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Financial crises is an important research topic because of their impact on the economy, the businesses and the populations. However, prior research tend to show systemic risk measures which are reactive, in the sense that risk surges after the crisis starts. Few of them succeed in predicting financial crises in advance. In this paper, we first introduce a toy model based on a dynamic regime switching process producing normal mixture distributions. We observe that the relative concavity of various indices increases before a crisis. We use this stylized fact to introduce a measure of concavity from nonlinear Polymodel, as a crisis risk indicator, and test it against known crises. We validate the indicator by using it for a trading strategy that holds long or short positions on S&P 500, depending on the indicator value.

INTRODUCTION

Financial crises is an important research topic because of their impact on the economy, the businesses and the populations. One of the most famous financial crises was 2007-2008 financial crisis. Some most famous financial institutions collapsed, nationalized, or survived only with massive government support. This crisis impacted financial institutions across the whole world. [START_REF] Helleiner | Understanding the 2007-2008 Global Financial Crisis: Lessons for Scholars of International Political Economy[END_REF] It influenced not only financial area, but also generated a collapse of trades in almost all areas, and lead to evictions, foreclosures, and prolonged unemployment. Companies in different areas bankrupted and a lot of people lost their wealth and jobs in different countries. Because of that crisis, states and financial institutions made policies and regulations to prevent another possible collapse of the world financial system. However, financial crises may still be caused by many reasons.

With the process of globalization, the global markets are becoming more and more correlated. The potential financial crises in the future may influence more countries and people. The aim of our research is to find indicators of crisis risk, so financial institutions and investors can reduce their losses, and even make profits during financial crises.

In the past years, financial analysts tried different crisis risk measures. In paper [START_REF] Patro | A Simple Indicator of Systemic Risk[END_REF], the authors calculated correlation between every pair of stocks. Then they calculated the mean and median of the correlations every month, and used them to measure crisis risk. Correlation between returns did increase during crises. However, correlation seems to increase after crises start, not before crises.

The CBOE Volatility Index, whose ticker is VIX, is a measure of the stock market's expectation of volatility implied by S&P 500 index options. S&P 500 is an index composed of about 500 large companies in the United States, so its performance can represent the U.S. stock market. People can use its volatility index, VIX to measure the volatility of the market. The higher VIX, the more volatile and riskier of the market. During crises, VIX is higher than normal periods. However, some critics said that, the predictive power of most volatility forecasting models is similar to simple past volatility. [START_REF] Cumby | Forecasting Volatility and Correlations with EGARCH models[END_REF] [START_REF] Adhikari | The VIX, VXO and realised volatility: a test of lagged and contemporaneous relationships[END_REF] Brownlees and Engle created a risk measure SRISK: the company's capital shortfall conditional on a crisis. It is a function of a company's size, leverage and risk. The total SRISK in the market can measure the systemic risk. However, SRISK works well on highly leveraged financial institutions. It may not work well on companies in other industries. [START_REF] Brownlees | SRISK: A Conditional Capital Shortfall Measure of Systemic Risk[END_REF] Sornette and Andersen applied a nonlinear super-exponential rational model in the market. They said the exponent can detect the speculative bubbles and herding behavior in the market. [START_REF] Sornette | A Nonlinear Super-Exponential Rational Model of Speculative Financial Bubbles[END_REF] Another popular model to predict market risk is Regime Switching Model. Financial markets often change their behavior patterns. The changes may happen abruptly, and every pattern often persists for a long time period. At the start of a crisis, the mean, volatility, and correlation patterns in stock market usually changes dramatically. After the crisis ends, the pattern changes again. Since one pattern often lasts for a long period, regime switching models can learn the characteristics of different patterns, and capture sudden changes of behavior.

Regime Switching model assumes that there are 𝑘 different market states (regimes). Market states are generally modeled through a discrete variable 𝑠 𝑡 ∈ {0,1, . . . , 𝑘}. 𝑠 𝑡 tracks the particular regime at time 𝑡. Returns' distributions are decided by the value of 𝑠 𝑡 .

Regime switching models are popular for several reasons. First, the idea of regime changes is natural and intuitive. When applied to financial series, different regimes often correspond to different periods in policies or financial behavior.

Second, large amounts of non-linear effects can be generated in regime switching model. Regime switching model is actually a mixture of several distributions. It draws the distributions in several market states, and assigns probabilities that a financial series is in each market state. By appropriately mixing normal or other common types of distributions, large amounts of nonlinear effects can be generated. So regime switching model can capture stylized behavior of many financial return series, including fat tails, volatility clusters, skewness, and time-varying correlations. Even though it is hard to know the true distribution in the market, regime switching models can approximate its behavior in the market with basic structure distributions. What is more, based on the basic distributions, people can derive formulas or properties in the complex market analytically. [START_REF] Ang | Regime Changes and Financial Markets[END_REF] Hidden Markov Model (HMM) is the most common method people use to solve regime switching problem. They assume that 𝑠 𝑡 follows a homogenous first-order Markov Chain and 𝛱 [𝑖,𝑗] = 𝑃(𝑠 𝑡 = 𝑗|𝑠 𝑡-1 = 𝑖) = 𝑝 𝑖𝑗 is a constant. It is called "hidden" because the market states are not observable.

