
HAL Id: hal-01849565
https://paris1.hal.science/hal-01849565

Submitted on 14 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Le support applicatif à la notion de contexte : revue de
la littérature en ingénierie de contexte

Manuele Kirsch Pinheiro, Carine Souveyet

To cite this version:
Manuele Kirsch Pinheiro, Carine Souveyet. Le support applicatif à la notion de contexte : revue de
la littérature en ingénierie de contexte. Modélisation et utilisation du contexte (Modeling and Using
Context), 2018, 1, �10.21494/ISTE.OP.2018.0275�. �hal-01849565�

https://paris1.hal.science/hal-01849565
https://hal.archives-ouvertes.fr

© 2018 ISTE OpenScience – Published by ISTE Ltd. London, UK – openscience.fr Page | 1

Supporting context on software applications: a survey

on context engineering

Le support applicatif à la notion de contexte : revue de la littérature en

ingénierie de contexte

Manuele Kirsch Pinheiro1, Carine Souveyet2

1
 Centre de Recherche en Informatique, Université Paris 1 Panthéon Sorbonne, France, mkirschpin@univ-paris1.fr

2
 Centre de Recherche en Informatique, Université Paris 1 Panthéon Sorbonne, France, souveyet@univ-paris1.fr

ABSTRACT. Engineering context-aware applications, i.e. applications that are able to adapt their behavior according to

context information, is a complex task. Not only is context a large and complex notion, but its support on software

applications involves tackling multiple challenges and issues. These challenges involve not only technical challenges, but

also quality concerns. Indeed, with the growing development of context-aware applications, it is becoming essential to

start considering the quality of context on every step of the application development. The goal of this paper is to provoke

discussion on the issues related to the support of the notion of context and its quality concerns on software applications.

We present here a roadmap on context management considering different dimensions of supporting context and quality

of context (QoC) on software applications, and a literature review of solutions and issues related to these dimensions.

Through these, we aim at sharing with non-expert designers the necessary expertise on context management allowing

them to better understand the notion of context and QoC and their challenges.

RÉSUMÉ. La conception d’applications sensibles au contexte, i.e. applications capables d’adapter leur comportement au

contexte d’exécution, est une tâche complexe. Non seulement la notion de contexte correspond à un concept large et

complexe, mais également son support au sein d’un logiciel implique la prise en compte de plusieurs challenges. Ceux-ci

ne se limitent pas aux challenges techniques, incluant aussi le support à la qualité de contexte (QoC). Avec le

développement croissant de ces applications, il devient essentiel de considérer la notion de qualité à chaque étape de

leur développement. L’objectif ici est ainsi d’inciter la discussion et la prise de conscience sur ces différents aspects liés à

la gestion de contexte et de ses paramètres de qualité. Nous présentons une roadmap tenant compte des différentes

dimensions nécessaires à la gestion de contexte, ainsi qu’une révision de littérature discutant les solutions et les

problèmes liés à ces dimensions. A travers ces éléments, nous voulons partager une connaissance nécessaire à la

compréhension de la notion de contexte et de QoC, et à la conception d’applications sensibles au contexte par de

concepteurs non-experts.

KEYWORDS. Context-aware computing, context engineering, Quality of Context.

MOTS-CLÉS. Informatique sensible au contexte, ingénierie de contexte, qualité de contexte.

1. Introduction

Observing the environment using software applications is now possible. The development of low

cost sensors, actuators, nano-computers and other IoT-related technologies is allowing software

developers to easily propose applications that observe and interact with the physical environment.

Applications may now observe the execution context and integrate such information into their own

behavior. The growing interest for IoT applications demonstrates this tendency quite well.

The capability of sensing enables the design of new intelligent systems that are aware of their

context and able to adapt their behavior accordingly [2]. In other words, thanks to this growing

development of technology, one may also expect to observe in the next few years a growing

development of context-aware applications, i.e. applications that are able to adapt their own behavior

according their execution context [1][21]. We are already seeing this phenomenon, with an increasing

number of applications that are able to observe elements from the environment (e.g. the user‟s location,

physical activity, etc.) and to adapt the content proposed to the user accordingly. This kind of

application is already part of our everyday life. However, in most of cases, its development is still

© 2018 ISTE OpenScience – Published by ISTE Ltd. London, UK – openscience.fr Page | 2

performed in an ad-hoc way, despite all the research that has been done about context-aware

applications. Undeniably, supporting context information on software applications involves several

technical challenges, with multiple impacts on the application architecture. Currently, the main

challenge is no longer on the development itself, but mainly on understanding the issues involved and

on exploring the opportunities that arise through these new technologies. Indeed, in order to go further

with the technology itself and the development of simple ad-hoc solutions, it is necessary to better

understand the notion of context and its challenges, since this notion is central for the design and

conception of new solutions.

