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Emily Tanimura
Centre d’économie de la Sorbonne, Université Paris 1. †
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Abstract

We consider a model where decision makers repeatedly receive candidates
and assign to them a binary decision that we can interpret as hire/not hire. The
decision makers base their decision on the characteristics of the candidate but
they are also sensitive to the social influence exerted by the observed past choices
of their peers. We characterize the long run frequency of decisions in the model,
and show in particular that for candidates belonging to a group with ”unfa-
vorable” characteristics, the dynamics increase the rejection rate compared to a
scenario with independent decisions, suggesting that influence between decision
makers can generate effects very similar to those that result from statistical dis-
crimination. In our model, we then relate the long run outcomes, existence and
magnitude of reinforcement to the properties of the characteristics distribution.

JEL Classification: D83 D91 J70 C60 R30

Keywords: Statistical discrimination, Social influence, Binary choice, Decision
dynamics, Invariant measures, Reinforcement effects

1 Introduction

Statistical discrimination, a concept introduced by Phelps [28] and Arrow [3] (see also
the review by Aigner and Cain [2]) is said to occur in hiring 1, when an employer lacking

∗The author thanks the participants of the Economic Theory Seminar in Paris for helpful comments
†<emily.tanimura@univ-paris1.fr>
1Hiring is the typical example in models of statistical discrimination but the latter could occur in

a number of other contexts, such as the granting of loans or rental contracts
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sufficiently precise information about the relevant skills of the job seeker, estimates
these skills based on their statistical distribution in the group to which the agent in
question belongs. In contrast with classical taste based discrimination, the decision
maker need not be explicitly prejudiced, nevertheless the outcomes are discriminatory
in the sense that high performing individuals in low performing groups (or groups
perceived as such) would unfairly be assimilated with the typical individual of his
group.

In this paper, we study a situation where decision makers similarly receive can-
didates repeatedly over time, and assign to them a binary decision (i.e. hire/not
hire). Our assumptions about behavior and available information are almost the op-
posite from those that usually generate statistical discrimination : decision makers
do observe individual characteristics while they ignore the statistical properties of the
individual’s group. However, and this is our critical assumption, they are sensitive to
social influence as expressed through the decisions of their peers and/or are subject to
behavioral inertia in the sense that they tend to conform to their own past decisions.
Our analysis suggests that these behavioral assumptions generate outcomes that look
on an aggregate level very much like statistical discrimination.

The seminal models of Phelps [28] and Arrow [3] are static. A few recent studies
analyze statistical discrimination in settings that are, like ours, dynamic, although
focusing on rather different issues than those explored in this paper. Blume, in [9]
and [10] consider a model involving decisions of both worker and employer. Workers
decide whether to make a costly investment in skills. Firms receive workers of different
types and decide to hire or not based on their beliefs about the worker’s skill. Kim and
Loury [23] analyze a similar setting with more sophisticated forward looking behavior
of agents and show the persistance of discriminatory outcomes, where the dynamics
may trap members of discriminated groups in bad outcomes. Bonfiglioli and Gancia
[11] consider statistical discrimination resulting from matching frictions in a dynamic
setting.

We analyze the long run decision frequencies in our model, focusing particularly
on the outcomes of candidates from a group whose characteristics are, in a certain
sense, unfavorable. We show that for such a group, social influence between decision
makers will, under certain conditions, reinforce the rejection rate in hiring, compared
to a benchmark case without influence, where decision makers’ hiring decisions are
independent. In other words, belonging to a group with unfavorable characteristics is
detrimental to the candidate, as it is the case in statistical discrimination, albeit due to
rather different mechanisms. Beyond this observation, this study also elucidates how
the properties of the distribution of characteristics in the candidate population affect
the direction and magnitude of the reinforcement effects created by social interactions.

Our assumptions about behavior differ significantly both from those underpinning
taste discrimination and those which usually leads to statistical discrimination but is
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more similar to the latter in the respect that it does not rely on direct discriminatory
intent. The employer does need to perceive the ”category” (for example male/female,
white/black, younger/senior etc) of the candidate and to take into account a social
norm regarding this category. His behavior thus departs from that of a perfectly neutral
decision maker who is ”category blind”. Yet, as in the case of statistical discrimination
he has no intrinsic bias against a particular category.

The existence of social conformism is widely recognized in theories of social psychol-
ogy and anthropology (see the discussion in Akerlof [1]). It may repose on an intrinsic
desire to adhere to the standards of one’s peers which generates stable social norms,
see Akerlof [1] or Bernheim [5] or emerge because individuals believe that they imitate
others who are better informed (e.g. Bannerjee [4] ).

The impact of social influence on decisions has been documented and studied in a
variety of specific contexts, ranging, to cite just a few, from the adoption of innovations
(see discussion in Young [31]), engaging in petty crime (Glaeser et al [17]) or adopting
pro-environmental behaviors (Lazaric et al [24]). The mechanism seems likely also in
the context of hiring. A firm might, due to pure conformity, be reluctant to employ a
work force whose composition differs significantly from that of its competitors, it could
imagine the social norm to contain hidden information to the effect that ”if others
don’t hire employees of a certain category it must be for a reason”. The firm could also
adhere to established norms by hiring minorities, females etc at a rate comparable to
that of other similar firms in order to avoid potential discrimination charges and legal
actions.

Lastly, our model could also be relevant to the study of what seems, at first sight, to
be a very different problem, namely that of medical procedure choice in cases where two
alternative treatments are available (e.g. heart surgery vs drug treatment, cesarians vs
natural childbirth etc ...). This is an area in which assumptions of social influence are
perhaps less controversial than in hiring and have in fact been documented by several
studies (see Phelps et al[30] or Burke et al. ([14]). Statistical analyses indicate that
the treatment assigned to a patient tends to reflect not just his own characteristics but
the patient demographics in his region. For example an older patient in a region with a
younger population is more likely to receive heart surgery (the procedure deemed more
suited to younger patients) than a similar individual in an older patient demographic
group. Burke et al [15]) propose a dynamic model of this situation which focuses on
explaining the emergence of geographic procedure choice patterns. The phenomenon
observed in medical procedure choice bears a strong ressemblance to statistical discrim-
ination, disregarding the terminology, since there is not, in this case, an unequivocal
ranking of the two treatments.

We develop a model in which decision makers assign a binary decision to a candidate
based on an influence variable and on candidate type, capturing schematically the
main features of hiring in the presence of social influence, or, more generally, situations
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with a formally similar structure, for example the medical procedure choice problem.
In the same framework we can also consider the effects of a second plausible form of
influence which is not social but exerted by the decision maker’s own past behavior. The
arguments in favor of such an effect are similar to those underpinning social influence.
Just as an employer might be sensitive to a corporate culture expressed by the types
of employees hired by similar firms, he might have a tendency to maintain a personal
status quo in terms of employee composition. In the case of medical procedure choice,
there may, in addition, be actual, objective benefits to maintaining a procedure one
has acquired familiarity with.

From a more theoretical point of view, the framework we adopt places this work in
the vast literature on binary choice in the presence of social interaction. Theoretical
studies such as Glaeser and Scheinkman [19], which review a number of models of
this type, Glaeser et al [18] or Horst and Scheinkman [21] have highlighted general
properties of a large class of models of discrete choice with social interactions in a
static one shot setting. These models usually exhibit multiple equilibria, translating
the possibility of different outcomes despite similar fundamentals. The strength of
interactions have an important impact on the properties and the multiplicity of the
equilibria. Econometric works (see for example the studies of Blume et al [7],[8] )deal
with problems of identification in social interaction models.

Our model is most closely related to a class of binary choice models which posit a
random utility function (for a general background see Manski [27]) which depends on
the decision, on social influence and on a random personal taste variable associated
with each choice. The random taste variable in this formulation can also be interpreted
as a random perturbation of the agent’s deterministic best reply. A seminal model
of this type is due to Brock and Durlauf [12] (see also by the same authors [13])
who established a link between the random utility framework and work in the area
of particle spin theory in Physics. For a review of such approaches see Blume [6].
Brock and Durlauf, characterized the outcomes in their model for a large (continuum
of agents) population, using the notion of correct a anticipation equilibria. The Brock
and Durlauf model, or similar frameworks have been widely used and have later been
extended in different ways, for example to allow for heterogenous anticipation as in Lee
et al [25], or in order to accommodate more complex interaction structure than that of
uniform influence e.g. Ioannides [22], Cont and Loewe [16] and Loewe et al [26].