One disadvantage of HMM is that the relation among state series in the reality is not Markov, and then the transition matrix may not be fixed. Another important issue in regime switching model, including HMM, is specifying the number of regimes. It is hard to implement tests on the number of regimes in practice, so the number fixed in the model may be wrong.

Considering those problems in traditional regime switching model, we want to build a model that can also capture nonlinear effects in the market, but do not have those limits. In this paper, we use concavity statistics got from Polymodel to achieve those goals. Polymodel is a technique to measure the amount of nonlinearity among a set of indices by performing nonlinear regressions of indices with respect to one another.

We assume that returns distribution is a normal mixture, but the probability of the market falling in different regimes is more varied and complex than HMM. Instead of figuring out the transition matrix, we measure the concavity change in the market and use that to indicate when the market approaches a crisis. With our model, we do not need to assume the regimes reoccur or transition matrix is fixed like HMM. We can capture the start of a crisis, no matter how many and what states the market has, what is the current market state. Those are the advantages of our model over Hidden Markov Model.

In Section 2.1, we derive how the concavity in the market changes before a crisis. In Section Polymodel, we introduce Polymodel and how we measure concavity in the market from it. In Section Empirical Crisis Indicator, we implement experiments with indices data, and show how the market concavity changes before a crisis in practice. We build a crisis indicator based on the concavity statistics. In Section Trading Strategies, we construct trading strategies with the crisis indicator. In Section Conclusions, we summarize this paper.

THEORETICAL DERIVATION

Concavity v.s. Crisis Risk

We are going to find the relationship between the concavity and crisis risk in this section. Let us build a toy model first. We assume that there are two regimes 𝑅 1 and 𝑅 2 . 𝑅 1 is the state of normal market, and 𝑅 2 corresponds to the market during a crisis. 𝑋 and 𝑌 are two returns in the market.

A stylized fact of returns is that correlations increase during financial crises, as shown by Longin and Solnik [START_REF] Longin | Extreme Correlation of International Equity Markets[END_REF], Ang and Chen [START_REF] Ang | Asymmetric Correlations of Equity Portfolios[END_REF], and other researchers. With regard to that fact, we make several assumptions in our toy model.

1. 𝑅 1 is the market state of normal market. Under 𝑅 1 , 𝑋 ∼ 𝒩(0, 𝜎 𝑋 2 ), 𝑌 ∼ 𝒩(0, 𝜎 𝑌 2 ). 𝐶𝑜𝑟𝑟(𝑋, 𝑌) = 𝜌.

2. 𝑅 2 is the market state of a crisis. Under 𝑅 2 , 𝑋 ∼ 𝒩(0, 𝜎 𝑋 ′2 ), 𝑌 ∼ 𝒩(0, 𝜎 𝑌 ′2 ). 𝐶𝑜𝑟𝑟(𝑋, 𝑌) = 𝜌 ′ . 

Since variances of returns and correlations between returns usually increase during crises, we assume that

𝜎 𝑋 ′ > 𝜎 𝑋 , 𝜎 𝑌 ′ > 𝜎 𝑌 , 𝜌 ′ > 𝜌. And

Under our toy model, we have 𝐸[𝑌|𝑋

= 𝑥] = 𝐸[𝑌|𝑋 = 𝑥] 𝑅 1 𝑃(𝑅 1 |𝑋 = 𝑥) + 𝐸[𝑌|𝑋 = 𝑥] 𝑅 2 𝑃(𝑅 2 |𝑋 = 𝑥). 𝑃(𝑅 𝑖 |𝑋 = 𝑥) means the probability that the market is in regime 𝑅 𝑖 given that 𝑋 = 𝑥. It changes over time even if 𝑥 is fixed. 𝑃(𝑅 1 |𝑋 = 𝑥) = 𝑃(𝑅 1 , 𝑋 = 𝑥) 𝑃(𝑋 = 𝑥) = 𝑃(𝑋 = 𝑥|𝑅 1 )𝑃(𝑅 1 ) 𝑃(𝑋 = 𝑥|𝑅 1 )𝑃(𝑅 1 ) + 𝑃(𝑋 = 𝑥|𝑅 2 )𝑃(𝑅 2 ) = 1/(√2𝜋𝜎 𝑋 )exp(-𝑥 2 /(2𝜎 𝑋 2 ))𝑝 1 1/(√2𝜋𝜎 𝑋 )exp(-𝑥 2 /(2𝜎 𝑋 2 ))𝑝 1 + 1/(√2𝜋𝜎 𝑋 ′ )exp(-𝑥 2 /(2𝜎 𝑋 ′2 ))𝑝 2 = 1 1 + 𝜎 𝑋 𝑝 2 𝜎 𝑋 ′ 𝑝 1 exp (- 𝑥 2 2𝜎 𝑋 ′2 + 𝑥 2 2𝜎 𝑋 2 ) (1)
Similarly, we can get equation for 𝑃(𝑅 2 |𝑋 = 𝑥), and then the equation for 𝐸[𝑌|𝑋 = 𝑥]. Under our model, we want to convert 𝐸[𝑌|𝑋 = 𝑥] to some polynomial equation, and analyze how concavity changes when the crisis risk increases. We use the integral of the negative part of the second derivative of the polynomial between 𝑌 and 𝑋 to measure the concavity. So after converting 𝐸[𝑌|𝑋 = 𝑥] to some polynomial equation (to simplify, we use the third-degree polynomial to approximate), we are going to derive its second derivative function, and figure out how it changes when 𝑝 2 increases. , 𝑧 = -