Understanding the notion of context and its support is a complex but necessary task. It is complex

because the notion of context is itself a complex and ambiguous notion, whose support on software

systems involves several technical issues. It is necessary because it is only by understanding this notion

and its support that we will be able to explore the full potential of it and all the opportunities it opens

for business models and Information Systems. It is only through a better understanding of this notion

that a real “context engineering” process can be achieved, allowing the production of new complex and

extensible context-aware applications. More than ever, it is becoming necessary to form a new

generation of software engineers capable of “thinking” about context in the same way they are able to

think about components and about object-oriented solutions.

In our opinion, it is important to supply non-expert designers with the necessary knowledge about

the issues and challenges related to context support and management on software systems. It is only

through this knowledge that the above-mentioned understanding will be developed. In the past, we

have identified a set of dimensions, which we consider to be necessary for such support [31] and

analyzed the impact of quality considerations on such dimensions [32]. These dimensions act as

guidelines in a requirement analysis process, helping non-expert users to identify necessary issues on

context support for new software applications. This support can be greatly affected by quality concerns

(for instance, precision and uncertainty issues affecting the information reliability), making the quality

support a transversal concern affecting all dimensions of context support.

Together, all these aspects, analyzed separately in [31][32], offer a global view of the challenges

involved with software support for the notion of context. In this paper, we discuss this global view,

thanks to a literature review pointing out existing solutions and open issues related to context support

and management. The goal of this paper is to build a survey on context engineering for non-expert

software developers and designers. This survey is intended as a basis for training new “context

engineers”, capable of understanding and building new context-aware applications for tomorrow‟s

Information Systems.

The paper is organized as follows: Section 2 introduces our motivations and illustrative scenarios;

Section 3 discusses the context engineering dimensions and their quality support, extending what we

have proposed in [31] and [32]; Section 4 introduces a literature review, pointing out challenges and

solutions for each context support dimension; finally, Section 5 discusses conclusions and future work.

2. Motivation & illustrative examples

2.1. Illustrative scenarios

Today, it is undeniable that computation is embedded into our everyday life; we continually use

computational devices without thinking of them as computational in any way [4]. Indeed, we live

surrounded by multiple computing devices, forming a truly pervasive environment, as envisioned by

[63]. The dynamic and ad-hoc nature of such environments leads intrinsically to important adaptation

needs: the environment has to adapt to changing operating conditions and changing user preferences

and behaviors in order to enable more efficient and effective operation, while avoiding system failure

[26]. The user acceptation of such environments depends on these adaptation capabilities.

© 2018 ISTE OpenScience – Published by ISTE Ltd. London, UK – openscience.fr Page | 3

Context-aware systems can be seen as applications that are able to respond to these changes. They

are defined as applications capable of observing context changes and adapting their behavior

accordingly [1] [21]. Compared with traditional software applications, context-aware applications can

be considered as more complex since they must cope with heterogeneous and dynamic environments.

They have to run, often continuously, under changing conditions. They must observe different

elements from the environment and react to their changes accordingly, often using very constrained

computing platforms (for instance, nano-computers or smartphones with battery and connectivity

limitations). Such a dynamic and constrained execution environment has a significant impact on the

software architecture and development, notably in terms of modularity, integration, interoperability and

increasing number of non-functional constraints (e.g., robustness, scalability). Under these conditions,

traditional software qualities, such as flexibility, dynamicity, modularity and extensibility, become

difficult to satisfy, notably with ad-hoc development processes, which are still frequently adopted

when developing context-aware applications, as observed in [2][3].

