x2, y2}. Then A7 requires that the two profiles are socially indifferent. In other
words, for a so-defined allocation profile F , switching only the intermediate allocations x2, y1
would not change the social welfare ranking. Thus, in spirit A7 is a version of famous Thomason
condition, which implies u is separably additive if Y contains at most two values.

A8 (Scale Invariance) For all deterministic profiles f, g ∈ Xn and all λ > 0, if f % g, then
λf % λg.

Under scale invariance axiom, it does not matter whether we measure allocation in euros or dollars
as long as the unit is the same for each individual allocation.

A9 (Pigou-Dalton principle) For all deterministic profiles f, g ∈ Xn, if there are i, j ∈ N such
that fk = gk for k /∈ {i, j} and fi + fj = gi + gj and |fi − fj| < |gi − gj|, then f � g.

A9 simply states that a transfer between two individual allocation, in such a way that their alloca-
tion difference is reduced, will result in a strictly social preferred allocation profile. This principle
demonstrates that redistributions from the rich to the poor would improve the social welfare.

Theorem 1. A social preference % on F satisfies A1-9 if and only if there exists a robust Atkinson

SWF as in Eq (2) represents %.
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e(x1, y1)
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e(x1, x2)

e(x2, y2)

Figure 2: Commutativity

This result provides a characterization of robust Atkinson SWF when individual allocation
may not be deterministic. Therefore, a social preference that respects A1-9 concerns the welfare
loss due to inequality and imprecision in each allocation profile. Furthermore, a mathematical
transformation of this SWF as in eq (1) induces a robust Atkinson index as in eq (4).

3.3 Robust Gini SWF

We now want to characterize robust Gini SWF. As we see from eq (5), robust Gini SWF is not
separably additive. It is additive with respect to order-preserving. Formally, two deterministic
allocation profiles f, g ∈ Xn are order-preserving if fi ≥ fj ⇔ gi ≥ gj for all i, j ∈ N . For
F,G ∈ F , we say F and G are order-preserving (in boundary) if both F ,G and F ,G are order-
preserving. For every F,G, we define F +G by for each i ∈ N ,

(F +G)i = {fi + gi : fi ∈ Fi and gi ∈ Gi}.

Note that if F,G,H are pairwisely order-preserving profiles, then F + H and G + H are also
pairwisely order-preserving.

A6’ (Order-preserving Independence.) For all F,G,H ∈ F , if F,G,H are pairwisely order-
preserving, then F % G⇔ F +H % G+H .
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This axiom states that the social ranking of two profiles F and G, which agree on the ordering of
upper and lower limits, respectively, should be invariant to the addition of another order-preserving
profile H . The inspiration for it may best be seen through the cases it precludes: if, for instance,
two profiles F +H and G+H are the addition of a common profile H; and F and G are not order-
preserving, then the overall judgement between F + H and G + H is not completely determined
by a comparison of F and G. Suppose individual i is the richest in F , but the poorest in G. On the
contrary, individual j is the poorest in F , but the richest in G. If H is a profile with high allocation
for i, but low allocation for j, then addition of F and H may make the difference between i and
j even larger. As a result, profile F + H is more unequal than F . At the same time, the addition
of G and H would reduce the difference between i and j and is more equal than H . Therefore,
it is not promising to insist the invariance to addition of the common profile. This asymmetric
impact on inequality may give rise to preference reversal. A6’ only requires that if the profiles
are order-preserving, then preference reversal should not occur. Also, this axiom can be regarded
as a generalization of traditional order-preserving independence over deterministic profiles (See
Weymark [1981]).

We state the last three axioms to derive classic Gini SWF defined on deterministic profiles. The
next two axioms are first proposed by Ben Porath and Gilboa [1994]. For f ∈ Xn and i, j ∈ N ,
we say i precedes j in f if fi ≤ fj and there is no k ∈ N such that fi < fk < fj .

A7’ (Transfer Invariance.) For all f, g, f ′g′ ∈ Xn and i, j ∈ N , if the following are satisfied:

(i) i precedes j in f, g, f ′g′;

(ii) fi = f ′i + c, fj = f ′j − c and gi = g′i + c, gj = g′j − c for some c > 0;

(iii) fk = f ′k and gk = g′k for k /∈ {i, j},

then f % g if and only if f ′ % g′.

A7’ requires that there is no preference reversal if there is same amount of transfer between two
preceded individuals i, j. However, it is indeed a strong claim since it is possible that i, j are poor
in f , but rich in g.

A8’ (Inequality Aversion.) For all f, g ∈ Xn and i ∈ N , if f̃i = g̃i + c and f̃i+1 = g̃i+1 − c for
some c > 0 and f̃j = g̃j for j /∈ {i, i+ 1}, then f � g.

A8’ simply says that it is socially preferred that if we transfer an amount of money from an indi-
vidual to the next richest one without changing the ordering. This axiom is a weaker version of
Dalton-Pigou principle, in which any transfer from rich to poor is preferred.
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A9’ (Tradeoff.) For all c > 0 and k ∈ N ,

(kc, 0, . . . , 0) ∼ (
c

k
, . . . ,

c

k︸ ︷︷ ︸
k individuals

, 0, . . . , 0)

The intuition of A9’ is the following. Suppose a society with total income c. If society transfers
the total income to one individual, then he will have k times income return and the rest of society
have nothing. Or society can divide total income equally among k individuals without any return
and leave nothing to the rest of society. Tradeoff axiom requires that a society should be indif-
ferent between two options. A9’ illustrates precisely how a society balances between equity and
efficiency. Society needs a geometric growth of income to compensate equality loss.

