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In this paper, we introduce a new time series model having a stochastic exponential tail. This model is constructed based on the Normal Tempered Stable distribution with a time-varying parameter. The model captures the stochastic exponential tail, which generates the volatility smile effect and volatility term structure in option pricing. Moreover, the model describes the time-varying volatility of volatility. We empirically show the stochastic skewness and stochastic kurtosis by applying the model to analyze S\&P 500 index return data. We present the Monte-Carlo simulation technique for the parameter calibration of the model for the S\&P 500 option prices. We can see that the stochastic exponential tail makes the model better to analyze the market option prices by the calibration.

Since [START_REF] Black | The Pricing of Options and Corporate Liabilities[END_REF] has found a no-arbitrage pricing model for European options, the Black-Scholes model became a standard method to explain the option market. However, the model does not describe option markets' features, including the volatility smile effect and fat-tailed events. Many alternative methods are introduced to overcome the drawback of the model. There are two major methods to overcome the drawbacks: (1) generalizing the Black-Scholes model with Lévy process and (2) applying time-varying stochastic volatility on the Black-Scholes model.

The generalized Black-Scholes model with the Lévy process has first applied to the option pricing problem in [START_REF] Bouchaud | The Black-Scholes option pricing problem in mathematical finance: generalization and extensions for a large class of stochastic processes[END_REF] and [START_REF] Bouchaud | Option pricing in the presence of extreme fluctuations[END_REF]. After then, many Lévy process models were studied in the literature. For instance, the tempered stable process, which is a subclass of Lévy process has been popularly used as an option pricing model (see [START_REF] Barndorff-Nielsen | Feller Processes of Normal Inverse Gaussian Type[END_REF], [START_REF] Barndorff-Nielsen | Normal Modified Stable Processes[END_REF], and [START_REF] Carr | The Fine Structure of Asset Returns: An Empirical Investigation[END_REF]), since the class of tempered stable processes are semi-martingale and has exponential tails which are fatter than Gaussian distribution. Moreover, since the tempered stable model's tails can be asymmetric, the tempered stable option price model explains the volatility smile effect. However, Since Lévy process is Markovian and has independent and stationary increments, the class of tem- October 25, 2020 Quantitative Finance StoExpTail˙KimDouadyRoh˙QF pered stable models does not capture the volatility clustering effect, stochastic skewness, stochastic kurtosis, and volatility of volatility (vol-of-vol).

Managing volatility and vol-of-vol are important issues in portfolio and risk management and derivative pricing. Since they are not directly observed in the market, VIX index [START_REF] Cboe | The CBOE Volatility[END_REF]) and VVIX index (CBOE (2012)) are provided for measuring the volatility and vol-of-vol of U.S. stock market, respectively. Academically, ARCH and GARCH models by [START_REF] Engle | Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of United Kingdom Inflation[END_REF] and [START_REF] Bollerslev | Generalized Autoregressive Conditional Heteroskedasticity[END_REF]. The implied volatility extracted from the Black-Scholes model [START_REF] Black | The Pricing of Options and Corporate Liabilities[END_REF]) has been popularly used to observe the volatility.

Applying the ARMA-GARCH model to empirical daily log-returns of a stock or an index, we can see that the residual distribution still has fat-tails and asymmetricity (see [START_REF] Kim | Financial Market Models with Lévy Processes and Time-Varying Volatility[END_REF][START_REF] Kim | Time series analysis for financial market meltdowns[END_REF]). In order to capture those the fat-tails and skewness of the residual distribution, ARMA-GARCH model with the standard normal tempered stable innovation distribution (ARMA-GARCH-NTS model) was studied in risk management and portfolio management in many literatures including [START_REF] Kim | Multivariate Tempered Stable Model with Long-range Dependence and Time-varying Volatility[END_REF], [START_REF] Anand | Foster-Hart Optimal Portfolios[END_REF][START_REF] Anand | The equity risk posed by the too-big-to-fail banks: A Foster-Hart estimation[END_REF] and [START_REF] Kurosaki | Foster-Hart optimization for currency portfolio[END_REF]. The normal tempered stable (NTS) distribution was presented in finance by [START_REF] Barndorff-Nielsen | Feller Processes of Normal Inverse Gaussian Type[END_REF] and [START_REF] Barndorff-Nielsen | Normal Modified Stable Processes[END_REF] to describe the fat-tail and skewness of asset returns. The standard NTS (stdNTS) distribution is a special case of the NTS distribution with zero mean and unit variance (See [START_REF] Rachev | Financial Models with Lévy Processes and Volatility Clustering[END_REF]).