A central aspect that makes developing context-aware applications complex is the notion of context

itself. The notion of context corresponds to a large and ambiguous concept that has been analyzed

several different ways in Computer Science and other domains [6] [7] [8] [42]. Supporting this notion

on a software application involves different challenges, from identifying relevant context information,

acquiring and modeling it up to its interpretation and exploitation for different purposes [1] [31] [32]. It

quickly becomes arduous for non-expert designers to design and build new applications using this

notion.

Before considering the challenges of developing new context-aware applications, let us consider

some scenarios for such applications. Several application domains may benefit from context-aware

systems, including the smart cities and smart agriculture domains. In order to demonstrate the interest

of such applications, let us consider three illustrative scenarios.

The first scenario we would like to mention is a flood warning scenario, proposed by [28] [55]. This

scenario, called GridStix, considers a Wireless Sensor Network (WSN) deployed on the Rivers Ribble

and Dee in England and Wales. Each GridStix node (illustrated in Figure 2.1a) consists of depth and

flow sensors in which power is supplied by batteries, replenished by solar panels. Nodes are equipped

with both 802.11b (Wi-Fi) and Bluetooth communications for inter-node data transmission and with a

GSM uplink node. In addition to the different transmission and data collecting modes, each node can

be activated or deactivated according to the power level of the corresponding battery and the state of

the river. Based on the information collected from GridStix nodes, a flood warning application

considers a stochastic model for predicting flooding situations. It may also perform adaptation actions,

such as activating or deactivating nodes for battery saving according the node‟s power level and

neighborhood nodes‟ status (preventing low quality observation on some portions of the river). In order

to support such a dynamic adaptation of the configuration of the WSNs, the system has to be aware of

changes in the nodes‟ context and to respond in a reactive and proactive manner. This implies not only

data acquisition, by collecting data from GridStix sensors, but also transferring this data and making it

available for processing stochastic models. It also implies specifying adaptation policies that state the

actions required to adapt the running system to a configuration that better fits its current context (e.g.

change a node with a low battery to a neighboring node with a full of battery and turning off a node to

save battery power).

Another scenario that we would highlight is the one considered by the project CC-Sem
1
, whose goal

is to develop an integrated platform for smart monitoring, controlling, and planning of the energy

consumption and generation in urban scenarios. This project considers that the capabilities of

monitoring/controlling/managing the energy consumption and generation are very important when

1 https://www.fing.edu.uy/inco/grupos/cecal/hpc/cc-sem/

https://www.fing.edu.uy/inco/grupos/cecal/hpc/cc-sem/

© 2018 ISTE OpenScience – Published by ISTE Ltd. London, UK – openscience.fr Page | 4

implementing the smart city paradigm. In this scenario, one may consider the use of smart electricity

meters for collecting consumption information from homes, as well as other sensors for collecting

information such as temperature, humidity and weather conditions. Collected data could then be

analyzed in order to identify patterns of energy consumption. Such patterns may be used as the basis

for recommendation purposes on smart home controllers, suggesting economy actions for final users

(e.g. reducing air conditioning or heating intensity, based on weather information), but also for

preventive actions such as turning off water heaters and air conditioning systems in case of system

overload. They could also be used by electric grid administrators and energy providers in order to

better predict consumption and anticipate preventive actions for preventing problems due to over

consumption. Carrying out such a scenario demands not only the deployment of intelligent energy

meters and temperature/humidity sensors, but also the deployment of an appropriate infrastructure.

Such an infrastructure is necessary for collecting and transferring raw data, as well as for analyzing it

using Big Data techniques. It also implies dealing with privacy and security issues necessary for

keeping personal consumption data safe and secure.

(a) (b)

Figure 2.1. (a) A GridStix node taken from [55]. (b) A prototype of hydric stress monitoring system.

Finally, a third scenario we would like to highlight is the application of IoT to the smart agriculture

domain. Indeed, the use of sensors and actuators opens new perspectives for the agriculture. By using

different sensors, such as humidity, hydric stress, luminosity and temperature sensors, it is possible to

better monitor the overall state of health of plants and production. Such monitoring activity can be used

as the basis not only for decision-making actions, but it can also trigger preventive actions

automatically. Small cultures, like flowers, tomatoes, strawberries or spices, often deployed over

greenhouse structures, may benefit from a constant surveillance of temperature and hydric conditions.