Theorem 2. A social preference % on F satisfies A1-5 and A6’-9’ if and only if there exists a

robust Gini SWF as in eq (5) that represents %.

This result fully characterizes the robust Gini SWF. This SWF is not separably additive, but
order-preserving additive. Note that % restricted to deterministic profiles is classic Gini SWF.
However, our characterization improves that part of Ben Porath and Gilboa [1994] since their
results are restricted to deterministic profiles with fixed total income. Aaberge [2001] suggests an
axiomatic characterization of classic Gini SWF based on Lorenz curve orderings, which is initiated
by Yaari [1988]. However, his result is built on the assumption that Lorenz cure is convex, which
is not necessarily the case in our framework. Therefore, we provide the first fully characterization
of classic Gini index as a by-product. In sum, if a society believes in the set of axioms we suggest
above, then robust Gini index should be superior to the midpoint Gini index.

4 CONCLUDING REMARK

It is increasingly understood that inequality has impacted nearly every aspect of economics. Many
inequality measurement studies carried out over the past several decades have provided a precise
snapshot of inequality, under the assumption that each individual allocation can be precisely es-
timated. However, many widely used data only provide imprecise estimation, which bring both
conceptual and practical challenges in measuring inequality. This paper first explores a novel de-
velopment of measuring inequality in the face of indeterministic allocation profiles. According
to this methodology, this paper extends the classic Atkinson and Gini indices to the robust ones.
We then provide an axiomatic justification of those associated SWFs. This innovation corrects for
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some shortcomings of traditional treatment, while having some drawbacks of their own. We now
provide a simple example to indicate its shortcomings.

A society consists of two individuals. Consider an allocation profile F in which F1 = F2 =

{1, 10}. Therefore, F = (10, 10) and F = (1, 1). Clearly, the robust (Gini) inequality index we
suggest is zero, which means the society is completely equal. However, we may not feel comfort-
able about this conclusion since we could not rule out the possible allocations (1, 10) and (10, 1),
which seem quite unequal. This observation reveals that while measuring inequality, restricting
only on upper and lower limit distributions are problematic. A more plausible measurement should
account for every possible allocations in the very profile. An alternative robust inequality measure
could be defined as follows: A function J : F → R is a weighted maxmin Gini inequality index if
for all F ∈ F ,

J(F ) = αmax
f∈F

Ig(f) + (1− α) min
h∈F

Ig(h),

where 0 ≤ α ≤ 1 and Ig is the classic Gini index . Index J represents the weighted average
of highest inequality and lowest inequality in F . The parameter α captures the weight a society
assigns to the least inequality. Consider again the above example, it is obvious that index J is
strictly positive as long as α > 0. Although the index J avoids the shortcomings robust index I
has, it is not immediately clear how to derive the corresponding SWF. Continuing to improve upon
these measures is important and needs more work on it.

APPENDIX: PROOFS

A PROOF OF SECTION 2

A.1 Proof of Proposition 1

To prove Proposition 1, suppose that function I : F → R is defined as in eq (1) and the associated
SWF W is regular.

Proof of (i). By definition, for F ∈ F ,

I(F ) = αF I(F ) + (1− αF )I(F ).

Since αF ∈ [0, 1], it is immediate to see that min{I(F ), I(F )} ≤ I(F ) ≤ max{I(F ), I(F )}.

Proof of (ii). For F ∈ F , W (F ) = W (ξ(F ) · 1). By continuity of W , ξ is also a continuous
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function. By monotonicity of W , for any F,G ∈ F ,

W (F ) ≥ W (G)⇐⇒ ξ(F ) ≥ ξ(G).

Since W is Schur concave with respect to deterministic profiles, for any bistochastic matrix M of
order n,

W (fM) ≥ W (f).

For any c > 0, W (c · 1) = c. So, we have

W (fM) = ξ(fM) ≥ W (f) = ξ(f).

Note that µ(fM) = µ(f). Therefore,

I(fM) = 1− ξ(fM)

µ(fM)

= 1− ξ(fM)

µ(f)

≤ 1− ξ(f)

µ(f)

= I(f)

Proof of (iii). Consider bistochastic matrix M̂ = (mij) with mij = 1/n for all i, j ∈ N . Then for
any f ∈ F , Schur concavity implies that

W (fM̂) = µ(f) ≥ W (f).

Therefore, for F ∈ F , we have

0 ≤ ξ(F )

µ(F )
,
ξ(F )

µ(F )
≤ 1.

Therefore, according to the definition of I ,

0 ≤ I(F ), I(F ) ≤ 1.

So, for any αF ∈ [0, 1],

I(F ) = αF I(F ) + (1− αF )I(F ) ∈ [0, 1].
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Furthermore, if I(F ) = 0, then I(F ) = I(F ) = 0. This means that ξ(F ) = µ(F ), which leads
to F = c · 1 for some c > 0. Conversely, if F = c · 1, we have ξ(F ) = µ(F ), which leads to
I(F ) = 0.