The volatility clustering and fat-tailed asymmetric distribution have been studied in option pricing in literature. The Lévy process model, stochastic volatility model, and GARCH model were introduced to overcome the drawback of Black-Scholes option pricing model. For instance, the Lévy stable model was applied to the option pricing in [START_REF] Hurst | Option pricing for a logstable asset price model[END_REF] and [START_REF] Carr | Finite Moment Log Stable Process and Option Pricing[END_REF]. The tempered stable option pricing models were discussed in [START_REF] Boyarchenko | Non-Gaussian Merton-Black-Scholes Theory[END_REF] and [START_REF] Carr | The Fine Structure of Asset Returns: An Empirical Investigation[END_REF]. Stochastic volatility model was applied to option pricing in [START_REF] Heston | A Closed-form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options[END_REF], and stochastic volatility model with the Lévy driving process has been studied in Carr et al. (2003). The discrete-time volatility clustering effect was considered for option pricing by taking GARCH model in [START_REF] Duan | The GARCH Option Pricing Model[END_REF]. GARCH option pricing model with non-Gaussian tempered stable innovation was studied by [START_REF] Kim | Tempered stable and tempered infinitely divisible GARCH models[END_REF] and regime-switching tempered stable model were applied to the option pricing in [START_REF] Kim | Option pricing and hedging under a stochastic volatility Levy process model[END_REF]. The skewness and kurtosis were used in addition to volatility for option pricing in [START_REF] Aboura | Option Pricing Under Skewness and Kurtosis Using a Cornish-Fisher Expansion[END_REF]. Moreover, Lévy process model with long-range dependence was presented in [START_REF] Kim | Long and Short Memory in the Risk-Neutral Pricing Process[END_REF].

While the stochastic volatility and volatility clustering were studied, the term structure of volof-vol was studied for VIX and VVIX derivatives pricing. For example, the class of Lévy Ornstein Uhlenbeck process is used for modeling vol-of-vol in [START_REF] Mencia | Valuation of VIX Derivatives[END_REF] and the Heston style term structure of vol-of-vol has been presented in [START_REF] Huang | Volatility-of-volatility risk[END_REF][START_REF] Branger | The Volatility-of-Volatility Term Structure[END_REF]. Also, [START_REF] Fouque | Heston stochastic vol-of-vol model for joint calibration of VIX and S&P 500 options[END_REF] considered the Heston style volatility model for the volatility together with the dependence feature between VIX and S&P 500 index.

In this paper, we construct a new market model that has stochastic exponential tails. Using the stochastic exponential tails, the new model can capture more stochastic properties observed in the market, including stochastic skewness and kurtosis, and volatility of volatility (vol-of-vol). First, we will discuss two empirical properties of skewness and excess kurtosis: (1) the residual distribution of S&P 500 index daily return has negative skewness and large excess kurtosis. Moreover, the absolute value of skewness is increasing then the excess kurtosis is rising together. (2) Skewness and excess kurtosis of S&P 500 index daily return distribution are not constant but time-varying. Then we will present a new advanced model named the Stochastic Tail NTS (StoT-NTS) model to describe those two properties. In order to construct the model, we take the ARMA-GARCH-NTS model and apply a simple time series model to one shape parameter of stdNTS distribution. After constructing the model, a parameter estimation method for the StoT-NTS model will be provided.

Using the model, one can capture the time-varying vol-of-vol on stock or index return process. After the model construction, we apply the model to option pricing. We discuss the Monte-Carlo simulation algorithm for European option pricing on the StoT-NTS model. To verify the model's performance, we calibrate the model's parameters using the S&P 500 index option prices. As The remainder of this paper is organized as follows. The NTS distribution is discussed in Section 2. In Section 3, we present the stochastic properties of skewness and excess kurtosis of the residual distribution for ARMA-GARCH model and empirical study using the S&P 500 index daily return data. The StoT-NTS model is constructed in this section and shows the model has time-varying volof-vol. The option pricing model on the StoT-NTS model is discussed in Section 4. The Monte-Caro algorithm and model calibration are also provided in this section. Finally, Section 5 concludes.

Normal Tempered Stable Distribution

Let α ∈ (0, 2), θ, γ > 0, and µ, β ∈ R. Let T be a positive random variable whose characteristic function φ T is equal to

φ T (u) = exp - 2θ 1-α 2 α (θ -iu) α 2 -θ α 2
.

(1)

The random variable T is referred to as Tempered Stable Subordinator. The normal tempered stable (NTS) random variable X with parameters (α, θ, β, γ, µ) is defined as

X = µ -β + βT + γ √ T W, (2) 
where W ∼ N (0, 1) is independent of T , and we denote X ∼ NTS(α, θ, β, γ, µ). The characteristic function (Ch.F) of X is given by

φ N T S (u) = E[e iuX ] = exp (µ -β)iu - 2θ 1-α 2 α θ -iβu + γ 2 u 2 2 α 2 -θ α 2
.