This work can also be related to the Brock and Durlauf model, since the one-shot
model that is repeated over time in our framework, coincides, for a specific choice of the
utility function, with the Brock and Durlauf model. In this particular case, we can also
identify the distribution of the difference between the taste variables associated with
each action in Brock and Durlauf with the characteristics distribution in our model.

However, in general, our model differs from the Brock and Durlauf model and its
extensions in that our decision makers make decisions about an exterior population
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and not about themselves. This difference in context also prompts new questions.
In the random utility framework, the random term, interpreted as a perturbation of
best reply, is essentially a noise term and generally not the object of much attention,
an exception being Gordon et al [20] who analyzed the Brock and Durlauf model for
a more general class of distributions of the random term. In our case, however, the
random term represents the characteristics of the population. It is thus a crucial aspect
of the model and it is important to understand what is the impact of its properties on
the long run outcomes.

1.1 Organization of the material

Rather than making from the start restrictive assumptions motivated mainly by the
need to simplify the mathematical analysis, we initially adopt a quite general and flex-
ible framework in which we may consider different types of preferences of the decision
maker, candidate characteristics distributions and interaction structures. It is difficult
to obtain results about the model in its full generality. We explore two special cases,
one with general interaction structures but restrictive assumptions on the utility func-
tions and the distribution of candidate characteristics and another in which we fix a
simple interaction structure while allowing utility and characteristics specifications to
vary.

Following the introduction in section 1, section 2 presents the general framework and
assumptions. In section 3, we characterize average long run decision frequencies for an
arbitrary interaction structure restrictions on the utility functions and the distribution
of candidate characteristics . In section 4, we characterize decision frequencies for arbi-
trary characteristics distributions but only for two very particular interaction/influence
structures: uniform interaction between decision makers and pure personal reinforce-
ment. We show that long run decision frequencies can be related to the fixed points of
the choice probability.

Section 5 does not present any new results. It provides a discussion of the results in
sections 3 and 4, focusing on how to distinguish between the effects of social interactions
or personal inertia when we observe only aggregate data.

Section 6 uses the results in 4 to analyze how the magnitude of the asymptotic
reinforcement of a decision is related to various properties of the characteristics distri-
bution.

Section 7 conclues. An appendix at the end of the paper presents longer proofs
that are left out from the main text.
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2 Framework and assumptions

2.1 Utility and decisions

N decision makers with identical preferences face a binary decision between two choices
labeled 0 and 1. If we interpret the decision as whether or not to hire the candidate,
we can, from now on, think of decision 1 as rejection. The utility function of decision
maker i is noted Ui and depends on three arguments: the decision ai ∈ {0, 1}, the
candidate characteristic θ and an influence variable hi ∈ [0, 1] that can encompass
social influence and personal inertia and which will be defined more precisely later
on. The candidate characteristic θ ∈ R comprises all relevant personal characteristics
of the candidate, such as experience, motivation etc . We adopt the convention that
a higher value of θ makes the candidate more suited for decision 1 (rejection). For
each candidate, θ results from an independent draw of the random variable Θ whose
distribution describes the characteristics of the candidate population. The decision
maker takes action 1 if Ui(1, h, θ) > Ui(0, h, θ) (indifference is settled by the draw of
an unbiased coin). We make the following assumptions about the utility function:

(1) Ui(1, hi, θ) − Ui(0, hi, θ) is strictly increasing in hi and in θ. This translates the
convention that a higher θ makes the candidate more suitable for decision 1
and the fact that a higher value of the influence variable makes decision 1 more
attractive compared to decision 0.

(2) Presence of dominant candidate types: there is a θh such that for θ ≥ θh,
Ui(1, h, θ) > Ui(0, h, θ) for all h ∈ [0, 1] and there is a θl such that for θ ≤ θl
U(0, h, θ) > U(0, h, θ) for all h ∈ [0, 1].

(3) Let θl < θn < θh be the ”neutral” candidate, the type that makes the decision
maker indifferent between choices when the environment is unbiased. It is defined
by: Ui(1,

1
2
, θn) = Ui(0,

1
2
, θn). The decision maker has no personal preference over

decisions in the sense that for all hi ∈ [0, 1] and all α > 0, Ui(1, hi, θn + α) =
Ui(0, 1− hi, θn − α).

We adopt a dynamic model in discrete time. At t ≥ 1, each decision maker i
receives a candidate and makes a decision ati ∈ {0, 1} so as to maximize his utility
function Ui = Ui(a

t
i, θ, h

t
i).

2.2 Social or Personal Influence

A key assumption in this paper is that in addition to the candidate’s characteristics,
the decision maker takes into account a second factor that can be social influence,
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influence of his own pas choices or a combination of both. This is captured in the
variable hti. Most generally, hti will be a weighted average of a neighbor variable vti and
a personal experience variable pti, so that hti = γvti + (1− γ)pti, γ = 1(or 0) corresponds
to pure social influence and pure personal reinforcement respectively. The neighbor
variable hti reflects the proportion of the agent’s neighbors who have chosen the action
1 in the past. If we denote by ati, the action of agent i at time t and by V (i), i’s
neighbors in the network Γ, then the neighbor state variable is updated by adding
the average of the most recent actions of the agent’s neighbors. It is thus defined
recursively by vt+1

i = λ2v
t
i + (1 − λ2) 1

CardV (i)

∑
j∈V (i) a

t+1
j (assuming identical impact

of all neighbors’ choices), where λ2 is the peer discount factor. Similarly, the agents’
own past experiences are summarized by pt+1

i = λ1p
t
i + (1 − λ1)at+1

i , where λ1 is the
discount factor for personal experience. Updating rates of own observations and of
those of one’s peers may differ.

2.3 The distribution of candidate characteristics

All characteristics of the candidate that are relevant for the decision (0 or 1) are
summarized by a scalar θ ∈ R which is the realization of random variable Θ.The
variable Θ captures the distribution of characteristics in the group the agent belongs
to. To study the effects of social interactions on the outcomes for a group with an
initial bias towards one of the decisions, we need to define what is meant by an initial
bias. Without loss of generality, we will speak about bias in favor of decision 1. Bias
in favor of decision 0 would be defined in an analogous manner. If we think of hiring,
1-bias in a population expresses a lack of job relevant education, experience etc in the
group. With binary characteristics, there would quite clearly be (1) dominance if more
than half of the agents were of a higher type than the neutral type θn . With continuous
candidate types it is less straightforward to define what is meant by dominance. Two
possible definitions are:

(1) (weak bias) E[Θ] > θn

(2) (strong bias)for all α > 0, P ([−∞, θn − α]) < P ([θn + α,∞])

2.4 Main assumptions in terms of choice probability

By the previous, the decision maker chooses 1 if and only if

Ui(1, h
t
i, θ) ≥ Ui(0, h

t
i, θ) (1)
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Ex ante, the probability of choosing 1 is given by

P (Ui(1, hi, θ)− Ui(0, hi, θ) ≥ 0) =: P (1|hi). (2)

In what follows, we will often work directly with the choice probabilities and when
needed, go back, to translate the results in terms of utility and characteristics. The
assumptions about preferences and characteristics that we stated in the previous sec-
tions translate into the first 3 properties below of the choice probability. In addition,
we assume property 4, which holds if the utility function is continuous in each of its
arguments and if the cdf of Θ has at most a finite number of discontinuities.

(1) (strong bias) P (1|h) > 1− P (1|1− h) for all h ∈ [0, 1].

(2) (dominant types) P (1|1) < 1, P (0|0) < 1.

(3) P (1|h) is increasing in h

(4) P (1|h) is continuous or admits a finite number of discontinuities.