𝑥 2 2𝜎 𝑋 ′2 + 𝑥 2 2𝜎 𝑋 2 = 𝜎 𝑋 ′2 -𝜎 𝑋 2 2𝜎 𝑋 2 𝜎 𝑋 ′2 𝑥 2 = 𝜎 𝑋 ′2 -𝜎 𝑋 2 𝜎 𝑋 ′2 𝑥 2 2𝜎 𝑋 2 .
We want to convert 𝑃(𝑅 1 |𝑋 = 𝑥) to a second-degree polynomial of 𝑥, which is equivalent to converting 𝑓(𝑧) to a first-degree polynomial of 𝑧. Therefore we only need linear approximation of 𝑓(𝑧).

Chebyshev Approximation

There are many methods of polynomial approximation. We use Chebyshev approximation, because the Chebyshev approximation formula is very close to the minimax polynomial, which has the smallest maximum deviation from the true function.

Chebyshev approximation of a function 𝑔 using the first kind of Chebyshev polynomials is:

𝑃 𝑛 (𝑠) = 1 2 𝑐 0 + ∑ 𝑐 𝑘 𝑛 𝑘=1 𝑇 𝑘 (𝑠) (2) 
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𝑐 𝑘 = 2 𝑛 + 1 ∑ 𝑔 𝑛 𝑗=0 (𝑠 𝑗 )𝑇 𝑘 (𝑠 𝑗 ), 𝑠 𝑗 = 𝑐𝑜𝑠((𝑗 + 1 2 )𝜋/(𝑛 + 1))
Using that approximation, the error is spread smoothly over [-1,1]. [START_REF] Gil | Numerical Methods for Special Functions[END_REF] In our case, 𝑧 = We can apply Chebyshev approximation on 𝑔(𝑠) = 1 1+𝑎′𝑒 𝑠 . We only need the linear approximation,

𝑃 1 (𝑠) = 1 2 𝑐 0 + 𝑐 1 𝑠 𝑐 0 = 1 1 + 𝑎′𝑒 √2/2 + 1 1 + 𝑎′𝑒 -√2/2 𝑐 1 = √2 2 ( 1 1 + 𝑎′𝑒 √2/2 - 1 1 + 𝑎′𝑒 -√2/2 ) (3)
And 3 . Since we want to use the second derivative smaller than 0 part to measure concavity of ℎ(𝑥), we are going to calculate the second derivative.