The first four moments of X are as follows:

• Mean: E[X] = µ • Variance: var(X) = γ 2 + β 2 2 -α 2θ • skewness: S(X) = β (2 -α) 6 γ 2 θ -αβ 2 + 4β 2 √ 2θ (2 γ 2 θ -αβ 2 + 2β 2 ) 3/2 • Excess kurtosis: K(X) = (2 -α) α 2 β 4 -10 αβ 4 -12 αβ 2 γ 2 θ + 24β 4 + 48β 2 γ 2 θ + 12 γ 4 θ 2 2 θ (2 γ 2 θ -αβ 2 + 2β 2 ) 2
Hence, if µ = 0 and γ = 1 -β 2 2-α 2θ with |β| < 

φ (u) = E[e iu ] = exp   -iuB 2θ 2 -α - 2θ 1-α 2 α   θ -iuB 2θ 2 -α + u 2 2 1 -B 2 α 2 -θ α 2    
In this case is referred to as the standard NTS random variable with parameters (α, θ; B), and we denote ∼ stdNTS(α, θ; B).1 The Ch.F is denoted by φ stdN T S (u; α, θ; B) = φ (u). For , we have

S( ) = 2 -α 2θ B 3(1 -B 2 ) + 4 -α 2 -α B 2 (3) 
and

K( ) = (2 -α) 2θ (α -4)(α -6) B 2 2 -α 2 + (24 -6α) B 2 2 -α + 3(1 -B 2 ) (1 -B 2 ) . (4)
Suppose that α and θ are fixed then we have a function

B → (S( ), K( )), θ > 0.
We can easily check the following facts:

• if B = 0 S( ) = 0 and K( ) = 3 2θ
(2 -α).

• if B = ±1 then γ = √ 1 -B2 = 0, and hence

S( ) = ±(4 -α) 2θ(2 -α) and K( ) = (α -4)(α -6) 2θ(2 -α) .
For example,

• if α = 1.8 and θ = 1.5, then S( ) ∈ [-2.8402, 2.8402] and K( ) ∈ [0.2, 15.4].

• if α = 0.8 and θ = 3, then S( ) ∈ [-1.1925, 1.1925] 

ARMA-GARCH-NTS Model with Stochastic Parameter B

Taking the ARMA(1,1)-GARCH(1,1) model as

y t+1 = c + ay t + bσ t t + σ t+1 t+1 σ 2 t+1 = κ + ξσ 2 t 2 t + ζσ 2 t ,
we assume that t ∼ stdNTS(α, θ; B). Then we obtain the ARMA-GARCH-NTS model. Suppose that the parameter α and θ are fixed real numbers, and parameter B is replaced to a random variable, then we obtain a new time series model. In this paper, we assume that

• ( t ) t=1,2,••• is not i.i.d, but t|t-1 ∼ stdNTS(α, θ; B t ),
• and (B t ) t=1,2,••• is given by a ARIMA(1,1,0) model as follows:

B t+1 = B t + ∆B t+1 ∆B t+1 = a 0 + a 1 ∆B t + σ Z Z t+1 , where a 0 , a 1 ∈ R, |a 1 | < 1, σ Z > 0, and (Z t ) t=1,2,••• is i.i.d with Z t ∼ N (0, 1).
This time series model is referred to as the Stochastic Tails ARMA-GARCH-NTS model or shortly the StoT-NTS model. Note that, the conditional skewness of σ t t is given as 

S(σ t t |F t-1 ) = S( t |F t-1 ) = 2 -α 2θ B t 3(1 -B 2 t ) + 4 -α 2 -α B 2 t F o r P e e r R
(var(σ t+1 t+1 |F t )|F t-1 ) = ξ 2 (σ t|Ft-1 ) 4 E[ 4 t|Ft-1 ] = ξ 2 (κ + ξσ 2 t-1 2 t-1 + ζσ 2 t-1 ) 2 K( t |F t-1 ). Since t|t-1 ∼ stdNTS(α, θ; B t ), we obtain var(var(σ t+1 t+1 |F t )|F t-1 ) = (2 -α) 2θ ξ 2 (κ + ξσ 2 t-1 2 t-1 + ζσ 2 t-1 ) 2 × (α -4)(α -6) B 2 t 2 -α 2 + (24 -6α) B 2 t 2 -α + 3(1 -B 2 t ) (1 -B 2 t ) ,
by (4). Hence, the StoT-NTS process captures the time varying skewness and time varying vol-of-vol for the random variable B t .

ARMA-GARCH parameter estimation

We estimate model parameters using S&P 500 index daily log-return data. ARMA(1,1)-GARCH(1,1) parameters are estimated for every 3,607 working days between December 26, 2003 to June 1, 2018. In each estimation, we use 1,000 historical log-returns by the current day. For example,

• at December 26, 2003, we estimate those parameters using 1,000 daily log-returns from January 4, 2000 to December 26, 2003, • at June 1, 2018, we estimate those parameters using 1,000 daily log returns from May 7, 2014

to June 1, 2018.

Then we obtain 3,607 residual sets. Each residual set contains 1,000 elements extracted from the estimation. Let R 1 , R 2 , • • • , R 3607 be those residual sets. For instance, R 1 is the residual set extracted from the ARMA(1,1)-GARCH(1,1) estimation at December 26, 2003, and R 3607 is the residual set extracted from the estimation at June 1, 2018. We calculate empirical skewness S(R t ) and em- 3. We found that, negative skewness leads large excess kurtosis, and small excess kurtosis follows zero skewness.

pirical excess kurtosis K(R t ) for R t ∈ {R 1 , R 2 , • • • , R 3706 }.
(S(R t ), K(R t )) for t ∈ {1, 2, • • • , 3607} as Figure

Fit parameters α and θ

We fit α and θ of the stdNTS process as follows:

• Select one α ∈ (0, 2) and one θ > 0. Let M α,θ = {(S( ), K( )) | ∼ stdNTS(α, θ; B) for B ∈ [-1, 1]}.
• Applying interpolation for M α,θ , we define a function f α,θ from skewness to excess kurtosis.