A.2 Proof of Proposition 2

Since the proof of necessity part is straightforward, we only prove sufficiency part. Suppose F %L

G. By definition, for all f ∈ F and g ∈ G, f %L g. Lorenz dominance requires that for all
k = 1, 2, . . . , n

1

nµ(f)

k∑
i=1

f̃i ≥
1

nµ(g)

k∑
i=1

g̃i.

Since µ(F ) = minf∈F µ(f) ≥ maxg∈G µ(g) = µ(G), we have

µ(F )

nµ(f)

k∑
i=1

f̃i ≥
µ(G)

nµ(g)

k∑
i=1

g̃i,

which implies

1

n

k∑
i=1

f̃i ≥
1

n

k∑
i=1

g̃i.

Now, according to Marshall, Olkin, and Arnold [1979] (pp 64), there must exist a bistochastic
matrix M such that f̃ ≥ g̃M . Then, monotonicity of W implies W (f̃) ≥ W (g̃M). Furthermore,
Schur-concavity implies that W (g̃M) ≥ W (g̃). Notice that Schur-concavity implies symmetry,
hence, W (f̃) = W (f) and W (g̃) = W (g). As a result, we have W (f) ≥ W (g). Since this
inequality holds for any f ∈ F and g ∈ G,

min
f∈F

W (f) ≥ max
g∈G

W (g).

Monotonicity requires that W (F ) ≥ minf∈F W (f) and maxg∈GW (g) ≥ W (G), which implies
W (F ) ≥ W (G).

19



A.3 Proof of Proposition 3

We first show the necessity part: suppose that I is a relative index. By definition, we have

ξ(F ) = λF ξ(F ) + (1− λF )ξ(F )

= λFµ(F )(1− I(F )) + (1− λF )µ(F )(1− I(F ))

Since index I is homogeneous of degree zero, linear homogeneity of mean µ implies linear homo-
geneity of ξ.

W (F ) = W (ξ(F ) · 1)

= Φ(ξ(F )),

where Φ is increasing in its argument. Hence, W is homothetic.

Now we show the sufficiency part: suppose that W is homothetic. Then, there exist an increas-
ing function Φ and a linearly homogeneous function Ŵ such that for F ∈ F ,

W (F ) = Φ(Ŵ (F )).

Since Ŵ is linearly homogeneous, we have

ξ(F ) =
Ŵ (F )

Ŵ (1)
.

Therefore, ξ is also linearly homogeneous. Since µ is also linearly homogeneous, robust index I
defined as above becomes homogeneous of degree zero. Thus, I is a relative index.

B PROOF OF SECTION 3

B.1 Proof of Proposition 4

The necessity part is straightforward. We only prove the sufficiency part. Suppose % satisfies A1-4
and A6.

First, restricted % to set of deterministic profiles Xn. Since X is connected and separable,
and % satisfies conditions of Debreu [1960] separable Theorem, there exists a continuous function
ui : X → R such that the sum of ui represents %. Symmetry further requires that each ui has to be
identical. Therefore, there is a continuous function u : X → R such that f % g ⇔

∑n
i=1 u(fi) ≥
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∑n
i=1 u(gi). Furthermore, A5 unanimity implies that u is also increasing in X .
Now, we extend u from domainX toX in the following way. For Y ∈ X and c ∈ X , we define

u(Y ) = u(c) if F ∼ f whenever Fi = Y and fi = c for all i. Since Y is compact, there exist
a, b ∈ X such that a ≥ Y ≥ b. Unanimity implies that equally distributed profiles must satisfy the
preferences: (a, . . . , a) % (Y, . . . , Y ) % (b, . . . , b). Therefore, by continuity, there exists a unique
c such that (c, . . . , c) ∼ (Y, . . . , Y ). Hence, u on X is well-defined.

Pick any F = (Y1, . . . , Yn) ∈ F . Let c1, . . . , cn in X be such that u(Yi) = u(ci) for all i. To
prove the additive separability, it suffices to show that F ∼ (c1, . . . , cn). We prove it by induction.

Claim 1. For any i ∈ N , (c1, . . . , ci−1, Yi, ci+1, . . . , cn) ∼ (c1, c2, . . . , cn).

Proof of Claim: By A3 symmetry, it suffices to prove that (Y1, c2, . . . , cn) ∼ (c1, . . . , cn). Fur-
thermore, by separability, we only need to show the case where (Y1, c1, . . . , c1) ∼ (c1, c1 . . . , c1).
Suppose such indifference relation does not hold. Assume first that

(Y1, c1, . . . , c1) � (c1, . . . , c1).

Then, separability implies that (Y1, . . . , Y1) � (c1, Y1, . . . , Y1). According to definition, (c1, . . . , c1) ∼
(Y1, . . . , Y1), which implies that

(Y1, c1, . . . , c1) � (c1, Y1, . . . , Y1).