2.5 Dynamics and long run quantities of interest

Every period t = 1, 2.., each decision maker receives a candidate drawn from the
candidate distribution and assigns him a decision. The number of 1 choices at time t is
thus

∑i=N
i=1 a

t
i ∈ {0, 1, ..., N} and the expected fraction of 1 decisions is E[ 1

N

∑i=N
i=1 a

t
i].

We will focus on cases where
∑i=N

i=1 a
t
i converges asymptotically to a distribution µ on

{0, 1, ..., N} which we can characterize, or on cases where we can at least characterize
the limit expectation limt→∞E[ 1

N

∑i=N
i=1 a

t
i]. These quantities then give us the long run

distribution of 1 choices in the presence of influence, and/or the expected frequency
of 1 choices. To evaluate the reinforcement, we must compare this to the decisions
that would be taken in absence of social influence. It is not possible to remove the
influence variable h from the model. To eliminate influence, instead, we fix the influence
variable h permanently at the neutral value h = 1

2
. The decision makers’ probabilities

of choosing 1 are then independent and identically equal to P (1|1
2
) = P (Θ1 ≥ θn) over

time. Let ν be the distribution over the states {0, .., N} (a state can be identified
with the number of 1 choices taken) in absence of interactions. ν is then a binomial
distribution with parameter P (1|1

2
), which is also the expected value of the fraction of

1 decisions in absence of social influence. The change in frequency of 1 choices for a
population with characteristics given by Θ due to social influence can thus be measured
by

limt→∞EΘ[1/N
i=N∑
i=1

ati)]− P (Θ≥θn) = limt→∞EΘ[1/N
i=N∑
i=1

ati)]− P (1|1
2

) (3)
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When
∑i=N

i=1 a
t
i converges to a distribution µ, the latter can be compared to the one in

absence of interactions, ν. Also, in this case, limt→∞EΘ1(
1
N

∑i=N
i=1 ai) = 1

N

∑i=N
i=1 µ(i).

We may also want to compare how social influence impacts two groups with different
characteristics. Let Θ1 and Θ2 be the characteristics distributions in the two groups.
Assuming convergence to measures µ1 and µ2 respectively, the difference in long run
outcomes is then limt→∞[Eµ11/N

∑i=N
i=1 ai)−Eµ21/N

∑i=N
i=1 ai)] but even in absence of

interactions, the fractions of 1 decisions were not necessarily the same. They would be
P (Θ1 ≥ θn) and P (Θ2 ≥ θn) respectively. Thus the reinforcement of the difference in
outcomes for the two groups is measured by

lim
t→∞

[Eµ11/N
i=N∑
i=1

ai)− Eµ21/N
i=N∑
i=1

ai]− [P (Θ1 ≥ θn)− P (Θ2 ≥ θn)] = (4)

(limt→∞EΘ1(
1

N

i=N∑
i=1

ati)− P (Θ1 ≥ θn))− (limt→∞EΘ2(
1

N

i=N∑
i=1

ati)− P (Θ2 ≥ θn)) (5)

Note that this quantity can be deduced from 3 . We will let the expression 3 be our
main measure of reinforcement.

3 Special case 1: general interaction structure and

influence structure, uniform characteristics dis-

tribution

In this section, we analyze a case where we place very few restrictions on interaction
and influence structures but impose very specific assumptions about preferences and
the characteristics distribution. We consider a utility function of the form

Ui(ai, hi, θ) = β(hi −
1

2
)(ai −

1

2
) + (θ − 1

2
)(ai −

1

2
).. (6)

This utility specification is similar to one of those in [19] but adapted to our actions (0
and 1 instead of −1, 1, neutral value 1

2
instead of 0). The parameter β regulates the

strength of social influence. We note that the neutral type is then θn = 1
2
. Moreover, we

suppose that the characteristics follow a uniform distribution on an interval of length
1 centered in Pc with 0 < Pc < 1. With these specifications, the choice probability is
linear in the influence variable. Ex ante, the probability of choosing 1 for a given value
hi of the state variable is:

P (ai = 1|hi) = P (U(1) ≥ U(0)|hi) = P (θ ≥ 1

2
(β + 1)− βhi) = (7)

Pc +
1

2
− 1

2
(β + 1) + βhi = Pc + β(hi −

1

2
) (8)
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Pc is the proportion of 1 choices in a neutral environment. Strong 1-dominance is
ensured if Pc >

1
2
.

Our first result characterizes the long run behavior of the expectation of the ag-
gregate quantity V = 1

N

∑i=N
i=1 vi, the average of the neighbor variables and of P =

1
N

∑i=N
i=1 pi, the average of the agents’ own past choices. From these, is easily deduced

the expected long run frequency of 1 decisions.

Theorem 1 Assuming that

(1) utility is given by (6)

(2) the characteristic Θ follows a uniform distribution on an interval of length 1
centered in Pc with 0 < Pc < 1.

(3) The agents are connected in a network Γ in which all agents have the same degree.

(4) social/personal influence is limited: β < 1−Pc
2

(5) 1 dominates in the population in the sense that Pc >
1
2

Then the choice probability has a unique fixed point in [0, 1], xf =
Pc−β2
1−β > Pc and for

all choices of γ, λ2 and λ1 in (0, 1) we have

lim
t−→∞

EV 0 [V t] = lim
t−→∞

EP 0 [P t] = xf

for any initial conditions V 0 and P 0.

The proof of Theorem 1 is given in the appendix. The result shows that in the
long run, the expected values of the private and public state variables are the same
and equal the fixed point whatever are the values of the updating parameters and the
weight given to private and public experience respectively. This is of course the case
only for these specific choices of utilities and characteristics distribution.

Corollary 2 Under the assumptions of Theorem 1 the long run average of 1-decisions

limt→∞E[1/N
∑i=N

i=1 a
t
i)] = xf =

Pc−β2
1−β > Pc. The long run reinforcement is xf−P (Θ ≥

θn) = xf − Pc which is strictly positive when Pc >
1
2
.

The corollary shows that when the population characteristics verify 1-bias (i.e. un-
favorable characteristics), interaction between decision makers reinforces the frequency
of 1 decisions (candidate rejected) compared to the case with independent decisions.
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Proof of Corollary 2 : If, for example, the weight on personal experience is not 0 (if
it is the weight on neighbors past actions that is non zero the argument is identical),
we have pti = λpt−1

i + (1− λ)ati. Thus by Theorem 2

limt→∞E[1/N
i=N∑
i=1

ati)] =
1

N(1− λ)
limt→∞E[

i=N∑
i=1

pti)− λ
i=N∑
i=1

pt−1
i )] = (9)

1

(1− λ)
limt→∞E[P t − λP t−1] = xf (10)

Although the results above are obtained under very specific assumptions about
functional forms, they already indicate that social interactions between decision makers
can give rise to effects resembling those of statistical discrimination. If we take decision
1 to mean that the candidate is rejected at hiring, we see that with influence between
decision makers, individuals from a group with unfavorable characteristics will face
a lower rate of hiring than in absence of the interactions. We also see that these
reinforcement effects can be explained by two different behavioral assumptions: social
interactions, personal inertia, or a combination of both.

4 Special case two and three: Pure social influence

with short memory and Pure personal inertia

In the previous section, we placed few restrictions on interaction and influence struc-
ture (any network with identical degrees, any mix of social and personal reinforcement
and updating speed) but imposed specific functional forms for preferences and charac-
teristics distributions. We now do the opposite: limiting our analysis to two particular
influence structures but allowing preferences and characteristics distributions to be ar-
bitrary among those satisfying our general assumptions. This will allow us to study
how the distribution of candidate characteristics influences the long run outcomes and
in particular the magnitude of discriminatory reinforcement. We restrict attention to
the following two situations :

• Uniform interaction (ie on a complete graph) and memory of only the most recent
period. This corresponds to setting updating parameter λ2 = 1. We set γ = 1,
meaning that no weight is given to personal experience. For reasons of analytical
convenience, we assume here asynchronous updating. At discrete times, an agent
i ∈ {1, 2, ..., N} is drawn uniformly at random and receives a candidate. He
makes a decision based on the candidate type and on the average choice in the
last period, 1

N−1

∑i=N−1
i=1 at−1

i .
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• Pure personal reinforcement. The decision maker cares only about his own pre-
vious choices (γ = 0). Again, for reasons of analytical convenience and to obtain
an identification with the first case, we consider a slightly different updating
mechanism than in the previous framework : the agent remembers his own N
most recent decisions, which are summarized in a memory vector p ∈ {0, 1}N .
At each time t the agent’s choice is affected by the average value of his mem-
ory vector. Thus at time t the agent chooses 1 with probability P (1|pt−1) where
pt−1 = 1

N

∑s=t−1
s=t−1−N a

s is the average value of his memory vector. He updates this
vector by adding his choice at time t and by dropping the most ancient choice
still in memory, vt−N .