Data observed from sensors directly located in the field can be used for decision making: producers

may receive daily reports about their crops and decide preventive actions for saving or improving

production. Such data may also be used for taking actions automatically, controlling, for instance, the

water supply of a given position of the crops according to the plants‟ hydric stress. Figure 2.1b shows a

very small prototype of a hydric stress monitoring system in which an Arduino nano-computer is used

to monitor hydric stress, thanks to a soil moisture sensor, and to control a water pump accordingly.

Commercial systems similar to this prototype are already available for domestic users, like the Daisy

system
2
. Nevertheless, deploying this kind of equipment for a professional crop demands considering

not only the infrastructure and energy supply, but also tackling challenges such as choosing the most

suitable sensors and data to be monitored, choosing the necessary frequency among data collection

2 http://daisy.si/

http://daisy.si/

© 2018 ISTE OpenScience – Published by ISTE Ltd. London, UK – openscience.fr Page | 5

according the crop and environment needs, choosing the appropriate thresholds for triggering actions,

or choosing how to represent/store collected data for better reporting and analyzing. The quality of

decision making (automatic or not) depends on these issues, from the selection of data to be observed

up to analysis.

This scenario also illustrates the ambiguity that may characterize context-aware applications. One

may easily wonder if this scenario corresponds to a context-aware application or to a self-adapting one

[16]. What is the difference, if there is a difference, between those? Should all the collected data be

considered to be context data or just application data? For non-expert designers these questions appear

to be hard to answer and even to understood, notably because the notion of context and context-

awareness are complex and hard to understand without the necessary knowledge. Promoting this

knowledge to non-expert designers is necessary if we want to stimulate the development of such new

context-aware applications.

2.2. Illustrative target group

The number of applications exploring the notion of context is constantly increasing thanks to the

growing development of sensor technologies now often embedded into smartphones, tablets or

associated with IoT devices. Before being considered as context-aware, applications such as those in

Section 2.1 can be seen by consumers and non-expert designers as “smart” applications, since they

propose what can be perceived as an “intelligent” behavior with data collected from the environment.

Indeed, being able to observe the physical environment, to dynamically adapt its behavior without any

human intervention are behaviors commonly perceived as “intelligent” (or “smart”) by consumers, and

consequently, more and more developers are considering integrating such behavior into their new

applications.

Even if these applications are becoming more and more popular, their design and implementation is

often poorly understood or has not been mastered sufficiently by non-expert designers. In order to

illustrate this situation, we have invited two groups of master‟s degree students in computer science to

participate in a survey. In this survey, students are invited to answer a set of 50 questions about their

practices on designing/engineering “intelligent” software applications. These questions consider

different aspects concerning the project, the design and the development of such smart applications.

Both groups, containing about 20 students each, were composed, in their majority, by students in

apprenticeship, with 1 to 3 years of experience, and for the others about 4-6 months of internship, both

on software (mainly Web) development or Information Systems.

Before submitting the students to the survey, we gave them a small experiment using a RaspberryPi

nano-computer (see Figure 2.2). Students had to build a small application that observed temperature in

the room and reacted to the observed temperature through a LED (red LED if temperature is greater

than a threshold, yellow if it is lower, and green otherwise). Students were organized into small groups.

Each group received a kit containing one RaspberryPi ZeroW, a temperature sensor I2C BMP 280 and

a triple LED (see Figure 2.2), as well as a SD card containing the OS Raspbian Jessie and two

examples of code for handling the sensor and the LED. It is only after connecting the sensors and

building the application that students received the survey for completion.

Although all the students concerned had a computer science background and an academic

background in software development, only half of them (about 48.83%) had declared having already

participated in a project developing a smart application. Among those that had not yet participated,

about 63.6% were planning (or would have liked) to participate in such kind of project. Among those

with previous experience, mobile and Web applications appeared to be the most commonly concerned,

counting for respectively about 66.67% and 42.85% of those students, followed by location-aware

applications and smart home applications (concerning each 28,57%)
3
. Independently of their previous

3 Students could select more than one category of application.

© 2018 ISTE OpenScience – Published by ISTE Ltd. London, UK – openscience.fr Page | 6

experience, almost all students declared to know platforms commonly used for context-aware

applications: 100% declared to know RaspberryPi and Android Phone, 86% for iPhone, 83% and 81%

for iPad and iPad Pro, 81% for Android tablets and 48.83% for Arduino. A similar tendency appeared

when considering platforms they had already used or wanted to use: 93% declared to use/want to use

the Android phone as a target platform, 72% for RaspberryPi, 67.44% for Android tablets and iPhone,

30.23% for Arduino and even 11.62% for SmartTV platforms. These numbers illustrate quite well the

growing interest these young developers have for creating applications for mobile and IoT platforms,

and for exploring the possibilities of these platforms.