By symmetry, it is equivalent to (c1, Y1, c1, . . . , c1) � (c1, Y1, . . . , Y1). Applying separability again,
we have

(Y1, Y1, c1, . . . , c1) � (Y1, . . . , Y1, Y1) � (c1, Y1, . . . , Y1).

Similarly, we can use separability and symmetry again to get

(Y1, Y1, Y1, c1 . . . , c1) � (Y1, . . . , Y1, Y1) � (c1, Y1, . . . , Y1).

Repeat this process, we finally have (Y1, . . . , Y1, c1) � (Y1, . . . , Y1, Y1), which contradicts to our
assumption.

Now, if we assume the other possibility that (c1, . . . , c1) � (Y1, c1, . . . , c1), it is similar to show
the contradiction.

Claim 2. If (Y1, . . . , Yt, ct+1, . . . , cn) ∼ (c1, . . . , cn), then (Y1, . . . , Yt+1, ct+2, . . . , cn) ∼ (c1, . . . , cn).

Proof of Claim: By separability, it suffices to prove that if (Y1, . . . , Yt, c, . . . , c) ∼ (c1, . . . , ct, c, . . . , c)

for some t, then it holds for t+ 1. Since (Y1, . . . , Yt, c, . . . , c) ∼ (c1, . . . , ct, c, . . . , c), separability
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implies that
(Y1, . . . , Yt+1, c, . . . , c) ∼ (c1, . . . , ct, Yt+1, c, . . . , c).

By Claim 1, (c1, . . . , ct, Yt+1, c, . . . , c) ∼ (c1, . . . , ct+1, c, . . . , c). Hence, this claim holds.

By Claim 1 and 2, for any F ∈ F , we define W : F → R by W (F ) =
∑n

i=1 u(Fi), which
clearly represents %.

B.2 Proof of Theorem 1

Sufficiency Part:

Suppose that % onF satisfies A1-9. Our strategy to prove that robust Atkinson SWF represents
% is following: First, we consider only the profiles that every individual have identical and binary
values. We show that there exists unique α ∈ (0, 1) such that for any x > y in X , u({x, y}) =

αu(x) + (1 − α)u(y). Second, we consider the profiles that every individual have identical, but
arbitrarily many outcomes. We show that for any Y ∈ X , u(Y ) = αu(max

x∈Y
x) + (1− α)u(min

y∈Y
y).

Third, we show that A8 scale invariance and A9 Pigou-Dalton principle imply that u on X has
either power function or log function form. Finally, combined with Proposition 4, A5 dominance
implies that for any F ∈ F ,

W (F ) = α
∑
i

u(F i) + (1− α)
∑
i

u(F i)

represents %.

To start, notice that proposition 4 implies the existence of u on X . Define %∗ on X2 by

(a, b) %∗ (c, d)⇔ u({a, b}) ≥ u({c, d}).

Lemma B1. For all a, b, c ∈ X , if a ≥ b, then (a, c) %∗ (b, c).

Proof. Take a, b, c ∈ X with a ≥ b. Let Y = {a, c} and Z = {b, c}. So profile (Y, . . . , Y )

dominates profile (Z, . . . , Z). By A5, (Y, . . . , Y ) % (Z, . . . , Z). Proposition 4 implies u(Y ) ≥
u(Z). Hence, by definition, (a, b) %∗ (b, c).

Let 0 < ` ≤ `′ < ∞. Consider %∗ restricted to [0, `] × [`′,+∞). We show that this restricted
preference has an additive conjoint structure, hence has a separably additive utility representation.

Lemma B2. %∗ restricted to [0, `]× [`′,+∞) satisfies the following conditions:
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A1∗ (weak order): %∗ is complete and transitive.

A2∗ (Independence): (x, b′) %∗ (y, b′) implies (x, x′) %∗ (y, x′); also, (b, x′) %∗ (b, y′) implies

(x, x′) %∗ (x, y′).

A3∗ (Thomsen): (x, z′) ∼∗ (z, y′) and (z, x′) ∼∗ (y, z′) imply (x, x′) ∼∗ (y, y′).

A4∗ (Essential): There exist b, c ∈ [0, `] and a ∈ [`′,+∞) such that (b, a) �∗ (c, a), and b′ ∈ [0, `]

and a′, c′ ∈ [`′,+∞) such that (b′, a′) �∗ (b′, c′).

A5∗ (Solvability): If (x, x′) %∗ (y, y′) %∗ (z, x′), then there exist a ∈ [0, `] such that (a, x′) ∼
(y, y′); if (x, x′) %∗ (y, y′) %∗ (x, z′), then there exists a′ ∈ [`′,+∞) such that (x, a′) ∼∗

(y, y′).

A6∗ (Archimedean): For all x, x′ ∈ [0, `] and y, z ∈ [`′,+∞), if (x, y) %∗ (x′, z), then there exists

a, b in [0, `] satisfying (x, y) %∗ (a, y) ∼∗ (b, z) �∗ (b, y) %∗ (x′, z). A similar statement

holds with the roles of [0, `] and [`′,+∞) reversed.

Proof. By definition, %∗ is a weak order. It is easy to show all the axioms except Thomsen condi-
tion. Below, we show Thomsen condition.