𝐸[𝑌|𝑋 = 𝑥] 𝑅 1 𝑃(𝑅 1 |𝑋 = 𝑥) ≈ ( 𝑐 0 2 + 𝑐 1 𝑠)𝛽𝑥 = ( 𝑐 0 2 + 𝑐 1 (𝑑𝑥 2 -1))𝛽𝑥 (4) 𝑑 = 𝜎 𝑋 ′2 -𝜎 𝑋 2 2𝜎 𝑋 2 𝜎 𝑋 ′2 is a constant. Suppose ℎ(𝑥) = 𝐸[𝑌|𝑋 = 𝑥] 𝑅 1 𝑃(𝑅 1 |𝑋 = 𝑥) ≈ ( 𝑐 0 2 + 𝑐 1 (𝑑𝑥 2 -1))𝛽𝑥 = ( 𝑐 0 2 -𝑐 1 )𝛽𝑥 + 𝑐 1 𝑑𝛽𝑥
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ℎ″(𝑥) = 6𝑐 1 𝑑𝛽𝑥 = 3√2( 1 1 + 𝑎′𝑒 √2/2 - 1 1 + 𝑎′𝑒 -√2/2 )𝑑𝛽𝑥 = 3√2( 1 1 + 𝑎′𝑒 √2/2 - 𝑒 √2/2 𝑒 √2/2 + 𝑎′ )𝑑𝛽𝑥 = 3√2 𝑎′ -𝑎′𝑒 √2 (1 + 𝑎′𝑒 √2/2 )(𝑎′ + 𝑒 √2/2) 𝑑𝛽𝑥 ( 
𝑐′ 0 = 1 1 + 1/𝑎′𝑒 √2/2 + 1 1 + 1/𝑎′𝑒 -√2/2 𝑐′ 1 = √2 2 ( 1 1 + 1/𝑎′𝑒 √2/2 - 1 1 + 1/𝑎′𝑒 -√2/2 ) 𝑙(𝑥) ≈ ( 𝑐′ 0 2 + 𝑐′ 1 (-1 -𝑑𝑥 2 ))𝛽′𝑥 = ( 𝑐′ 0 2 -𝑐′ 1 )𝛽′𝑥 -𝑐′ 1 𝑑𝛽′𝑥 3 (6) 𝑙″(𝑥) = -6𝑐′ 1 𝑑𝛽′𝑥 = -3√2( 𝑎′ 𝑎′ + 𝑒 √2/2 - 𝑎′𝑒 √2/2 𝑎′𝑒 √2/2 + 1 )𝑑𝛽′𝑥 = -3√2 𝑎′ -𝑎′𝑒 √2
(1 + 𝑎′𝑒 √2/2 )(𝑎′ + 𝑒 √2/2) 𝑑𝛽′𝑥 [START_REF] Ang | Regime Changes and Financial Markets[END_REF] Suppose 𝑚(𝑥) = 𝐸[𝑌|𝑋 = 𝑥]″, then

𝑚(𝑥) = ℎ″(𝑥) + 𝑙″(𝑥) = 3√2 𝑎′-𝑎′𝑒 √2 (1+𝑎′𝑒 √2/2 )(𝑎′+𝑒 √2/2) 𝑑(𝛽 -𝛽 ′ )𝑥. Since 𝑎′ = 𝜎 𝑋 𝑝 2 𝜎 𝑋 ′ 𝑝 1
𝑒 and 𝑝 1 = 1 -𝑝 2 , 𝑝 2 increasing is equivalent to 𝑎′ increasing. So to find how the concavity changes before and during crises, we check how the concavity changes when 𝑎′ goes up.

We use ∫ - -8 -Considering the domains of returns in the market, in practice we limit this integral to a finite interval [m-k, m + k], where m and  are the mean and the standard deviation of X, and k is a multiplier to be chosen later.

Now we analyze how 𝑚(𝑥) changes when 𝑎′ goes up for 𝑥 ≥ 0.

𝜕𝑚 𝜕𝑎′ = 3√2𝑑𝑥(𝛽 ′ -𝛽)𝜕( 𝑎′𝑒 √2 -𝑎′ (1 + 𝑎′𝑒 √2/2 )(𝑎′ + 𝑒 √2/2) )/𝜕𝑎′ = 3√2𝑑𝑥(𝛽 ′ -𝛽) (1 -𝑎′ 2 )(𝑒 3√2/2 -𝑒 √2/2 ) [(1 + 𝑎′𝑒 √2/2 )(𝑎′ + 𝑒 √2/2) ] 2 (8) 
From our deviation before, 𝑎′ = (𝑥)𝑑𝑥 increases.

There is a pitfall in our model. During a crisis, if 𝑝 2 continues increasing and 𝑎′ gets larger than 1, the concavity may decrease. So with our model, we can only predict when a crisis starts, but not when it ends.

POLYMODEL

In this paper, we use Polymodel to fit S&P 500, which can represent the U.S. market. Measuring the concavity from Polymodel, we get the concavity of the market.

Factor model is one of the most commonly used model in financial industry. Factor models includes single-factor models and multi-factor models. A single factor model has fewer coefficients, and is easier to calibrate with limited amount of historical data. Meanwhile, a multifactor model may capture more uncertainty of 𝑌 with more factors.

Polymodel combines the advantages of single factor model and multi-factor model. It is actually a collection of hundreds of polynomial single factor models. The intuition behind the idea of Polymodel is that a collection of single factor models of a given random variable (or possibly models with a reduced number of dimensions) contains exactly as much information as one big multi-factor model with the same number of factors. [START_REF] Cherny | On Measuring Hedge Fund Risk[END_REF] Polymodel with 𝑛 factors has form:

{ 𝑌 = 𝑓 1 (𝑋 1 ) + 𝜖 1 𝑌 = 𝑓 2 (𝑋 2 ) + 𝜖 2 ⋮ 𝑌 = 𝑓 𝑛 (𝑋 𝑛 ) + 𝜖 𝑛 (9)
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Base Functions

In Polymodel, 𝑓 𝑖 (𝑋 𝑖 ) is a polynomial function of 𝑋 𝑖 . It is a general linear function 𝑓 𝑖 (𝑋 𝑖 ) = ∑ 𝛽 𝑖𝑘 𝐾 𝑘=0

𝑈 𝑘 (𝑋 𝑖 ), 𝑈 𝑘 (𝑋 𝑖 )'s are some orthogonal polynomial sequence of 𝑋 𝑖 with 𝑘thdegree of order. In this paper, 𝑈 𝑘 (𝑋 𝑖 ) is the second kind Chebyshev polynomials with degree 𝑘. 𝑈 𝑘 (𝑋 𝑖 )s are orthogonal with respect to weighting function √1 -𝑥 2 on [-1,1].