In the first case, StN =:
∑i=N

i=1 a
t
i, the sum of all agents decisions is an ergodic,

homogeneous Markov chain on the state space {0, 1}N , and so is, in the second case,
Rt
N =:

∑l=t
l=t−N a

l
i, where N represents in the first case the number neighbors of the

decision maker and in the second case the number of periods that the agent remem-
bers. We note that in the general case, the sum of decisions is not Markovian due to
dependance on past actions in the personal and neighbor variable.

Proposition 3 The variables (StN) and (Rt
N) have the same invariant measure µ with

µ(k) =

(
N
k

)∏i=k−1
i=0

P (1| i
N

)

P (0| i+1
N

)∑l=N
l=1

(
N
l

)∏i=l−1
i=0

P (1| i
N

)

P (0| i+1
N

)

.

Proof : We give the proof for RN . For SN , the proof can be found in the appendix.
We adopt the generic notation vk for any v ∈ {0, 1}N such that 1

N

∑i=N
i=1 vi = k. As

an ergodic, homogenous Markov chain, (Rt
N) admits a unique invariant measure. We

seek an invariant distribution that puts the same probability on all elements with the
same mean and write the detailed balance conditions for an element vk. There are two
possible cases: if the most recent element in the memory vector vk is 1, then the most
recent decision was 1. There are two possible precursors of this vector, one where the
dropped element was 1 and one where it was 0. If the dropped element was 1, the
unique precursor is an element vk, if the dropped element was 0 the unique precursor
is an element vk−1, since the updating replaced a 0 by a 1 :

µ(vk) = µ(vk)P (1| k
N

) + µ(vk−1)P (1|k − 1

N
) (11)

In the second case, the most recent entry of the vector vk is 0. In this case, there is a
unique precursor vk, whose most ancient entry is 0 and a unique precursor vk+1 whose
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most ancient entry is 1. For the element vk such that the last entry is 0 :

µ(vk) = µ(vk)P (0| k
N

) + µ(vk+1)P (0|k + 1

N
) (12)

In both cases, the equations simplify to

µ(vk) =
µ(vk−1)P (1|k−1

N
)

P (0| k
N

)
. (13)

Recursively we find that

µ(vk) =
i=k−1∏
i=0

P (1| i
N

)

P (0| i+1
N

)
µ(v0) (14)

Since µ is a probability, and since there are CN
k different elements whose sum is k,we

must have µ(0) = 1

1+
∑k=N
k=1 CNk

∏i=k−1
i=0

P (1| i
N

)

P (0| i+1
N

)

.

4.1 The nature of the reinforcement effects

Having derived the expression for the invariant distribution µ of decisions in the pres-
ence of social influence/inertia, we can analyse the effects of the latter by comparing
with the decisions that would have been taken in absence of these factors. We re-
call from section 2.5 that without influence, the distribution on the states {0, 1, ..., N}
(representing the number of 1 decisions) is a Binomial law Bin(N, p) with parameter
p = P (Θ1 ≥ θn) = P (1|1

2
).

4.1.1 Asymptotic analysis; large number agents/ long memory

The lemma below will be helpful in characterizing the behavior of µ for large N .

Lemma 4 Consider the function

g(x) =
P (1|x)(1− x)

(1− P (1|x))x
. (15)

Let c > 0, then for any k
N
∈ [c, 1], we have

g(
k + 1

N
)−R(N) <

µ(k + 1)

µ(k)
< g(

k

N
) + R̃(N) (16)

where limN→∞R(N) = limN→∞ R̃(N) = 0.
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When N is large, µ is increasing when g > 1 and decreasing when g < 1.
The next proposition describes the invariant measure when there is a strong bias

towards type 1 and under an assumption on the fixed points of the choice probability.

Theorem 5 If we have strong bias towards type 1 and if x is the only fixed point of
P (1|x) in [1

2
, 1], and if we define A = N(x − ε, x + ε) then for every ε > 0 and every

M , there exists N(ε,M) such that µN (A)
µN (Ac)

> M .

We can note that when the characteristics distribution has a continuous cumulative
density function, the strong bias condition and the assumption of existence of dominant
types already ensures the existence of a fixed point in [1

2
, 1], and the assumptions in

Theorem 5 is just needed to ensure uniqueness. Theorem 5 is proved in the appendix. It
provides a clear characterization of the magnitude of the reinforcement effects generated
by social influence when the population size is large, since the average under µN is given
by the fixed point which is larger than the average in the absence of interactions, since
xf > P (1|1

2
). When N is sufficiently large, and the characteristics distribution verifies

the condition of having a unique fixed point in [1
2
, 1], then social interactions do indeed

increase the frequency of the treatment towards which there is an initial bias.

4.1.2 Pre-asymptotic analysis: small number of agents/short memory

The previous result is asymptotic. Away from the large N limit, the distribution µ
puts positive weight on all states and there is a wider range of properties to explore.

The first proposition concerns the case where there is no bias in the population
initially.

Proposition 6 Assume that there is no bias in the candidate characteristics. Then
social interactions/inertia do not modify the average treatment: Eµ(X) = Eν(X) but
increase variability : there is second order stochastic dominance of ν over µ.

In the presence of interactions (or inertia), the probability of extreme outcomes,
that is outcomes where many decision makers take similar decisions simultaneously is
increased. This result is quite intuitive and is a dynamic equivalent to the observation
that social influence generates multiple equilibria in one shot models.

Proof: In this case, µ and ν are both symetricly distributed around N/2. Conse-

quently,
∑k=N/2

k=0 µ(k) =
∑k=N/2

k=0 ν(k) = 1
2
. Suppose that µ(0) < ν(0). Then for all

0 < k ≤ N/2 we would have µ(k) = µ(0)cNk
∏j=k−1

j=0
P (1|j)
P (0|j+1)

< ν(k) = ν(0)cNk ( p
1−p)k,

since P (1|k) < p = P (1|N
2

) for k < N/2. This contradicts
∑k=N/2

k=0 µ(k) =
∑k=N/2

k=0 ν(k).
Therefore, µ(0) > ν(0). For the same reason, we cannot have for all 0 < k ≤ N/2
µ(k) > ν(k). Therefore, there exists a smallest m < N/2 such that µ(m) ≤ ν(m).
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For m < k < N/2, we have µ(m) < ν(m). By symmetry, we have µ(k) − ν(k) =
µ(N−k)−ν(N−k) > 0 on k ∈ [0, ...,m−1] and µ(k)−ν(k) = µ(N−k)−ν(N−k) < 0
on k ∈ {m, ..., N −m}. It is apparent from the shape of the two distributions that µ
is a mean preserving spread of ν.

Next, we turn to the main case with which we are concerned in this paper, the one
where the population has characteristics biased towards 1. The following proposition
shows, somewhat surprisingly that for a fixed N , even strong 1-bias does not necessarily
ensure that social interactions have for effect to increase the frequency of decision 1.
We can exhibit distributions of characteristics for which the opposite occurs.

Proposition 7 • For every fixed N ≥ 2, we can find a characteristics distribution
P verifying strong bias under which the distribution µP is stochastically first order
dominated by ν.

• For every fixed N ≥ 2, there exists a characteristics distribution Q verifying
strong bias under which the distribution µQ stochastically first order dominates
ν. A sufficient condition for this to occur is that P (1|1) >> P (1|1/2).