Suppose that (x, z′) ∼∗ (z, y′) and (z, x′) ∼∗ (y, z′). By definition, this is equivalent to
u(x, z′) = u(z, y′) and u(z, x′) = u(y, z′). To show that u(x, x′) = u(y, y′), there are three cases
to consider: z′ ≥ {x′, y′}, y′ ≥ {x′, z′} and x′ ≥ {y′, z′}.

Suppose first that z′ ≥ {x′, y′}. Since {x′, y′} ≥ {x, y, z}, Lemma B1 implies that (x′, z′) %∗

(x, z′) and (y′, z′) %∗ (y, z′). Thus, A7 commutativity implies

u(e(x, x′), e(z′, z′)) = u(e(x, z′), e(x′, z′)).

Note that (x, z′) ∼∗ (z, y′) implies e(x, z′) = e(z, y′). Therefore,

u(e(x, z′), e(x′, z′)) = u(e(z, y′), e(x′, z′)).

Applying commutativity again, we have

u(e(z, y′), e(x′, z′)) = u(e(z, x′), e(y′, z′)).

Note again that (z, x′) ∼∗ (y, z′) implies e(z, x′) = e(y, z′). Therefore,

u(e(z, x′), e(y′, z′)) = u(e(y, z′), e(y′, z′)).
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Commutativity implies that

u(e(y, z′), e(y′, z′)) = u(e(y, y′), e(z′, z′)).

Therefore, we have u(e(x, x′), e(z′, z′)) = u(e(y, y′), e(z′, z′)), which implies, by Lemma B1,
e(x, x′) = e(y, y′). That is, u(x, x′) = u(y, y′).

For the other two cases, similar arguments will lead to the same results.

Lemma B3. There exist two real-valued functions φ and ϕ on X such that for all x, x′, y, y′ ∈ X
with x ≤ y and x′ ≤ y′,

(x, y) %∗ (x′, y′)⇐⇒ φ(x) + ϕ(y) ≥ φ(x′) + ϕ(y′).

Furthermore, if there are φ′, ϕ′represents %∗ instead of φ, ϕ, respectively, then there exist γ > 0

and β1, β2 such that φ′ = γφ+ β1 and ϕ′ = γϕ+ β2.

Proof. Let a > 0. Lemma B2 implies that %∗ restricted to [0, a]× [a,+∞) is an additive conjoint
structure. Thus, by Theorem 2 of Chapter 6 in Krantz, Luce, Suppes, and Tversky [2006], there
exist two function φa on [0, a] and ϕa on [a,+∞) represent %∗⊂ [0, a] × [a,+∞), i.e. for all
x, x′ ∈ [0, a] and y, y′ ∈ [a,+∞)

(x, y) %∗ (x′, y′)⇐⇒ φa(x) + ϕa(y) ≥ φa(x
′) + ϕa(y

′).

By uniqueness of representation, we can normalize φa and ϕa such that

u(a) = φa(a) + ϕa(a).

If b > a, since %∗⊂ [0, b] × [b,+∞) is also an additive conjoint structure, then there exist
functions φb on [0, b] and ϕb on [b,+∞) that represent such preferences. Due to the uniqueness
of representation, we can normalized φb in the way such that φb(a) = φa(a). By similar method,
if c ∈ (0, a), since %∗⊂ [0, c] × [c,+∞) is also an additive preference structure, then there exist
functions φc on [0, c] and ϕc on [c,+∞) that represent such preferences. Again, ϕc is normalized
in the way that ϕc(a) = ϕa(a).

Now, define φ : X → R by

φ(x) =

φx(x) if x > 0;

φa(0) if x = 0.
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Similarly, define ϕ : X → R by

ϕ(y) =

ϕy(y) if y > 0;

u(0)− φa(0) if y = 0.

Therefore, φ and ϕ on X are uniquely specified. According to continuity and unanimity, ϕ(0) <

ϕ(y) for all y > 0. Take arbitrary 0 < y ≤ x. There always exists a, b such that x < a and
0 < b < y. Therefore,

x ≥ y ⇔ (x, a) %∗ (y, a)

⇔ φa(x) + ϕa(a) ≥ φa(y) + φa(a)

⇔ φx(x) ≥ φy(y)

⇔ φ(x) ≥ φ(y)

Similarly, we have

x ≥ y ⇔ (b, x) %∗ (b, y)

⇔ φb(b) + ϕb(x) ≥ φb(b) + φb(y)

⇔ ϕb(x) ≥ ϕb(y)

⇔ ϕ(x) ≥ ϕ(y)

Therefore x ≥ y ⇔ φ(x) +ϕ(x) ≥ φ(y) +ϕ(y). We show that φ and ϕ have the properties above.
Let x ≤ y and x′ ≤ y′. Suppose that (x, y) %∗ (x′, y′). There are two cases: either x ≥ y′ or
x < y′. First, assume that x ≥ y′. Then, continuity and unanimity imply that there exists a and b
such that (x, y) ∼∗ (a, a) and (b, b) ∼∗ (x′, y′).

(x, y) ∼∗ (a, a)⇔ φ(x) + ϕ(y) = φ(a) + ϕ(a),

(x′, y′) ∼∗ (b, b)⇔ φ(x′) + ϕ(y′) = φ(b) + ϕ(b).