To apply the second kind Chebyshev polynomials, we scale our returns data in experiments. In the experiments of this paper, we normalize the data.

Coefficients Estimation

For each single equation in Polymodel, we have 𝑓 𝑖 (𝑋 𝑖 ) = 𝐸[𝑌|𝑋 𝑖 ]. We can optimize the coefficients 𝛽 𝑖𝑘 's for each 𝑋 𝑖 . To reduce multicolinearity, we also apply ridge regression in model fitting.

Our ridge regression objective function is:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑( 𝑚 𝑗=1 𝑦 𝑗 -𝑍 𝑗 𝑇 𝛽) 2 𝑠. 𝑡. 𝛽 𝑇 𝑊𝛽 ≤ 𝑐 (10)
𝑚 is the number of training data points. 𝛽 = (𝛽 0 , 𝛽 1 , . . . , 𝛽 𝐾 ). 𝑍 𝑗 = (𝑈 0 (𝑥 𝑖𝑗 ), 𝑈 1 (𝑥 𝑖𝑗 ), . . . , 𝑈 𝐾 (𝑥 𝑖𝑗 )). 𝑊 is the penalty weight matrix. Unlike traditional ridge regression, in this paper, we put more constraints on 𝛽s of higher degrees, and set 𝑊 = 𝑑𝑖𝑎𝑔([0,1,4, . . . , 𝐾 2 ]).

Applying Lagrange optimization method, we have, 𝛽 ̂𝑟𝑖𝑑𝑔𝑒,𝜆 = (𝑍 𝑇 𝑍 + 𝜆𝑊) -1 𝑍 𝑇 𝑦 [START_REF] Cherny | On Measuring Hedge Fund Risk[END_REF] 𝜆 controls the amount of regularization. We apply 𝐾-fold cross validation method, and find that as long as 𝜆 is larger than 0, errors are pretty similar with different 𝜆s. To make Polymodel stable, we just set 𝜆 = 0.1 in our experiments.

Other alternative methods to control coefficients would be the LASSO [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF], or the Elastic-Net [START_REF] Zou | Regularization and Variable Selection via the Elastic Net[END_REF] approaches. However, these two methods include a penalty of 𝑙 1 Norm, that may make higher order 𝛽 be 0 and lead to discard of much concavity. We want to measure the concavity in this paper, so ridge regression is the best option.

Factor Importance

After solving every single factor model in Polymodel, we want to combine all information we get from them. We do that with the importance of factors.

In Polymodel, we usually use hundreds of factors to fit 𝑌. Some factors may fit 𝑌 better than others, in which case we assume those factors are more important. However, we do not know which factors are important before building the model. And the importance of factors changes while time goes by. So we measure the importance of all factors at every time point.

We measure factor importance using the following statistics in this paper.

𝑹 𝟐 : 𝑅 2 is the coefficient of determination. It is a statistical measure of the proportion of the variance in 𝑌 that is predictable from 𝑋s. Larger 𝑅 2 means better fitting. [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF] where 𝑆𝑆𝑅 = ∑ ( 𝑚 𝑗=1 𝑦 ̂𝑗 -𝑦 ‾) 2 is the sum of squares of regression, 𝑆𝑆𝐸 = ∑ ( 𝑚 𝑗=1 𝑦 𝑗 -𝑦 ̂𝑗) 2 is the sum of squares of errors, 𝑆𝑆𝑇 = ∑ ( 𝑚 𝑗=1 𝑦 𝑗 -𝑦 ‾) 2 = 𝑆𝑆𝑅 + 𝑆𝑆𝐸 is the total sum of squares. 𝑦 ̂𝑗 is the fitted value with 𝑥 𝑗 .