Figure 2.2. Kit distributed to the students containing a RaspberryPi ZeroW, a I2C BMP 280 temperature

sensor and a triple LED.

It is worth noting that all these students had already been briefly introduced to the notion of context

and to Pervasive Computing during their scholarship. Although the notion of context was not totally

unknown to these students, they still could not be considered as “experts” in the domain, being mostly

novices in this area. When asked about programming platforms (libraries, APIs, framework or

middleware), almost no particular technology for context-aware and IoT application was cited. Only 4

students cited Pi4J, the library proposed in the examples used in the experiment they performed with

the RaspberryPi. Among those with previous development experience, 36.36% declared using an ad-

hoc direct access to the devices and 31.81% declared using the OS/programming language calls/API.

The multiple platforms and technologies proposed in the literature (e.g. [18] [13] [22] [53] [61]) seem

to remain unknown and unexplored for these students.

Similarly, when we asked students with previous development experience in “smart applications”

when, during the previous project(s), the technologies were chosen, about 22.72% couldn‟t answer (“I

don‟t know”) as much as “at the very beginning, it was predefined in the project specifications”. When

asked about the difficulty of using these technologies, about 31.81% of the students evaluated the

difficulty as “medium”, pointing out that some elements were unknown and that they had to learn how

to handle these technologies. It is interesting to note that no student evaluated the difficulty as “easy”

and only about 9% declared it as “hard”, pointing out that they had never used such technologies

before. In any case, about 90% of students with previous experience declared that having previous

knowledge about these technologies is necessary (50% considered that “it helps a lot” and 40% chose

“it could help, but it is not mandatory”). Better dissemination of the knowledge about these

technologies seems to be an interesting means for the progress of context-aware applications.

Finally, to the question “have you already heard about context-aware computing?”, almost 52.27%

of the students answered “yes, I have some notions on it” and 22.72% answered “yes, very slightly”,

which corresponded to the expected values since both groups of students already had some academic

background in this topic. Still, when asked about whether the application they had built or wished to

build was “context-aware”, about 36.36% said “I don‟t know”. Similarly, when asked if they were

© 2018 ISTE OpenScience – Published by ISTE Ltd. London, UK – openscience.fr Page | 7

familiar with the notion of “context”, about 43.18% answered “yes, slightly”, 25% declared to

overcome the concept and 25% assumed to have some difficulty with it. Nevertheless, when asked how

this notion could correspond to their past/future application(s), only 34.09% of the students could

answer this question. Through these elements we may observe that the understanding of the notion of

context and its use on software applications seems to remain a challenge for these computer science

students, even for those with some previous experience on smart applications.

Students like those who participated in this survey illustrate the public we are focusing on here:

software designers who, despite some experience, are not necessarily experts on the design and on the

development of context-aware applications, but who could be led to participate in this kind of project

in the near future.

3. Context engineering roadmap

As one may observe from the scenarios in Section 2.1, engineering context-aware applications can

become a difficult task due to the complex nature of the notion of context as well as the different

aspects that should be taken into account for considering this notion. Engineering such applications

implies taking into account different aspects involving the notion of context and its support, which

include collecting, transferring and analyzing context data in dynamic environments. Non-expert

designers, such as the students cited in Section 2.2, were left alone to understand and identify the

necessary concepts and components for building such applications. Acquiring the necessary knowledge

for developing software applications exploring this notion thus represents a challenge for non-expert

designers.

In [31], we tackled this question by considering multiple dimensions necessary for supporting

context on software applications in a context engineering roadmap. This roadmap represents, for us, a

first step towards a global approach, allowing us to better grasp the different aspects involved in the

management of context information. It considers different challenges related to context management,

organized along multiple dimensions. Each dimension focuses on different aspects and tackles

different issues necessary to context management.