That is, • Find optimal (α * , θ * ) minimize the square error for the empirical data as

f α,θ (S( )) = K( ) for (S( ), K( )) ∈ M α,θ . 6 F o r P e e r R
(α * , θ * ) = arg min (α,θ) T t=1 [f α,θ (S(R t )) -K(R t ))] 2 /T
where T = 3607.

By the fitting method, we obtained (α * , θ * ) = (1.8043, 1.2544), and the solid curve in Figure 3 is the function f α * ,θ * .

Fit parameters for the time series (B t ) t≥0

We fix parameters α = 1.8043 and θ = 1.2544, and fit parameter B of stdNTS to the daily residual set R t for t ∈ {1, 2, 1 2 / 2 6 / 2 0 0 3 0 6 / 0 9 / 2 0 0 5 1 1 / 1 7 / 2 0 0 6 0 5 / 0 5 / 2 0 0 8 1 0 / 1 4 / 2 0 0 9 0 3 / 2 8 / 2 0 1 1 0 9 / 0 6 / 2 0 1 2 0 2 / 2 1 / 2 0 1 4 0 8 / 0 4 / 2 0 1 5 0 1 / 1 3 / 2 0 1 7 

B t = arg min B xk∈Rt (F (x k ; α, θ, B) -F emp t (x k )) 2
where F (x; α, θ, B) is the CDF of stdNTS(α, θ; B). Figure 4 presents the time series of the estimated We apply the ARIMA(1,1,0) model to the time series (B t ) t≥0 given in Figure 4 as

B t for daily residual R t with t ∈ {1, 2, • • • , 3607}.
∆B t+1 = c B + a B ∆B t + σ B Z,
where ∆B t+1 = B t+1 -B t . We obtain the ARIMA(1,1,0) parameters as (a) of Table 1. The constant c B is not significant at 5% significant level, and hence we can set c B = 0. The AR parameter a B and the variance σ 2 B are significant. Set the constant c B = 0 , and re-estimate ARIMA(1,1,0) we obtain (b) of Table 1 which is similar to (a). We observe the negative AR parameter, that is, ∆B t is mean reverting. 1 2 / 2 6 / 2 0 0 3 0 6 / 0 9 / 2 0 0 5 1 1 / 1 7 / 2 0 0 6 0 5 / 0 5 / 2 0 0 8 1 0 / 1 4 / 2 0 0 9 0 3 / 2 8 / 2 0 1 1 0 9 / 0 6 / 2 0 1 2 0 2 / 2 1 / 2 0 1 4 0 8 / 0 4 / 2 0 1 5 0 1 / 1 3 / 2 0 1 7 

Option Pricing on the StoT-NTS Model

Let (S t ) t∈{0,1,••• ,T * } be the underlying asset price process and (y t ) t∈{0,1,2,•••T * } be the underlying asset log return process (y 0 = 0) with y t = log(S t /S t-1 ) where T * < ∞ in the time horizon. Under 

     y t+1 = µ t+1 + σ t+1 t+1|t µ t+1 = c + ay t + bσ t t|t-1 σ 2 t+1 = κ + ξσ 2 t 2 t|t-1 + ζσ 2 t
where t+1|t ∼ stdNTS(α, θ; B t+1 ), with

B t+1 = B t + a B ∆B t + σ B Z t+1 , Z t+1 ∼ N (0, 1) for t ∈ {0, 1, 2, • • • T * }.
Here, T , W and (Z t ) t∈{1,2,••• ,T * } are mutually independent, and 0 and ∆B 0 are real constants. Let (r t ) t∈{1,2,••• ,T * } be sequence of the daily risk-free rate of return. There is risk-neutral measure

Q = T * t=1 Q t such that • η t+1|t = λ t+1 + t+t|t where λ t+1 = µt+1-rt+1+wt+1 σt+1 with ω t+1 = log φ stdN T S(α,θ,Bt) (-iσ t+1 ) • η t+1|t ∼ stdNTS(α, θ; B t ) under the measure Q with B t+1 = B t + a B ∆B t + σ B Z t+1 , Z t+1 ∼ N (0, 1), t = 0, 1, • • • , T * .
Hence we have

y t+1 = r t+1 -ω t+1 + σ t+1 η t+1|t σ 2 t+1 = κ + ξσ 2 t (η t|t-1 -λ t ) 2 + ζσ 2 t
which is the risk-neutral price process.