We will work with the conditional probability distribution P (1|x) and prove the
first claim by exhibiting a choice probability for which νDS1µ: Let P (1|x) = p >
0, 5 for x ≥ 1/2 and let P (1|x) be arbitrary for x < 1/2 but verifying the strong
bias condition, ie P (1|x) > 1 − p. The invariant distribution verifies for k ≤ N/2:

µ(k) = cNk
∏k−1

i=0

P (1| i
N

)

P (0| i+1
N

)
µ(0), and for k > N/2, µ(k) =

cNk
cN
N/2

∏k−N/2
i=0

P (1|
N
2 +i

N
)

P (0|
N
2 +i+1

N
)
µ(N/2) =

µ(N/2)( p
1−p)k−N/2

Now, ν is a Bin(N, p) law, so ν(k) = cNk
p

1−pν(0). For k ≥ N/2, we can write

ν(k) =
cNk
cN
N/2

( p
1−p)

N
2
−kν(N/2).

We show first that it is not possible that µ(0) ≤ ν(0) because this would imply that
for all m ≤ N/2, µ(m) < ν(m). But if µ(N/2) < ν(N/2), then we would also have
µ(k) < ν(k) for all k > N/2, which is impossible since

∑
µ(k) =

∑
ν(k).

Thus, necessarily, µ(0) > ν(0). Then there must exist a smallest k ∈ {1, ..., N/2}
such that µ(m) < ν(m) for all m > k. Indeed if such a k did not exist then µ(N/2) >
ν(N/2) would imply µ(k) > ν(k) for all k which is impossible. This concludes that for
the given probability, we have µ(k) > ν(k) for all k < m and µ(k) < ν(k) for k > m
and indeed νDS1µ as we claimed. We note that under the same assumptions, the fixed
point which measures increase asymptotically is exactly equal to P (1|N/2) so that no
increase occurs.

We prove the second point: we recall that µ(0) = 1

1+
∑k=N
k=1 CNk

∏i=N−1
i=0

P (1| i
N

)

P (0| i+1
N

)

. Now,
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∏i=N−1
i=0

P (1| i
N

)

P (0| i+1
N

)
=
∏i=N−1

i=1

P (1| i
N

)

P (0|1− i
N

)

P (1|0)
P (0|1)

≥ P (1|0)
P (0|N)

. For a choice probability such that

P (1|1) is sufficiently large compared to p = P (1|1
2
), we can ensure that µ(0) < (1−p)N

By arguments similar to those in the previous proof, this implies that for all k ≤
N/2, µ(k) < ν(k). Moreover, there must exist a smallest k ∈ {N/2 + 1, ..., N} such
that for m > k, µ(m) > µ(k). This concludes the proof that there exists a distribution
such that µDS1ν.

Proposition 7 shows that, away from the asymptotic limit, social influence or inertia,
may in some cases, reinforce rejection rates in a population whose characteristics verify
strong initial bias but in others reduce it. Since stochastic first order dominance is not
a complete order, it is also possible that the effect is undetermined for some character-
istics distributions, so that µ does not first order dominate ν nor conversely. We have
related the effect that obtains to properties of the probability P (1|x). It is instructive
to see how the latter translate into properties of the characteristics distribution. The
second part of Proposition 7 says that reinforcement occurs if P (1|1) >> P (1|1/2).
This will be the case if P (1|1/2) is close to 1

2
and then increases sharply with x. This

holds if there is only a minor bias towards 1 in the population but a very small propor-
tion of dominant 0 types. The counter examples that give the first part of Proposition
7 are such that P (1|1/2) is well above 1/2 but barely increases from there and P (1|x)
is increasing on [0, 1

2
]: there are many agents with moderately 1 leaning characteristics

but also many 0-dominant types.

5 Distinguishing between Personal inertia or social

interactions

This section does not present any new results but analyzes the implications of the
results of sections 3 and 4. The main objective is to clarify the differences and simi-
larities in the outcomes that are generated under assumptions of social influence and
inertia respectively. In section 4, we studied the properties of the invariant probability
distribution µ, where µ(k) represents in the case of social interactions, the probability
that exactly k agents choose treatment 1, this probability being the same at any given
time t. In the case of personal inertia, µ(k) is the probability that an agent has chosen
treatment 1 k times in the past N periods, this probability being independent across
all agents.

With access to detailed individual data, it should always be possible to identify
the relevant explanation. Personal inertia produces correlations over time in each indi-
vidual’s behavior, whereas social interactions give rise to correlations between agents
connected in a network at a given time, provided we know the network. Using only
aggregate data, the relevant explanation is more difficult identify. Both behavioral as-

16



sumptions generate reinforcement effects of similar magnitude. Let us therefore sum-
marize what the ”aggregate” data would look like under the different assumptions.

• Social interactions increase the variance of the average choice and thus the prob-
ability of extreme scenarios where many of the decision makers take the same
decision at a given moment. This can occur even with a candidate population
whose characteristics distribution exhibits no initial bias. in this case, however,
the probability of both types of extreme scenarios increase symmetrically. Social
interactions could also be at the origin of occasional observations of large dif-
ferences in treatment between two groups that do not differ in their statistical
characteristics, but in this case, these differences would not show a consistent
tendency over time.

• If the characteristics distribution has no bias, personal inertia, contrary to inter-
actions, cannot account for the appearance of extreme scenarios, even without
a consistent tendency. Due to the independence between decision makers, the
probability that k agents choose treatment 1 is a binomial law B(n, p) where p
is the individual probability of choosing 1. This probability is Eµ(X) = P (1|1

2
).

Therefore the probability of a scenario where k agents simultaneously choose 1
is the same as in absence of inertia.

• If the characteristics distribution is biased : the expected average long run fre-
quency of 1-choices is modified to Eµ(X), thus with the same magnitude, both
with social interactions and with inertia. Thus both behavioral assumptions pro-
duce scenarios with reinforced differences between groups differing at the outset.
However, the variance over time of average choices should be greater with social
interactions. In the inertia case, the individual decisions are independent and
so, when the number of decision makers is large, the average choice should be
close to its expectation. However, when memory length is large and the number
of interacting decision makers is large, the average decision does not fluctuate
much away from the fixed point Eµ(X) in both cases. Social interactions and
personal inertia then have similar effects, at least in terms of what can be seen
in aggregate data.

As we have seen, social interactions and personal inertia lead to similar scenarios in
terms of aggregate outcomes, making it difficult to identify the appropriate explanation
from the observations. Without individual date, the level of variance of choices over
time can be an indicator of whether reinforcement is generated by interactions or by
inertia.
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6 The influence of heterogeneity on the level of re-

inforcement:

In this section, we analyze how different properties of the characteristics distribution, in
particular those related to its dispersion affect the level of reinforcement of 1-decisions.
We provide some results in the setting of section 4, and more precisely under the
assumptions of Proposition 3, when the long run distribution of decisions is given by
the invariant measure µ. If, moreover, we adopt the assumptions of Theorem 5, the
fraction of 1 choices is simply given by the fixed point of the choice probability which
can easily be compared the expected fraction of 1-choices in a neutral environment
providing us with a simple and precise measure of the magnitude of the reinforcement.

The literature on social interactions and in particular on binary choice suggests that
greater heterogeneity of the characteristics distribution is likely to decrease the effects
generated by social interactions. Weaker interactions give rise to weaker reinforcement
effects in static equilibrium, e.g. Glaeser et al [18]. Greater heterogeneity of the
characteristics distribution could be considered to weaken the strength of interactions,
at least relatively, by making the private signal stronger, the extreme case being a
distribution that places weight only on dominantly high and low types, so as to entirely
preclude the effects of social interactions. Brock and Durlauf indeed find, in their
model, that greater heterogeneity of the random taste variable reduces the effects
of interactions (reduction of the multiplicity of equilibria) when comparing variables
within the same class of distributions (extreme value distribution) but with different
parameters and thus different variance. In the context of our model, we ask whether it
holds true in general that greater heterogeneity translates into less reinforcement if we
compare two arbitrary characteristics distributions that are ordered in terms of second
order stochastic dominance.