Note that a ≥ b, which is φ(a) + ϕ(a) ≥ φ(b) + ϕ(b). Therefore,

(x, y) %∗ (x′, y′)⇔ φ(x) + ϕ(y) ≥ φ(x′) + ϕ(y′).

The uniqueness of representation follows immediately from the definition of φ and ϕ.
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Lemma B4. There exists 0 ≤ α ≤ 1 such that for all x ≥ y,

u({x, y}) = αu(x) + (1− α)u(y).

Proof. It suffices to show that there are constants β > 0 such that ϕ(x) = βφ(x). If a > 0, define

φ1a(x) = φ(e(a, x)) and ϕ1a(x) = ϕ(e(a, x)), for x ≥ a;

φ2a(x) = φ(e(x, a)) and ϕ2a(x) = ϕ(e(x, a)), for x ≤ a.

For {x, y, z, w} ≥ a, if x ≤ y and z ≤ w, then (a, y) %∗ (a, x) and (a, w) %∗ (a, z). Therefore,

(z, w) %∗ (x, y)⇔ φ(z) + ϕ(w) ≥ φ(x) + ϕ(y)

⇔ e(z, w) ≥ e(x, y)

⇔ (a, e(z, w)) %∗ (a, e(x, y))

The last equivalence is implied by Lemma B1. Commutativity implies that (a, e(z, w)) ∼∗ (e(a, z), e(a, w))

and (a, e(x, y)) ∼∗ (e(a, x), e(a, y)). Therefore,

(z, w) %∗ (x, y)⇔ φ(z) + ϕ(w) ≥ φ(x) + ϕ(y)

⇔ (e(a, z), e(a, w)) %∗ (e(a, x), e(a, y))

⇔ φ(e(a, z)) + ϕ(e(a, w)) ≥ φ(e(a, x)) + ϕ(e(a, y))

⇔ φ1a(z) + ϕ1a(w) ≥ φ1a(x) + ϕ1a(y).

If x ≤ y ≤ a and z ≤ w ≤ a, then similarly we have

(z, w) %∗ (x, y)⇔ φ2a(z) + ϕ2a(w) ≥ φ2a(x) + ϕ2a(y).

Thus φ1a and ϕ2a represent %∗ on [0, a] × [a,+∞). By uniqueness of representation, there are
k1, k2 > 0 and k11 and k12 such that for a, b > 0,

φ1a(x) = k1(a)φ(x) + k11(a) and ϕ2b(y) = k2(b)ϕ(y) + k12(b).

Notice that if ϕ is constant, then it is trivially that u({x, y}) = φ(x) = u(x), which is α = 1.
Similarly, if φ is constant, then u({x, y}) = u(y), which is α = 0. Now, suppose both φ and ϕ are
non-constant. Takew ≥ {y, z} ≥ x. Lemma B1 implies that (z, w) %∗ (x, y) and (y, w) %∗ (z, x).
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According to commutativity,

(e(x, y), e(z, w)) ∼∗ (e(x, z), e(y, w))

⇔ φ(e(x, y)) + ϕ(e(z, w)) = φ(e(x, z)) + ϕ(e(y, w))

⇔ k1(x)φ(y) + k11(x) + k2(w)ϕ(z) + k12(w) = k1(x)φ(z) + k11(x) + k2(w)ϕ(y) + k12(w)

⇔ k1(x)(φ(y)− φ(z)) = k2(w)(ϕ(y)− ϕ(z)).

Since the above equations are satisfied for all x, y, z, w with w ≥ {y, z} ≥ x, there exist positive
constants λ, δ such that

k1(x) = λ and k2(y) = δ.

Thus, for all y, z > 0,
λ(φ(y)− φ(z)) = δ(ϕ(y)− ϕ(z)).

Hence, there are β > 0 such that φ(x) = βϕ(x) for all x. Let α = 1
1+β

. Clearly 0 < α < 1.
According to unique representation, we can normalize u(x) = φ(x)

α
. Therefore, for x ≤ y,

φ(x) + ϕ(y) = αu(x) + (1− α)u(y).

Lemma B5. There exist a ∈ R and b > 0 such that for every x ∈ X ,

u(x) =

a+ b · x
r

r
for 0 < r < 1

a+ b · log x for r = 0.

Proof. Restricted % to deterministic profiles. Since % is continuous and separable on Xn, Roberts
[1980] demonstrates that scale invariance implies that function u has the following forms: there
are constant a and positive b such that

u(x) =


a+ b · x

r

r
for r > 0

a− b · x
r

r
for r < 0

a+ b · log x for r = 0.

Note that Pigou-Dalton principle means that for x, y, z, w ∈ X , if x + y = z + w and |x − y| <
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|z − w|, then u(x) + u(y) ≥ u(z) + u(w). This is equivalent to for all x < y and all c > 0

u(x+ c)− u(x) ≥ u(y + c)− u(y),

which implies that u is concave on X . Thus, concavity of u requires that r ≤ 1. Furthermore,
unanimity requires that r ≥ 0. Therefore, u must have the expression stated at this lemma.

For Y ∈ X , denote y∗ = max
y∈Y

y and y∗ = min
y∈Y

y.