Under the risk-neutral measure Q, the underlying asset price is S t = S 0 e t j=0 yj for t ∈ {0, 1, 2, • • • , T * }. The European option with a payoff function H(S(T )) at the maturity T with t ≤ T ≤ T * is given by

E Q e -r(T -t) H(S(T ))|F t = E Q e -r(T -t) H(S t e T j=t yj )|F t .
For example, European vanilla call and put price with strike price K and time to maturity T at time t = 0 are

C(K, T ) = E Q e -rT max{S 0 e T j=0 yj -K, 0} and 
P (K, T ) = E Q e -rT max{K -S 0 e T j=0 yj , 0} respectively.

Monte-Carlo Simulation and Calibration

Assume r t = r and λ t = λ constant, to simplify the model. Let M be the number of scenarios and T be the time to maturity as a positive integer value, say days to maturity. Generate a set of uniform random numbers between 0 and 1 (U(0, 1)), and two sets of independent standard normal (N (0, 1)) random numbers u m,n ∼ U(0, 1), x m,n ∼ N (0, 1) and z m,n ∼ N (0, 1)

for m = {1, 2, • • • , M } and n = {1, 2, • • • , T }. • Step 2
Generate the tempered stable subordinator by inverse transform algorithm, as

τ m,n = F inv T S(α,θ) (u m,n )
where F inv T S(α,θ) is the inverse CDF of tempered stable subordinator with parameter (α, θ).

• Step 3 Simulate (B t ) 0≤t≤T as (B m,n ) m∈{1,2,••• ,M },n∈{1,2,••• ,T } , where B m,n = B m,n-1 + a B (B m,n-1 -B m,n-2 ) + σ B z m,n
and B m,0 is B 0 value at current time, and B m,1 -B m,0 = 0.

• Step 4

Using (2), we simulate random number

(η t ) 0≤t≤T as (η m,n ) m∈{1,2,••• ,M },n∈{1,2,••• ,T } , where η m,n = B m,n 2θ 2 -α (τ m,n -1) + x m,n (1 -B 2 m,n )τ m,n . • Step 5 Generate σ t , σ m,n = κ + ξσ 2 m,n-1 (η m,n-1 -λ) 2 + ζσ 2 m,n-1
σ m,0 is the currently observed volatility, and generate y t using σ t by GARCH option pricing model as follows

y m,n = r -w m,n + σ m,n η m,n ,
where

ω m,n = log φ stdN T S(α,θ,Bm,n) (-iσ m,n ) • Step 6
The price process is obtained by

S m,n = S 0 exp   n j=1 y m,j   , for m = {1, 2, • • • , M } and n = {1, 2, • • • , T }.
For example, let GARCH parameters be κ = 4.4115•10 -6 , ξ = 0.2289, ζ = 0.7177, ARIMA(1,1,0) parameters for (B t ) be a B = -0.4793, σ B = 0.0532 and B 0 = -0.2895, and tempered stable subordinator parameters be α = 1.8245 and θ = 1.5063. Set initial values of return, residual and volatility as y 0 = 0.0373, 0 = 3.6851 and σ 0 = 0.0096, respectively. Assume that r = (1/250)%, d = 0, and λ = 0, and generate the sample path using the algorithm for T = 22 and M = 100. Then we obtain the sample path of (S m,n ) for S 0 = 1, (σ m,n ), and (B m,n ) as Figure 6 The European call option and put option prices with the strike price K and time to maturity T can calculated by the simulated price process as follows:

C(K, T ) = e -rT M M m=1 max{S m,T -K, 0} P (K, T ) = e -rT M M m=1
max{K -S m,T , 0}.

Calibration

We calibrate the StoT-NTS parameters using the S&P 500 index call and put data for the second Wednesday of each month from January 2016 to December 2017. For each calibration date, we use the GARCH parameters estimated in Section 3.1. Table 2 provides those GARCH parameters, and volatility (σ 0 ) and and residual ( 0 ) observed of each date. Daily risk free rates of return and daily continuous dividend rates are also presented in base-point (bp) unit. We calculate other parameters (α, θ, a B , σ B , B 0 , and λ) for call and put out-of-the-money (OTM) option prices. We generate one set of uniform random numbers and two sets of standard normal random numbers in Step 1 for M = 10, 000 and T = 90, and fix them. After then find parameters such that minimize the mean square errors between the model price and the market prices:

min Θ   Kn<S0, Tn<90 (P (K n , T n ) -P market (K n , T n )) 2 + Kn>S0, Tn<90 (C(K n , T n ) -C market (K n , T n )) 2   , for Θ = (α, θ, a B , σ B , B 0 , λ)
, where S 0 is S&P 500 index price of the given Wednesday and P market (K n , T n ) and C market (K n , T n ) are mid-price of observed bid and ask prices for the call and put on the given day with strike price K n and time to maturity T n . For example, Figure 7 exhibits the market prices and calibrated the StoT-NTS model prices for the OTM call and puts on 5/10/2017. The calibrated GARCH-NTS model prices obtained by the simulation method are presented in the figure as a benchmark model. The GARCH-NTS model is option pricing model as