In the asymptotic case, reinforcement is given by the difference between the fixed
point and the average under ν which is P (1|1

2
). We note that besides the value of

P (1|1
2
), the fixed point is not affected by the behavior of the probability on [0, 1

2
].

Indeed, if we modify P (1|x) on [0, 1
2
], without changing P (1|1

2
), and in such a way that

weak bias still holds, this has no effect on the fixed point but can modify the variance
or the DS2 relation between measures. This observation about the choice probability
translates into the following statement about characteristics:

Proposition 8 Let Θ1 and Θ2 be two characteristics distributions which verify strong
dominance of 1-types. If P (Θ1 ≤ s) = P (Θ2 ≤ s) for all s ∈ [−∞, θn], where θn
is the neutral type, then the choice probabilities have the same fixed point and the
reinforcement by interactions (or inertia) has the same magnitude in a large population.
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This proposition shows that within the class of distributions that verify strong
dominance, the magnitude of the reinforcement depends on the distribution of low
types but not on the exact distribution of high types. This was not apparent for
distributions which are symmetric around the neutral type.

The previous result established, we analyze how the reinforcement depends on the
distribution of Θ on (−∞, θn]. We find that a sufficient condition for increase not to
occur is that P is flat on [N/2, N ] and that a sufficient condition for increase to occur
is that P is increasing in the right neighborhood of 1/2, or in terms of characteristics:

Proposition 9 Under the assumption of Theorem 5, a sufficient condition for increase
not to occur is that P (θ ∈]θl, θn[) = 0.

Proposition 10 Under the assumption of Theorem 5, a sufficient condition for in-
crease to occur is that P (θ ∈ [θn − ε, θn[) > 0.

Proposition 9 says that if all low types are dominantly low, then no increase is
generated by social interactions. Proposition 10 states that positive increase will occur
as long as there is some mass of types that are just slightly lower than neutral.

The conditions distinguish cases where there is a mass of types only far away from
the neutral type or close to it. These conditions are thus indeed related to the homo-
geneity/heterogeneity of the distribution. However, it is easy to see that in general,
the condition cannot be captured by second order stochastic dominance, the standard
measure of the global dispersion ie heterogeneity of the distribution, nor of course by
variance.

Proposition 11 The magnitude of the reinforcement is not monotonous with respect
to Stochastic second order dominance.

Proof: we give a counter example. Let θ be such that θl < θn < θ < θh. Define
h(θ) as the h such that U(1, h, θ) = U(0, h, θ). Consider the following distribution of

candidate characteristics: P (Θ) =


θl

1
6

θ 1
2

θh
1
3

⇐⇒ P (1|h) =


1
3

h ∈ [0, h(θ)[
7
12

h = h(θ)
5
6

h ∈]h(θ), 1]

Since θ > θn, h(θ) < h(θn) = 1
2
. This distribution has P (1|1

2
) = 5

6
= xf . Therefore,

the reinforcement is zero. We will now define Θ̃ as a mean preserving spread of Θ. We
redistribute the probability on θ symmetrically on θn < θ and θm =: θ + (θ − θn). We
assume that θ − θn is small so that θm =: θ + (θ − θn) < θh. We have 0 < h(θm) <
h(θn) = 1

2
.
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P (Θ̃) =


θl

1
6

θn
1
4

θm
1
4

θh
1
3

⇐⇒ P (1|h) =



1
3

h ∈ [0, h(θm)[
11
24

h = h(θm)
7
12

h ∈]h(θm), 1
2
]

17
24

h = 1
2

5
6

h ∈]1
2
, 1]

. In absence of inter-

actions, the expected frequency of 1 choices is P (1|1
2
) = 11

24
, whereas the fixed point

xf = 5
6
> 11

24
. So in this case, the reinforcement is strictly positive.

We should note that while we gave an example where P (1|x) is discontinuous, this
discontinuity is not what drives the counter-example. We just took this case as it is
simple to describe. We could have smoothed P (1|x) and conserved a similar counter
example.

This example shows that less heterogeneity in characteristics, as measured by sec-
ond order stochastic dominance, does not in general ensure a stronger reinforcement
effect due to social interaction and so the result of Brock and Durlauf with the logit
distribution with different parameter cannot be generalized when we compare two ar-
bitrary characteristics distributions.

Increasing characteristics heterogeneity using mean preserving spreads does not
necessarily lead to weaker reinforcement. However, we can show that a different type
of ”spread” which instead of preserving the mean, preserves the proportion of 1-choices
in absence of interactions, does have the property of reducing the reinforcement effect:

Proposition 12 Let Θ̃ be a spread of Θ that conserves the proportion of choices in a
neutral environment and takes the following form:for a fixed a > 1, Θ̃ = aΘ + m(a),
where m(a) ∈ R is chosen to have PΘ̃(1|1

2
) = PΘ(1|1

2
). If PΘ̃(1|h) and PΘ(1|h) both

have unique fixed points in (1
2
, 1], denoted hΘ̃ and hΘ respectively, then hΘ̃ < hΘ.

Proof Let a > 1 be fixed and define Θ̃ = aΘ + m(a) where m(a) is determined by
the relation

P (U(1, aΘ +m(a),
1

2
) > U(0, aΘ +m(a),

1

2
) = P (U(1,Θ,

1

2
) > U(0,Θ,

1

2
). (17)

We note that for every h ∈ [0, 1] there is a c(h), decreasing in h such that

P (1|h) = P (U(1,Θ, h) > U(0,Θ, h) = P (Θ > c(h)). (18)

Thus, (17) is equivalent to

P (aΘ +m(a) > c(
1

2
)) = P (Θ > c(

1

2
). (19)

Assuming that the cdf of Θ is strictly increasing, this implies
c( 1

2
)−m(a)

a
= c(1

2
).

20



For h > 1
2
, we have c(h) < c(1

2
) and we can write c(h) = c(1

2
) − k with k > 0.

Therefore we have

PΘ̃(1|h) = P (aΘ +m(a) > c(h)) = P (aΘ +m(a) > c(
1

2
)− k) = P (Θ >

c(1
2
)−m(a)

a
− k

a
).

Since
c( 1

2
)−m(a)

a
= c(1

2
),

c( 1
2

)−m(a)

a
− k

a
= c(1

2
)− k

a
> c(1

2
)− k = c(h),

whence P (Θ >
c( 1

2
)−m(a)

a
− k

a
) < P (Θ > c(h)) = PΘ(1|h), so finally PΘ̃(1|h) <

PΘ(1|h).
Now, suppose that h̄ is the largest value of h such that PΘ(1|h̄) = h̄. By the

assumption that PΘ(1| 1) < 1, we must have for every h > h̄ that PΘ(1|h) < h. Since
PΘ̃(1|h) < PΘ(1|h) for every h ≥ h̄, necessarily the largest fixed point of PΘ̃(1|h) is
inferior to h̄.

Proposition 12 can be applied for example to gaussian or uniform distributions,
when restricting attention to distributions with the same proportion of 1 choices in a
neutral environment.

We illustrate Proposition 12 by a numerical example. We use the utility function
Ui(ai, hi, θ) = β(hi − 1

2
)(ai − 1

2
) + (θ − 1

2
)(ai − 1

2
), and we fix β = 1

2
and we consider

gaussian distributions of the candidate characteristics. For every value of the variance
σ, we fix the mean of the characteristics distribution in such a way that in absence
of interaction or personal reinforcement, 60 percent of the candidates are above the
neutral type and would be assigned decision 1. In absence of interactions, the frequency
of 1 decisions would be the same in the populations whose characteristics the gaussian
distributions with different variance. Table 1 shows how the fixed point varies as a
function of σ. With low variance 1-choice frequencies could be modified to much higher
values, increasing the frequency of decision 1 by almost 30 percent. When candidates
are more heterogenous the level of reinforcement is much more modest.