Lemma B6. For Y ∈ X , u(Y ) = u(y∗, y∗).

Proof. Take Y ∈ X . Since {y∗, y∗} ⊆ Y , we know (Y, . . . , Y ) dominates ({y∗, y∗}, . . . , {y∗, y∗}).
By definition of y∗ and y∗, it is immediate that ({y∗, y∗}, . . . , {y∗, y∗}) also dominates (Y, . . . , Y ).
Therefore, according to dominance axiom, ({y∗, y∗}, . . . , {y∗, y∗}) ∼ (Y, . . . , Y ). This is equiva-
lent to u(y∗, y∗) = u(Y ).

Necessity Part:

Suppose that % is represented by a robust Atkinson SWF W . We want to prove that this
preference satisfies A1-9. We only demonstrate commutativity axiom since the rest axioms are
straightforward.

Consider x1, x2, y1, y2 ∈ X where x1 ≥ {x2, y1} ≥ y2. Let F ∈ F be such that Fi =

{e(x1, x2), e(y1, y2)} for all i. Also, let G ∈ F be such that Gi = {e(x1, y1), e(x2, y2)} for all i.
According to the representation function, we have

u(e(x1, x2), e(y1, y2)) = αu(x1, x2) + (1− α)u(y1, y2)

= α[αu(x1) + (1− α)u(x2)] + (1− α)[αu(y1) + (1− α)u(y2)]

= α[αu(x1) + (1− α)u(y1)] + (1− α)[αu(x2) + (1− α)u(y2)]

= αu(x1, y1) + (1− α)u(x2, y2)

= u(e(x1, y1), e(x2, y2)).

B.3 Proof of Theorem 2

Since the necessity part is straightforward, we only show the sufficiency part. Suppose that %
satisfies A1-5 and A6’-9’. Our strategy is first to show that % restricted to deterministic profile have
Gini SWF. Then we show that if % restricted to the profiles in which individual 1 has binary values
and all the rest individuals have singleton value, then % has a robust Gini SWF representation.
Finally, we extend this result to the whole set of profiles.
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Lemma C1. Let % restrict to Xn. Then there exists φ on Xn such that

φ(f) = µ(f)−
∑

i

∑
j |fi − fj|
2n2

,

represents % on Xn.

Proof. It is clear to see that % on Xn
c also satisfies A1-4 and A6’-8’. Therefore, according to

Theorem D of Ben Porath and Gilboa [1994], there exist 0 < δ < 1
n(n−1) and φ on Xn such that

for f ∈ Xn

φ(f) = µ(f)− δ ·
∑
i

∑
j

|fi − fj|,

represents % on Xn. Pick c > 0 and k ∈ N . By A9’ tradeoff, we know (kc, 0, . . . , 0) ∼
(c/k, . . . , c/k, 0, . . . , 0). The above φ function implies that

kc

n
− δ(n− 1)kc =

c

n
− δ · 2k(n− k)

c

k
.

Therefore, the only solution is

δ =
1

2n2
.

We denote

F1 = {F ∈ F : F1 = {a, b} and Fi = {c},∀i 6= 1 and a, b, c ∈ X with a, b ≥ c}.

the set of all profiles in which individual 1 is the richest with two possible allocations in the society,
and the rest in the society have deterministic and equalized allocation. Note that for F ∈ F1, if
a = b, then F is a deterministic profile; and if a = b = c, then F is a deterministic equally
distributed profile.

Lemma C2. If F,G ∈ F1, then F and G are order-preserving.

Proof. This follows immediately from the definition of order-preserving.

Lemma C3. For F, f ∈ F1, if F ∼ f , then αF + (1− α)f ∼ f for all α ∈ (0, 1).

Proof. Pick F ∈ F1 be such that F1 = {a, b}, Fi = {c} for i 6= 1 and a ≥ b ≥ c. If there is a
deterministic profile f ∈ F1 be such that F ∼ f , we should have F

2
∼ f

2
. To see this, suppose not.
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Assume that F
2
� f

2
. Since F

2
, f
2
∈ F1, A6’ order-preserving independence implies that

F

2
+
F

2
� F

2
+
f

2
� f

2
+
f

2
= f.

Notice that
(
F

2
+
F

2
)1 = {a, a+ b

2
, b} and (

F

2
+
F

2
)i = c.

Recall that the representation of % restricted on deterministic profile can also be written as

φ(f) =
1

n2

n∑
i=1

[(2(n− k) + 1]f̃i

Therefore, F = (a, c, . . . , c) is the most preferred deterministic profile in both F and F
2

+ F
2

, i.e.

F = (a, c, . . . , c) ∈ arg max
f∈F

φ(f) and F = (a, c, . . . , c) ∈ arg max
f∈F

2
+F

2

φ(f);

and F = (b, c, . . . , c) is the least preferred deterministic profile in both F and F
2

+ F
2

. Hence, F
and F

2
+ F

2
dominates each other. According to A6’, F ∼ F

2
+ F

2
, which contradicts the assumption

that F ∼ f . Now assume that f
2
� F

2
. We repeat the similar process as above and lead to a

contradiction. Hence, F ∼ f implies F
2
∼ f

2
.

Proceeding with induction, we have for every integer k = 1, 2, . . .