y t+1 = r t+1 -ω t+1 + σ t+1 η t+1|t σ 2 t+1 = κ + ξσ 2 t (η t|t-1 -λ t ) 2 + ζσ 2 t ,
where η t+1|t ∼ stdNTS(α, θ, B) with constant B ∈ R (See [START_REF] Kim | Tempered stable and tempered infinitely divisible GARCH models[END_REF] and [START_REF] Rachev | Financial Models with Lévy Processes and Volatility Clustering[END_REF] for more details). Daily risk free rate of return and daily dividend rate of S&P 500 index of .7237, 0.1979, 4.9418 • 10 -6 ). The volatility and residual of the day is σ 0 = 0.0046 and 0 = 0.1651, respectively. Calibrated standard NTS parameters of GARCH-NTS model are (α, θ, B) = (0.4936, 0.1077, -0.5926) and λ = 0.5026, while calibrated parameters of the StoT-NTS model are (α, θ, a B , σ B , B 0 ) = (0.4638, 0.1109, 0.2513, 0.0317, -0.6584) and λ = 0.5304. Other calibrated parameters for the second Wednesday of each month from January 2016 to December 2017 are presented in Table 3.

For the performance analysis, we use four error estimators, the average absolute error (AAE), the average absolute error as a percentage of the mean price (APE), the average relative percentage error (ARPE), and the square root of mean square relative error (RMSRE), defined as follows, To verify that the StoT-NTS model performs better than the benchmark GARCH-NTS model, we perform the simple hypothesis tests for APE, and ARPE. Since AAE and APE have the same t-statistic values, we do not need to test both, but we present only APE case test. RMSRE is also omitted in this hypothesis test, since it is not linear. Instead of the hypothesis "the StoT-NTS model performs better than the benchmark GARCH-NTS model", we use the following equivalent hypothesis: for APE, and ARPE, respectively. We perform the t-test for the hypothesis test for the following two cases: The t-statistic and corresponding p-values of the tests in Table 5. Except the date 01/12/2016, 01/11/2017, and 04/12/2017, H 0 is rejected for the APE case. Except the date 01/12/2016, H 0 is rejected for the ARPE case. In the bottom line of the table, we present the result of those hypothesis tests for all market option prices and model prices we observed in this investigation. Considering total samples of every date in this investigation, H 0 is rejected for APE and ARPE. We can conclude that the StoT-NTS model calibration performs typically better than the GARCH-NTS calibration in this investigation.

AAE = N n=1 |P n -P n | N , APE = AAE N n=1 Pn N , ARPE = N n=1 |P n -P n | N P n , RMSRE = N n=1 (P n -P n ) 2 N P
H 0 : µ N T S ≤ µ StoT vs H 1 : µ N T S > µ StoT or H 0 : µ N T S -µ StoT ≤ 0 vs H 1 : µ N T S -

Conclusion

In this paper, we present the StoT-NTS model obtained by taking a stochastic process for the parameter B in NTS process. The model has the stochastic exponential tails, and it deduces the stochastic skewness and stochastic kurtosis of the residual of ARMA-GARCH-NTS model, and hence it captures the time-varying vol-of-vol of the stock or index return time series. Through the empirical test of S&P 500 index return data, we observe that the skewness of the residual is typically negative. Also, if the skewness is decreasing, then the excess kurtosis of residual is increasing. The NTS distribution can describe this phenomenon by controlling the shape parameter B. By applying the ARIMA(1,1,0) model for the parameter B for time t, the StoT-NTS model describes the stochastic skewness and stochastic kurtosis empirically observed in S&P 500 index return data. The StoT-NTS option pricing model is also discussed as an application of the StoT-NTS model. We present the Monte-Carlo simulation technique based on the model and calibrate the model to the S&P 500 option prices observed in the market. In this empirical investigation, the StoT-NTS option pricing model performs mostly better than the benchmark GARCH-NTS option pricing model, since the former captures the time-varying vol-of-vol in the risk-neutral market, but the latter does not. 

  previous paragraph,[START_REF] Aboura | Option Pricing Under Skewness and Kurtosis Using a Cornish-Fisher Expansion[END_REF] considers the skewness and excess kurtosis in option pricing, while we consider a parametric model with stochastic skewness and stochastic kurtosis in option pricing in this paper. The StoT-NTS option pricing model can extract the structure of invisible time-varying vol-of-vol in the market option prices.

  then ∼ NTS(α, θ, β, γ, µ) has zero mean and unit variance. Put β = B 2θ 2-α for B ∈ (-1, 1), then |β| < 2θ 2-α and γ = √ 1 -B 2 .

Figure 1 .

 1 Figure 1. Graph of skewness to Excess kurtosis for ∼ stdNTS(α, θ; B) with (α, θ) ∈ {(1.8, 1.5), (1.8, 3), (0.8, 1.5), (0.8, 3)} and B ∈ [-1, 1].

  . Moreover, the conditional variance of variance for σ t+1 t+1 is var

  Then we obtain the skewness time series (S(R t )) t=1,2,••• ,3607 and excess kurtosis time series (K(R t )) t=1,2,••• ,3607 , which are presented in Figure 2(a) and Figure 2(b), respectively. Moreover, we plot pairs of excess kurtosis and skewness

Figure 2 .