Example 13 Table 1

variance m(σ) fixed–point reinforcement
σ = 1 0.76 0.62 0.02
σ = 0.9 0.73 0.63 0.03
σ = 0.8 0.71 0.64 0.04
σ = 0.7 0.68 0.65 0.05
σ = 0.6 0.66 0.67 0.06
σ = 0.5 0.60 0.67 0.07
σ = 0.4 0.58 0.69 0.09
σ = 0.3 0.55 0.74 0.14
σ = 0.2 0.53 0.88 0.28
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6.1 Skewed distributions- minorities with extreme character-
istics

So far, we have focused on the case where there was a strong initial 1- bias. This
assumption guaranteed further reinforcement of the decision towards which there was
initial bias when the number of decision makers was large. Even under this strong
condition, reinforcement was not ensured for a fixed finite number of decision makers.
However, quantitatively, in the example we found of this, the reinforcement in the
opposite direction was very small when strong dominance was verified. If we assume
only a weak bias towards 1, in the sense E[Θ] > θn, that is expected type is greater than
the neutral type, then a simple example shows that interactions can actually strongly
reinforce the decision that is not suited to the majority. This occurs when there is
a minority with characteristics highly biased to the opposite action. Let the utility
function be Ui(ai, hi, θ) = β(hi − 1

2
)(ai − 1

2
) + (θ − 1

2
)(ai − 1

2
), with β = 1

2
for which

the neutral type is 1
2
. We specify a distribution of characteristics such that E[Θ] > 1

2

is verified but P (1|x) > P (0|1− x) is not. We let the distribution of characteristics be
discrete and assume that there are only three types whose probabilities are :

P (Θ = 0) = 9
50

P (Θ = 7
10

) = 4
5

P (Θ = 1) = 1
50

(20)

The ε are to avoid indifference of the decision maker. We note that while the expected
value is greater than 1

2
, there are more extreme low than extreme high types. We fix

N = 2, so that h ∈ {0, 1
2
, 1}. Our specification of utility is then such that if h = 0,

the decision maker always chooses 1 only for types 1, if h = 1
2
, he chooses 1 for types

θ > 1/2 and if h = 1, he chooses 1 for all types except 0. In terms of choice probability,
P (1|0) = 1

50

P (1|1
2
) = 41/50

P (1|1) = 41
50

(21)

Explicit computations of the invariant distribution gives
µ(0) = 81

140

µ(1) = 9
70

µ(2) = 41
140

(22)

The average frequency of 1 choices under this distribution is 1
N

∑
µ(k)k = 5

14
< 1

2
,

which should be compared with 82 % 1-decisions in absence of interactions. Thus,
interactions have increased the decision that is less suited to the majority. Models of
social interactions often show a reinforcement of the action preferred by the majority,
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to a point where the minority suffers. This example, although anecdotal, indicates that
social interactions can also under some conditions lead to reinforcement of a choice that
is not suited to the majority.

7 Concluding discussion

Statistical discrimination is normally assumed to result from the decision maker’s at-
tempt to resolve a problem of incomplete information regarding the candidates type.
This paper highlights two additional mechanisms, social influence between decision
makers or personal inertia of the decision maker himself, whose effects are similar to
those of statistical discrimination in that individuals’ outcomes are adversely affected
by belonging to a group with an unfavorable statistical distribution of characteristics.

Most of the results have already been discussed in the sections where they were
presented. Let us summarize the main findings: we are able to characterize long run
behavior of decisions and thus measure the reinforcement of action 1 (reject candidate),
imputable to influence/inertia compared to the rate in a neutral environment in some
particular cases. Under the condition of strong bias which expresses the fact that a
group has unfavorable characteristics, we are able to show a reinforcement of rejection
rates in some particular cases. We do not have an analytical result in general but our
results span two opposite extremes in terms of assumptions : we can characterize the
aggregate decision frequencies when utility and characteristics are chosen, essentially
so as to make the choice probability linear in the influence variable. We showed in
this case that the assumption of social influence and that of personal inertia or a
combination of both generate positive reinforcement of similar magnitude. Secondly,
in two special cases we obtain a complete characterization of the invariant distribution
of decisions. One concerns uniform interactions and no personal inertia, the other
pure personal inertia. These two cases are in fact similar from an analytical point of
view and underscore again the fact that social interactions and personal inertia can
both generate similar reinforcement effects at least in terms of the magnitude of the
reinforcement.

As we have emphasized from the beginning, the hypotheses about available infor-
mation that lead to our results are almost the opposite from the assumptions that lead
to statistical discrimination in Phelps’ seminal model. At a closer look, however, the
processes at play have some similarities. In our case, also, the driving factor is the fact
that the candidate belongs to a group with unfavorable characteristics. The decision
maker does not know the statistical distribution but becomes aware of it through a
form of social or individual learning, by observing the decisions of others and/or draw-
ing on his own past experience. This process is successful in the sense that the decision
maker does indeed ”learn” the statistical distribution of the candidates group (or at
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least learns it to be unfavorable) which he initially ignored. However, the successful
learning of the statistical properties of the group is in fact detrimental since the deci-
sion maker is assumed to observe the true type of the candidate. In this respect, we
see something similar to irrational herding where agents’ own informative signals are
crowded out by social observations.

Turning now to the details of how properties of the characteristics distribution affect
long run outcomes, it is necessary to distinguish the case with a finite fixed number of
agents and asymptotic results with respect to population size. It is only asymptotically
that the condition of strong bias ensures a systematic reinforcement of the rejection
rate compared to the one seen in absence of interactions. In the finite case however,
the strong bias condition is not sufficient to ensure an increase. We find cases where
the long run distribution first order stochastically dominates respectively is dominated
by the distribution in absence of interactions.

The findings of our study also confirms the important role of heterogeneity, which
has been emphasized in the literature. However, the relevant notion that governs the
magnitude of rejection increase is not captured by second order stochastic dominance.
Instead we find a condition related to the probability of types close to the ”neutral”
one, a condition that is in a sense local, whereas the exact distribution of high types is
not important. This was not clear when looking at a symmetric distribution as in the
Brock and Durlauf model. Finally, examples show that for more complex distributions,
for example, when groups are on average low skilled but also contain a highly skilled
minority, the effects of social interactions are less predictable and can in fact lead to a
lower rejection rate than what would otherwise be the case.

8 Appendix: Proofs

8.1 Proof of 2

We define recursive equations for the expectations of the aggregate state variables
P t and V t. At each instant t, the agent i makes a choice ati that depends on two
state variables, one corresponding to the previous actions of his neighbors, vt−1 and
the other one corresponding to his own previous decisions pt−1 These variables are
defined recursively at time t as vt+1

i = λ2v
t
i + (1 − λ2) 1

CardV (i)

∑
j∈V (i) a

t
j and pt+1

i =

λ1p
t
i + (1− λ1)at+1

i respectively. We note that since all agents have the same degree l,

1

Card(V (i))

∑
i

∑
j∈V (i)

atj =
∑
i

ati. (23)

At a given time t, we can define the aggregate variable V t = (1/N)
∑

i v
t
i and P t =

(1/N)
∑

i p
t
i. We can now consider the conditional expectation, and conditionally on
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(vti)i and (pti)i , the variables (at+1
i )i are independent. We have

E[V t+1|(vti)i, (pti)i] =

λ2V
t + (1− λ2)

∑i=N
i=1

1
Card(V (i))

∑
j∈V (i) P (at+1

j = 1)|(vti)i, (pti)i) =

λ2V
t + (1− λ2)

∑i=N
i=1 [(Pc − β

2
) + βγpti + β(1− γ)vti)] =

[β(1− λ2)(1− γ) + λ2)]V t + [β(1− λ2)γ]P t + [1− λ2](Pc − β
2
). (24)

This last expression is (V t, P t) mesurable, and by properties of conditional expectation
equals E[V t+1|V t, P t]. Similarly we obtain

E[P t+1|V t, P t] = [β(1− λ1)γ]V t + [β(1− λ1)(1− γ) + λ1)]P t + [1− λ1](Pc −
β

2
)

Taking expectations on both sides of (24), we obtain a recursive relation:

E[V t+1] = [β(1− λ2)(1− γ) + λ2)]E[V t] + [β(1− λ2)γ]E[P t] + [1− λ2](Pc −
β

2
)