𝑅 2 = 𝑆𝑆𝑅 𝑆𝑆𝑇 = 1 - 𝑆𝑆𝐸 𝑆𝑆𝑇 ( 
𝑬𝒇𝒇𝒆𝒄𝒕𝒊𝒗𝒆 𝑹 𝟐 : We define effective 𝑅 2 in this paper. The intuition is from effective transfer entropy in information flow. [START_REF] Marschinski | Analysing the information flow between financial time series[END_REF] It would be great if we could have data size as large as possible in order to find the relationship between 𝑌 and 𝑋. However, in practice we only have limited data points, especially the market patterns change over time, and we want to find the relationship of 𝑌 and 𝑋 with recent historical data. A potential pitfall is that the data points are too few that the past observations are misinterpreted, and 𝑅 2 indicates stronger relationship between 𝑌 and 𝑋 than the reality. This situation is similar to the situation in measuring information transfer entropy, where people use effective transfer entropy to solve the problem. Considering that, we define a new statistic: effective 𝑅 2 . 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑅 2 = 𝑅 2 -𝑅 𝑠ℎ𝑢𝑓𝑓𝑙𝑒 2 [START_REF] Zou | Regularization and Variable Selection via the Elastic Net[END_REF] We shuffle the samples of 𝑌 or 𝑋 for many times, at the 𝑖th time, we get a 𝑅 𝑖-𝑠ℎ𝑢𝑓𝑓𝑙𝑒 2 with shuffled data. 𝑅 𝑠ℎ𝑢𝑓𝑓𝑙𝑒 2 is the mean of 𝑅 𝑖-𝑠ℎ𝑢𝑓𝑓𝑙𝑒 2 s of all the times.

-𝒍𝒏(𝒑 -𝒗𝒂𝒍𝒖𝒆): 𝑝-value is the probability that we can get higher 𝑅 2 between 𝑌 and 𝑋. It is calculated as the percentage of all 𝑅 𝑖-𝑠ℎ𝑢𝑓𝑓𝑙𝑒 2 s that are larger than 𝑅 2 . The closer 𝑝-value to 0, the more important the corresponding factor is. We measure the importance of factors using -𝑙𝑛(𝑝 -𝑣𝑎𝑙𝑢𝑒). The higher -𝑙𝑛(𝑝 -𝑣𝑎𝑙𝑢𝑒), the more important a factor is.

F-statistic: 𝐹-statistic is the 𝐹-statistic in Analysis of Variance Table in multiple regression. 𝐹 = 𝑀𝑆𝑅 𝑀𝑆𝐸 = ∑ ( 𝑚 𝑗=1 𝑦 𝑗 ̂-𝑦) 2 ∑ ( 𝑚 𝑗=1 𝑦 𝑗 -𝑦 𝑖 ̂)2 𝑚 -(𝐾 + 1) 𝐾 (14) 
-11 -𝑚 is the size of training data set, 𝐾 is the highest degree in our Polymodel. 𝑅 2 is the coefficient of determination. The higher the 𝐹, the more significant the relationship between independent variables and dependent variables is.

Measure the Concavity from Polymodel

As our toy model built in Section 2.1, we integrate the negative part of second derivative to measure the concavity of every single factor model in Polymodel. We normalize 𝑋 𝑖 to 𝑋′ 𝑖 in Polymodel. Suppose the sample mean of 𝑋 𝑖 is 𝑚 𝑖 , and sample standard deviation is 𝑠𝑡𝑑 𝑖 . Then

𝑋′ 𝑖 = 𝑋 𝑖 -𝑚 𝑖 𝑠𝑡𝑑 𝑖 . 𝑌 = 𝑓(𝑋 𝑖 ) = 𝑓′(𝑋 𝑖 ′), then, 𝐶𝑜𝑛𝑐 𝑖 = 𝐶𝑜𝑛𝑐(𝑓 𝑖 (𝑥)) = ∫ - +∞ -∞ 𝑚𝑖𝑛(𝑓 𝑖 ″(𝑥),0)𝑑𝑥 (15) 𝜕 2 𝑌 𝜕𝑋 2 = 𝜕( 𝜕𝑌 𝜕𝑋 )/𝜕𝑋 = 𝜕 ( 𝜕𝑌 𝜕𝑋 ′ 𝜕𝑋 ′ 𝜕𝑋 ) 𝜕𝑋 ′ ⋅ 𝜕𝑋 ′ 𝜕𝑋 = 1 𝑠𝑡𝑑 𝑖 2 𝜕 2 𝑌 𝜕𝑋′ 2 (16)
The integral is from -∞ to +∞. However, in practice, we can only calculate the integral form 𝑚 𝑖 -𝑠𝑡𝑑 𝑖 to 𝑚 𝑖 + 𝑠𝑡𝑑 𝑖 , and the result is close to when we assume the relationship between 𝑌 and 𝑋 beyond that scope is linear. Since returns are usually highly correlated during market collapse, that assumption makes sense. Then, By the above steps, we convert the concavity to a simple form in calculation.

For every single factor model in Polymodel, we get concavity 𝐶𝑜𝑛𝑐 𝑖 . Then,

𝐶𝑜𝑛𝑐(𝑌) = ∑ 𝑤 𝑖 𝑛 𝑖=1 𝐶𝑜𝑛𝑐 𝑖 𝑤 𝑖 = 𝑀 𝑖 ∑ 𝑀 𝑖 𝑛 𝑖=1 (18)
𝑀 𝑖 is some factor importance statistic of 𝑌 = 𝑓 𝑖 (𝑋 𝑖 ) + 𝜖 𝑖 .
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EMPIRICAL CRISIS INDICATOR

Data Process

We set the monthly return of S&P 500 Index as 𝑌 in the Polymodel. Our factor pool contains about 180 factors, including global equity indices, currency indices, bond and yield indices and commodity indices. Sample factors are shown in Exhibit 1.