F

k
∼ f

k
.

Also, by A6’,
F ∼ f ⇒ F + F ∼ F + f ∼ f + f = 2f.

Observe that (2F )1 = {2a, 2b}, (F + F )1 = {2a, a + b, 2b} and (2F )i = (F + F )i = {2c}
for i 6= 1. Since a ≥ b, it is immediate that 2F and F + F dominates each other, therefore,
2F ∼ F + F . Hence F ∼ f implies 2F ∼ 2f . By induction, we have for every integer k,

kF = kf.

Combine the results abover, for every positive rational number α, we have

αF ∼ αf.
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Continuity implies that the above result holds for every positive real number α. Now, take any
α ∈ (0, 1) and apply A6’,

αF ∼ αf ⇔ αF + (1− α)f ∼ f.

Recall that for F ∈ F , F and F represents the upper limit and lower limit distribution in F ,
respectively.

Lemma C4. There exists α ∈ [0, 1] such that for all F ∈ F1,

F ∼ αF + (1− α)F .

Proof. If x ∈ X , we define F1(x) = {F ∈ F1 : Fi = {x} for all i 6= 1} denote the collection
of profiles in F1 in which, except individual 1, every individual have equal allocation. Therefore,
F1 = ∪x∈RF(x). We first show that the result holds on the restricted domain F1(0).

Referring to Figure 3. For f ∈ F1(0) with F1 = {a, b}, F can be identified by the point (a, b) if
a > b. Similarly, for F ∈ F1(0) with F1 = {c}, F can be identified by the point (c, c). Therefore,
there is one-to-one correspondence between set F1(0) and the points between horizontal axis and
diagonal. For every F,G ∈ F1(0), where F1 = {a, b} and G1 = {c, d}, we define

(a, b) % (c, d)⇔ F % G.

Take a > b. We have
(a, a) � (b, b).

By definition, we know that profile (a, a) dominates (a, b) and (a, b) dominates (b, b). Therefore,
A6’ implies

(a, a) % (a, b) % (b, b).

Continuity implies that there exists α ∈ [0, 1] such that

(αa+ (1− α)b, αa+ (1− α)b) ∼ (a, b).

Let αa + (1− α)b = c. Lemma C3 implies that any points on the straight line between (c, c) and
(a, b) are indifferent. Therefore, every indifferent curve must be a straight line.

Now, we need to show that every indifferent lines parallel to each other. Take any point (a′, b′).
Connect points (a′, b′) and (0, 0) by a straight line. Without loss of generality, suppose this line
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`1

(c, c)

`2

(βc, βc)

0

(a, b)

(a′, b′)

a

b

Figure 3: Indifference curve on F1(0).

intersects the indifference curve, line between (c, c) and (a, b), at point (a, b). Therefore, there
exists unique β > 0 such that

(a′, b′) = (βa, βb).

Since (a, b) ∼ (c, c), Lemma C3 implies that

(βa, βb) ∼ (βc, βc).

Therefore, (a′, b′) ∼ (βc, βc), which means that two indifferent curves `1, `2 parallel to each other.
To finish our proof, we now extend the result from domain F1(0) to F1. Pick any a, b, c such

that a ≥ b ≥ c > 0 . Consider a profile F ∈ F1 being such that F1 = {a− c, b− c} and Fi = {0}
for i 6= 1. Clearly, such F belongs to F1(0) and, therefore,

(a− c, b− c) ∼ (α(a− c) + (1− α)(b− c), α(a− c) + (1− α)(b− c)).

Now, adding constant deterministic profile (c, . . . , c) on both proifles, A6’ implies that

F ∼ (αa+ (1− α)b, c, . . . , c).

Since F = (a, c, . . . , c) and F = (b, c . . . , c), we have F ∼ αF + (1− α)F .

We now define a real valued function W on F1 by, for F ∈ F ,

W (F ) = φ(αF + (1− α)F ).
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It is immediate to see that W represents % restricted on F1. Notice that for each F ∈ F , F and F
are order-preserving. By the order-preserving additivity and homogeneity of φ, we have

W (F ) = αφ(F ) + (1− α)φ(F )

represents % on F1.

Lemma C5. For F ∈ F and G ∈ F1, if F ∼ G and F ∼ G, then F ∼ G.

Proof. Since both F and G dominate each other, it is immediate that F ∼ G according to A5.

Now, we can extend real-valued functionW to the whole setF by for F ∈ F if there isG ∈ F1

such that F ∼ G and F ∼ G, then

W (F ) = αφ(F ) + (1− α)φ(F ).

We claim that W represents the % on F . To see this, note that by continuity, for every F ∈ F ,
there must exist F 1 ∈ F1 such that F ∼ F 1 and F ∼ F 1. Take any F,G ∈ F . According to
Lemma C5, we have

F % G⇐⇒ F 1 % G1

⇐⇒ W (F 1) ≥ W (G1)

⇐⇒ αφ(F 1) + (1− α)φ(F 1) ≥ αφ(G1) + (1− α)φ(G1)

⇐⇒ αφ(F ) + (1− α)φ(F ) % αφ(G) + (1− α)φ(G)

⇐⇒ W (F ) ≥ W (G).
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