This relation holds for all t. We put a = β(1 − λ2)(1 − γ) + λ2, b = β(1 − λ2)γ,
c = β(1− λ1)γ and d = β(1− λ1)(1− γ) + λ1. Then we obtain the difference equation(

E[V t+1]
E[P t+1]

)
=

(
a b
c d

)(
E[V t]
E[P t]

)
+ (Pc −

β

2
)

(
1− λ2

1− λ1

)
We denote by

M =

(
a b
c d

)
We remark that a, b, c and d are all positive and satisfy a+ b < 1 and c+ d < 1 when
β < 1. Thus it is possible to write

M =

(
a+ b 0

0 c+ d

)
T

where T is a stochastic matrix. We have

Mn =

(
(a+ b)n 0

0 (c+ d)n

)
T n

Since T is a stochastic matrix and a + b < 1 and c + d < 1, limn→∞M
n
i,j = 0 for all i

and j. Therefore, the solution of the homogenous equation associated with (25) goes

to zero for n large. We can show that v = p =
Pc− 1

2
β

1−β is a particular solution to the

inhomogenous equation since (v, p) satisfies the equations

p = [β(1− λ1)γ]v + [β(1− λ1)(1− γ) + λ1)]p+ [1− λ1](Pc −
1

2
β)

v = [β(1− λ2)(1− γ) + λ2)]v + [β(1− λ2)γ]p+ [1− λ2](Pc −
1

2
β).
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Therefore, the general solution of the difference equation is such that

lim
t→∞

E[V t] = lim
t→∞

E[P t] =
Pc − 1

2
β

1− β
(25)

8.2 proof of proposition 3 (average interaction case)

The invariant measure is unique. We use the notation ak for any element a ∈ {0, 1}N
such that 1

N

∑i=N
i=1 = k and look for an invariant measure that puts the same weight

on every element of type ak. By the detailed balance conditions, an arbitrary fixed
element represented by ak can be reached from itself in two ways: by drawing one of
the k agents who previously chose 1 when he chooses 1 again, or by drawing one of the
N − k agents who chose 0 before and whose new decision is still 0. An element ak also
has antecedents of type ak−1. There are k such antecedents: any element where one of
the k 1 choices in ak is replaced by a 0 would be an antecedent. Similarly there are
N − k antecedents of type ak+1. This gives the equation:

µ(ak) = µ(ak)
k

N
P (1|k) + µ(ak)

N − k
N

P (0|k) + µ(ak−1)
k

N
P (1|k − 1) +

µ(ak+1)
N − k
N

P (0|k + 1) (26)

We will use the notation µ(k) =: µ({a ∈ {0, 1}N | 1
N

∑i=N
i=1 ai = k}). Since µ(k) =

CN
k µ(ak), the relation (26)gives:

µ(k) = µ(k)
k

N
P (1|k) + µ(k)

N − k
N

P (0|k) +

µ(k − 1)
N − k + 1

N
P (1|k − 1) + µ(k + 1)

k + 1

N
P (0|k + 1) (27)

If we write these equations for µ(k)...µ(0) and add them, we obtain:

i=k∑
i=0

µ(i) =
1

N

i=k∑
i=0

µ(i)[iP (1|i) + (N − i)P (1|i) + iP (0|i) + (N − i)P (0|i)] +

1

N
µ(k + 1)(k + 1)P (0|k + 1)− µ(k)

N − k
N

P (1|k)

After cancellation of most terms we obtain the relation µ(k)N−k
N
P (1|k) = µ(k +

1)k+1
N
P (0|k + 1) ⇐⇒ µ(k) = (N−(k−1))

k
P (1|k−1)
P (0|k)

µ(k − 1).
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Recursively we obtain

µ(k) = CN
k

i=k−1∏
i=0

P (1| i
N

)

P (0| i+1
N

)
µ(0) (28)

8.3 proof proposition 4

By the definition of the invariant distribution µ, we have

µ(k + 1)

µ(k)
=

CN
k P (1| k

N
)

CN
k+1P (0|k+1

N
)

(29)

We have

µ(k + 1)

µ(k)
>
P (1| k

N
)N − k

P (0| k
N

)k + 1
=
P (1| k

N
)

P (0| k
N

)
(
N − k
k
− N − k
k(k + 1)

) (30)

µ(k + 1)

µ(k)
<
P (1|k+1

N
)N − k

P (0|k+1
N

)k + 1
=
P (1|k+1

N
)

P (0|k+1
N

)
(
N − (k + 1)

k + 1
+

1

k + 1
). (31)

We can now write:

g(
k + 1

N
)−

P (1|k+1
N

)

P (0|k+1
N

)(k + 1)
<
µ(k + 1)

µ(k)
< g(

k

N
) +

P (1| k
N

)(N − k)

P (0| k
N

)k(k + 1)
(32)

with g(x) = P (1|x)(1−x)
(1−P (1|x))x

. We note that if we fix δ > 0, then for k
N
∈ [δ, 1], the terms

R(N) =
P (1| k+1

N
)

P (0| k+1
N

)(k+1)
and R̃(N) =

P (1| k
N

)(N−k)

P (0| k
N

)k(k+1)
decrease to 0 as N increases since

k > Nδ.

8.4 proof Theorem 5

Let xf denote the unique fixed point of P (1|x) in [1
2
, 1]. We note that due to strong

bias, P (1|1
2
) > 1

2
and g(1

2
) > 1. Fix ε > 0 and define A = [xf − ε, xf + ε]. We need to

bound µ(l) for all l ∈ Ac. Let x ∈ N be such that x
N
∈ A. (such an x exists if N is

sufficiently large). We define miny∈[ 1
2
, 1
2

+ ε
2

]g(y) =: m1 > 1. Since P (1|x) and thus g(x)
has at most a finite number of discontinuities, we may assume ε small enough that g is
continuous on [1

2
, 1

2
+ ε

2
]. Moreover, we have miny∈[ 1

2
+ ε

2
,xf− ε2 ]g(y) ≤ 1. Let us consider

m ∈ N such that m
N
∈ [1

2
, xf − ε]. We have

µ(x)

µ(m)
=

(N −m)P (1|m
N

)

xP (0| x
N

)

l=x−1∏
l=m+1

P (1| l
N

)

P (0| l
N

)

N − l
l

=
(N −m)P (1|m

N
)

xP (0| x
N

)

l=x−1∏
l=m+1

g(
l

N
)

27



For m
N
∈ [1

2
, xf − ε], the product contains at least Nε

2
terms that are larger than m1

and the other terms can be bounded below by 1. Thus µ(x) ≥ (m1)
Nε
2 µ(m). Similar

arguments show that for all l ∈ [xf +ε, 1], there is m2 > 1 such that µ(x) ≥ (m2)
Nε
2 µ(l).

When l
N
∈ [0, 1

2
] we have µ(l) = µ(N−l)

∏i=N−l
i=l

P (1| i
N

)

P (0|1− i
N

)
. By hypothesis P (1|x)

P (0|1−x)
≥

1 for all x ∈ [0, 1]. We can write l = N − k, where k
N
∈ [1

2
, 1]. If k

N
∈ [1

2
, xf −

ε]
⋃

[xf + ε, 1], then µ(l) ≤ µ(k), and we have already bounded µ(k). If l = N − k with

k ∈ [xf − ε, xf + ε], then µ(l) = µ(N − l)
∏i=N−l

i=l

P (1| i
N

)

P (0|1− i
N

)
. We have xf >

1
2

and we

may assume xf − 1
2
≥ 3ε. For ε small enough, we can assume that g(x) does not have

discontinuities on [xf −2ε, xf − ε]. Define minx∈[xf−2ε,xf−ε]
P (1|x)
P (0|1−x)

= m3 > 1. Thus the
product contains at least ε terms, each one greater than m3. Since there are less than
N terms of the form k

N
, k ∈ N in [0, 1] and applying to each one the bounds we have

established, finally, µ(A)
µ(Ac)

> 1
N

(min(m1,m2,m3))
Nε
2 . This quantity is greater than M

for sufficiently large N .
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