 2 Figure 2. Time series of empirical skewness (a) and excess kurtosis (b) for each residual sets R1, R2, • • • , R3607.

Figure 3 .

 3 Figure 3. Dots are empirical excess kurtosis values and their corresponding empirical skewness values for set of residuals Rt ∈ {R1, R2, • • • , R3607}. The solid curve is the curve of excess kurtosis and skewness for ∼ stdNTS(α, θ; B) with estimated parameters α = 1.8043 and θ = 1.2544.

Figure 4 .

 4 Figure 4. The time series of the estimated Bt for each residual set in {R1, R2, • • • , R3607}

  Figure 5(a) exhibits the empirical skewness time series and the skewness time series of stdNTS(α, θ; B t ), and Figure 5(b) provides the empirical excess kurtosis time series and the excess kurtosis of stdNTS(α, θ; B t ), where α = 1.8043, θ = 1.2544 and B t in Figure 4.

Figure 5 .

 5 Figure 5. Gray curses are time series of empirical skewness and excess kurtosis and black curses are time series of stdNTS skewness (a) and excess kurtosis (b) for each residual set in {R1, R2, • • • , R3607}.

  P = T * t=1 P t , (y t ) t∈{0,1,2,•••T * } is supposed to follow the StoT-NTS model:

  (a), Figure 6(b), and Figure 6(c), respectively.

Figure 6 .

 6 Figure 6. Simulated (Sm,n), (σm,n), and (Bm,n).

  r = 0.3841bp and d = 0.7148bp, respectively. GARCH parameters estimated historical S&P 500 index return by 5/10/2017 are (ζ, ξ, κ) = (0

  µ StoT > 0 where µ StoT and µ N T S are means of calibration errors for the StoT-NTS model and GARCH-NTS model, respectively. Let N be the number of observed prices. Let P n be observed market prices of option and P StoT n and P N T S n be model prices for the StoT-NTS model and the GARCH-NTS model, respectively, for n ∈ {1, . . . , N }. Then calibration errors are defined by

Figure 7 .•

 7 Figure 7. OTM call and put option prices and calibration result for 5/10/2017. Circles (•) are market prices of calls and puts. Dot (•) and plus (+) marks are calibrated the StoT-NTS model and the GARCH-NTS model prices, respectively.
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Table 1

 1 

			. AR(1) Parameter Estimation	
			(a)		
		Value	Standard Error t-statistic p-value
	c B -0.00018989	0.00095468	-0.1989 0.84234
	a B	-0.47936	0.003392	-141.32	0
	σ 2 B	0.0028331	1.4057 • 10 -5	201.55	0
			(b)		
		Value	Standard Error t-statistic p-value
	a B -0.47935	0.0033899	-141.4	0
	σ 2 B	0.0028331	1.3057 • 10 -5	216.99	0
	KS-density for R				

t and find B using the least square curve fit as

Table 2 .

 2 GARCH Parameters, daily risk-free rate of return, and daily dividend rate

	Date	ζ	ξ	κ	σ 0	0	r (bp)	d (bp)
	01/13/2016	0.7328 0.1641	7.1125 • 10 -6	0.0108 -2.6226	0.1564 0.8696
	02/10/2016 0.7396 0.1661 6.7564 • 10 -6	0.0119 -0.2969	0.1596 0.7830
	03/09/2016 0.7502 0.1626 6.3634 • 10 -6	0.0088	0.5246	0.1601 0.9031
	04/13/2016 0.7529 0.1601 6.2540 • 10 -6	0.0079	1.2029	0.1611 0.9105
	05/11/2016 0.7410 0.1679 6.4898 • 10 -6	0.0076 -1.3254	0.1636 0.8990
	06/08/2016 0.7308 0.1727 6.5207 • 10 -6	0.0056	0.4959	0.1653 0.9030
	07/06/2016 0.6723 0.2044 8.5048 • 10 -6	0.0109	0.4533	0.1778 0.9033
	08/10/2016 0.6882 0.1981 7.7233 • 10 -6	0.0058 -0.5718	0.1800 0.8830
	09/07/2016 0.6723 0.2308 7.1132 • 10 -6	0.0052 -0.2410	0.1800 0.8500
	10/12/2016 0.6537 0.2152 8.9111 • 10 -6	0.0083	0.0683	0.1852 0.8596
	11/09/2016 0.6960 0.2035 6.8241 • 10 -6	0.0099	1.0756	0.1855 0.8332
	12/07/2016 0.6957 0.2036 6.8541 • 10 -6	0.0056	2.2585	0.2002 0.7851
	01/11/2017 0.6783 0.1998 8.0278 • 10 -6	0.0057	0.3904	0.2909	0.7621
	02/08/2017 0.6961 0.1942 7.1116 • 10 -6	0.0055	0.0644	0.2919	0.8149
	03/08/2017 0.6854 0.2051 7.1641 • 10 -6	0.0062 -0.4119	0.2981 0.7584
	04/12/2017 0.7035 0.1936 6.4914 • 10 -6	0.0050 -0.9048	0.3841 0.6963
	05/10/2017 0.7237 0.1979 4.9418 • 10 -6	0.0046	0.1651	0.3841	0.7148
	06/07/2017 0.6954 0.1935 6.7354 • 10 -6	0.0055	0.1430	0.3952	0.7269
	07/05/2017 0.7041 0.1899 6.3665 • 10 -6	0.0061	0.1588	0.4830	0.7274
	08/09/2017 0.7042 0.2067 5.3908 • 10 -6	0.0046 -0.1730	0.4853 0.7466
	09/06/2017 0.7075 0.2055 5.2737 • 10 -6	0.0062	0.4306	0.4845	0.7544
	10/11/2017 0.6885 0.2128 5.8454 • 10 -6	0.0048	0.3022	0.4883	0.7023
	11/08/2017 0.6990 0.2104 5.3214 • 10 -6	0.0045	0.2355	0.4885	0.6437
	12/06/2017 0.6974 0.2113 5.3551 • 10 -6	0.0055 -0.1018	0.4980 0.6068
							(bp = 10 -4 )