Our data is from January 1990 to June 2020. Since some indices only exists during part of the whole period, we use rolling data in our experiments. At the end of every month, we only use indices that have existed for more than 36 months. BCOMNG Index Natural Gas Note: These factors are the same as in [START_REF] Ye | Systemic Risk Indicators Based on Nonlinear PolyModel[END_REF].

Exhibit 1: Sample Indices Factors

Results

Exhibit 2 and Exhibit 3 shows the concavity versus price of S&P 500. We did experiments with different factor importance measures and got similar results. From the pictures, we find that, no matter which measure we use, the concavity increases before crises, and decrease during or after crisis.

To make the results more clear, we set some criteria to judge if the concavity increases at a specific month. We simply compare the current concavity with its 90 th percentile during the past 3 years. We build 4 different "importance measures" that combine the concavity of S&P 500 with respect to each factor. We use ensemble result here, which means that we only consider the global market concavity to be larger than usual if the concavity got with at least 3 of our importance measures are above their 90 th percentile. The result shown in Exhibit 4 evidence the fact that, before crises, the global concavity increases. We compare the concavity of the market from four importance measures with their 90 th percentile over the past 3 years, and get the ensembled result in Exhibit 7. The concavity increases before crises. Please note that the concavity results are got at the beginning of each month, while SPX data is got at the end of each month.

TRADING STRATEGY

In this section, we build trading strategies based on monthly results. Let us return to our toy model from Section 2.1. From the deviation, we know that before and during the beginning of a crisis, the concavity increases. However, if the crises continue for some time, the concavity may decrease.

Considering that, we built an indicator with a start point based on concavity, but end point based on other statistics. We set the start point of a market crisis when the concavity increases, the end point when the indicator indicates in a crisis last month, but S&P 500 price increases for the past 4 consecutive months. As long as we get the crisis indicator, we can build a trading strategy: we hold a long position of S&P 500 when the crisis indicator is negative, and a short position when the indicator is positive. To avoid huge losses, we also set a stop-loss criterion: from the last time we change the position, if the loss from peak cumulative return is more than 10%, we close the current position for 3 months. For example, if we hold a long position of S&P 500, but lose 10% in cumulative return from the peak since we hold the long position, we close the long position for the next 3 months. Meanwhile, we may short S&P 500 in the next three months if the crisis indicator indicates a crisis.

Exhibit 8 shows the crisis indicator we get at the beginning of every month. Exhibit 9 shows our positions in this strategy, and our portfolio. The portfolio's statistics are shown in Exhibit 10. In our experiments, we assume the risk free rate is 0. It does not influence the Sharpe ratio much since the risk free rate in the market is usually close to 0.

Exhibit In Exhibit 10, we find that our strategy using our concavity-based crisis indicator work much better than the S&P 500 index. Our strategy reduces losses signficantly, while displaying appreciable profits during market crises. The strategy's return, Sharpe ratio, Calmar ratio (annual return over maximum drawdown) are improved, and the maximum drawdown (MDD) is lower than that of the S&P 500. In addition, the average holding period is rather long (a couple of years), which makes trading cost very low. The volatility is close to that of the S&P 500. That is because our strategy simply holds a long or short position of S&P 500, which cannot change the standard deviation much.

Other strategies can be devised based on the concavity change. For example, one can use options to protect their portfolio from large losses as soon as the concavity in the market indicates an increase in the propoability of occurrence of acrisis.

CONCLUSIONS

In this paper, we show how to predict the crisis risk using market concavity, measured using a Polymodel methodology. From these indicators, we are able to build a trading strategy that turns losses into profits during crises. For the computation of our concavity measures, we are led to define a new factor importance measure in Polymodel, the "effective 𝑅 2 ".

From a toy model, we could conclude that before crises, the concavity between returns should increase. We devised a Polymodel technique to measure the concavity of indices and applied it to monthly and bi-weekly returns of the S&P 500 Index. The experiments results show that that conclusion remains robust to a change of frequency. The trading strategy we were able to build, based on the monthly crisis indicator, generates yearly returns up to 11.30% and yearly Sharpe ratio 0.744.

Our plans for the future are, first, to determine an indicator that a crisis has ended. We also consider testing new sets of factors for the polymodal, aside from traditional indices, for instance using individual or aggregated stock returns, in order to improve the accuracy of the crisis prediction.

4 .