Table 3 .

 3 Calibrated Parameters

	Parameters

Table 4 .

 4 Error Estimators

	Date	Model	AAE	APE	ARPE	RMSRE
	01/13/2016	NTS	1.0433 0.0627	0.2086	0.3005
		HuLK	1.0439	0.0627	0.2090	0.3009
	02/10/2016	NTS	2.5294 0.1303	0.3708	0.7047
		HuLK	2.4862	0.1280	0.3532	0.6844
	03/09/2016	NTS	1.2637 0.0830	0.2717	0.4972
		HuLK	1.1922	0.0783	0.2535	0.4587
	04/13/2016	NTS	0.7991 0.0695	0.2946	0.4321
		HuLK	0.7871	0.0685	0.2919	0.4321
	05/11/2016	NTS	0.8853 0.0826	0.3687	0.6119
		HuLK	0.8786	0.0820	0.3747	0.6304
	06/08/2016	NTS	0.5778 0.0560	0.2260	0.3538
		HuLK	0.5225	0.0506	0.2019	0.3162
	07/06/2016	NTS	0.9900 0.0934	0.3577	0.5140
		HuLK	0.9160	0.0864	0.3331	0.4990
	08/10/2016	NTS	0.8431 0.0906	0.3438	0.5258
		HuLK	0.7956	0.0855	0.3164	0.4922
	09/07/2016	NTS	1.1065 0.1131	0.4689	0.7001
		HuLK	1.0700	0.1093	0.4357	0.6462
	10/12/2016	NTS	1.0079 0.0725	0.3171	0.6005
		HuLK	0.9926	0.0714	0.3096	0.5873
	11/09/2016	NTS	0.6946 0.0717	0.3003	0.4240
		HuLK	0.6644	0.0686	0.2909	0.4222
	12/07/2016	NTS	1.0412 0.0869	0.3368	0.5429
		HuLK	0.9970	0.0832	0.3301	0.5364
	01/11/2017	NTS	0.7766 0.0768	0.3218	0.4951
		HuLK	0.7651	0.0756	0.3025	0.4695
	02/08/2017	NTS	0.6380 0.0640	0.2337	0.4186
		HuLK	0.6057	0.0607	0.2134	0.3566
	03/08/2017	NTS	1.0550 0.0995	0.2997	0.4677
		HuLK	1.0349	0.0976	0.2794	0.4191
	04/12/2017	NTS	1.0937 0.0883	0.2558	0.4066
		HuLK	1.0966	0.0885	0.2219	0.3437
	05/10/2017	NTS	0.4560 0.0459	0.2194	0.4561
		HuLK	0.4002	0.0402	0.1880	0.3690
	06/07/2017	NTS	0.6847 0.0664	0.2270	0.3629
		HuLK	0.5811	0.0563	0.1876	0.2907
	07/05/2017	NTS	0.6090 0.0737	0.2887	0.4260
		HuLK	0.5764	0.0698	0.2540	0.3810
	08/09/2017	NTS	0.5904 0.0542	0.2203	0.4140
		HuLK	0.5601	0.0515	0.1980	0.3570
	09/06/2017	NTS	0.9301 0.0800	0.3284	0.5947
		HuLK	0.9006	0.0775	0.2821	0.4748
	10/11/2017	NTS	0.6265 0.0701	0.2331	0.3827
		HuLK	0.5492	0.0615	0.1759	0.2905
	11/08/2017	NTS	0.7517 0.0784	0.3576	0.6059
		HuLK	0.6257	0.0653	0.2810	0.4890
	12/06/2017	NTS	0.8312 0.0662	0.2492	0.5251
		HuLK	0.8156	0.0650	0.2286	0.4760

Table 5 .

 5 Hypothesis test for APE and ARPE

The standard NTS distribution is defined by the NTS distribution with µ = 0 and γ = 1 -β

2-α 2θ 
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