 4 The true probabilities of the market being in each state are 𝑃(𝑅 1 ) = 𝑝 1 , and 𝑃(𝑅 2 ) = 𝑝 2 . 𝑝 1 and 𝑝 2 change over time. If the market is not in a crisis, 𝑝 1 >> 𝑝 2 . According to the regression formula and the first two assumptions, under 𝑅 1 , 𝑌 = 𝛽𝑋 + 𝜖, where 𝛽 = 𝜎 𝑌 𝜎 𝑋 𝜌, and 𝐸[𝜖] = 0. 𝐸[𝑌] = 𝛽𝐸[𝑋]. Similarly, under 𝑅 2 , 𝐸[𝑌] = 𝛽 ′ 𝐸[𝑋], where 𝛽 ′ = 𝜎 𝑌 ′ 𝜎 𝑋 ′ 𝜌 ′ . From the third assumption, 𝛽 ′ > 𝛽.

Firstly, let us

  convert 𝐸[𝑌|𝑋 = 𝑥] into a third-degree polynomial equation. Considering 𝐸[𝑌|𝑋 = 𝑥] 𝑅 1 = 𝛽𝑥 is a first-degree polynomial of 𝑥, we just need to convert 𝑃(𝑅 1 |𝑋 = 𝑥) and 𝑃(𝑅 2 |𝑋 = 𝑥) to second-degree polynomials of 𝑥. Suppose 𝑓(𝑧) = 𝑃(𝑅 1 |𝑋 = 𝑥) = 1 1+𝑎𝑒 𝑧 , where 𝑎 = 𝜎 𝑋 𝑝 2 𝜎 𝑋 ′ 𝑝 1

5 )

 5 Similarly, suppose 𝑙(𝑥) = 𝐸[𝑌|𝑋 = 𝑥] 𝑅 2 𝑃(𝑅 2 |𝑋 = 𝑥), we can get 𝑙(𝑥) = 1 1+1/𝑎𝑒 -𝑧 𝛽′𝑥. Most values of -𝑧 belongs to [-2,0]. Suppose 𝑠 ′ = -1 -𝑧, we have 𝑙(𝑥) = 1 1+1/𝑎′𝑒 𝑠′ 𝛽′𝑥 = 𝑔′(𝑠′). Applying Chebyshev approximation on 𝑔′(𝑠′), we have:

  (𝑥),0)𝑑𝑥 to measure the concavity of 𝐸[𝑌|𝑋 = 𝑥]. From our toy model's assumptions, 𝛽 ′ > 𝛽, and considering 𝑑 = 𝜎 𝑋 ′2 -𝜎 𝑋 2 2𝜎 𝑋 2 𝜎 𝑋 ′2 > 0, we have 𝑠𝑖𝑔𝑛(𝑚(𝑥)) = 𝑠𝑖𝑔𝑛(𝑥), 𝑚(-𝑥) = -𝑚(𝑥). Then ∫ -+∞ -∞ min(𝑚(𝑥),0)𝑑𝑥 = ∫ 𝑚 +∞ 0 (𝑥)𝑑𝑥.

  𝜎 𝑋 is the standard deviation of 𝑋 under 𝑅 1 , and 𝑋 follows normal distribution 𝒩(0, 𝜎 𝑋 2 ). So 95% of 𝑥 values should be generated within ±2𝜎 𝑋 . And then at least 95% of 𝑧 values should fall into interval [0,2]. Let us suppose 𝑠 = 𝑧 -1, then 𝑓(𝑧) =

	𝜎 𝑋 ′2 -𝜎 𝑋 2 𝜎 𝑋 ′2 second part is 2[𝑥/(2𝜎 𝑋 )] 2 . 1 𝑥 2 2 . Since 𝜎 𝑋 ′2 > 𝜎 𝑋 2 , the first part in 𝑧 is smaller than 1. The 2𝜎 𝑋 1+𝑎𝑒 𝑧 = 1 1+𝑎′𝑒 𝑠 = 𝑔(𝑠), 𝑎′ = 𝑎𝑒, and 95% of 𝑠 values are generated within [-1,1].

  Under normal market conditions, 𝑎′ < 1. So before a crisi, 𝑝 2 increases and 𝑎′ gets closer to 1. And then 𝑚(𝑥) increases for any 𝑥 > 0. So the concavity of fitted polynomial 𝐸[𝑌|𝑋 = 𝑥], ∫ -

		𝜎 𝑋 𝑝 2 𝜎 𝑋 ′ 𝑝 1	𝑒. When 𝑎′ = 1, we have	𝜕𝑚 𝜕𝑎′	= 0, and 𝑚(𝑥, 𝑎′) gets
	maximum for fixed 𝑥 ≥ 0. +∞ -∞	+∞ min(𝑚(𝑥),0)𝑑𝑥 = ∫ 𝑚 0	

10: Strategies Statistics (S&P 500 monthly)

  

	yearly	log-r (%)	std	Sharpe	r (%)	MDD (%)	Calmar
	S&P 500	5.14	0.155	0.332	5.15	52.6	0.098
	Concavity	11.30	0.152	0.744	11.35	22.4	0.506
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