Additionally, in [32] we extended this roadmap in order to take into account quality aspects on

context management. Indeed, the roadmap proposed in [31] does not consider the influence of quality,

limiting its analysis to a few dimensions, such as the acquisition of context data. Still, managing the

quality of context information demands a deeper reflection about the consequences of quality on the

application behavior, and its influence over every aspect of context management. With the growing

development of context-aware applications in multiple domains (healthcare, smart homes, transport,

etc.), the importance of managing Quality of Context (QoC) is also growing, since the consequences of

low-quality observations on the application behavior might be dramatic, or at least, may seriously

affect the application reliably. These consequences can be illustrated when considering the smart

agriculture scenario (cf. Section 2.1): low quality observations from malfunctioning or non-functioning

soil moisture sensors may lead to erroneous decisions considering irrigation, exposing the production

to the consequences of a too abundant or too sparse irrigation. According to [58], context information

is naturally dynamic and uncertain: it may contain errors, be out-of-date or even incomplete. The

quality of the information collected by a given sensor may vary according to several different and

possible unpredictable factors (e.g. weather and wind conditions, failures of energy supply,

communication interferences, etc.), leading to erroneous, incomplete or missing information.

Uncertainty being indissociable from context information, handling quality of context becomes a

central concern for reaching the reliability that is mandatory for the development of context-aware

applications in the near future.

Since the quality of context information may potentially affect all dimensions represented by the

roadmap, it should be considered as a transversal concern affecting all aspects of context management.

© 2018 ISTE OpenScience – Published by ISTE Ltd. London, UK – openscience.fr Page | 8

Again, the aforementioned scenario on smart agriculture illustrates this point quite well: errors in the

information collected, as well as in the threshold definition may affect the water supply to crops and

lead to an excessive or an insufficient water provision, which will in its turn influence the production.

In this paper, we propose a unified view of [31] and [32], which is enriched with a literature review

(cf. Section 4), covering challenges and solutions related to every dimension pointed out by the

roadmap. In the next few sections, we describe the context engineering roadmap, with its proposed

dimensions, as well as the quality dimension, proposed as a transversal plan affecting all previous

dimensions.

3.1. Context support dimensions

As briefly illustrated by the scenarios in Section 2, several kinds of software application may use the

notion of context. Most known applications are probably context-aware applications, which use this

notion for adaptation purposes, adapting the behavior of the application accordingly. Nevertheless,

adaptation is not the only possible purpose of using context information on a software application. This

notion may be explored in several ways, with different implications on the application design and

behavior. Whatever the purpose of using context information, handling such information means

dealing with different aspects related to its management, from its observation up to its use on a

software application. For instance, deciding modalities and means for data collection and transfer on

Grid Stix and CC-Sem scenarios (cf. Section 2.1), choosing threshold on smart agriculture one,

defining adaptation mechanisms on GridStix or data analysis methods for CC-Sem, are just a few

examples of issues that should be considered when developing these scenarios. Identifying these

challenges and issues related to the management of the notion of context on software applications

becomes mandatory for supporting the growing development of new intelligent applications using this

notion. We believe that considering context information through its multiples challenges may

contribute to a global approach for designing such applications, by allowing a better understanding of

the different aspects involved in the management of context information.

Figure 3.1. Context engineering roadmap [31].

Indeed, engineering context-aware applications involves tackling several challenges involving the

notion of context and its support. By analyzing several existing works applying this notion on software

applications, we could identify in [31] the most relevant characteristics of context management

required by context-aware systems and organize them according to six dimensions, represented in

Figure 3.1: purpose, subject, model, acquisition, interpretation and diffusion. Each dimension identifies

challenges and issues, leading to the identification of functional and non-functional goals that should

be considered and satisfied (at least partially) by these applications. These dimensions do not

necessarily follow a particular order. As demonstrated by [2], projects developing intelligent software

Model

Context

Subject

Acquisition

Device

Observation

Management

Diffusion

Interpretation

Purpose

© 2018 ISTE OpenScience – Published by ISTE Ltd. London, UK – openscience.fr Page | 9

applications using the notion of context do not follow a singular process; the adopted process may

change according to the team and the project itself. Nonetheless, in order to simplify the presentation

of the roadmap, we will discuss the proposed dimensions respecting the order represented in Figure

3.1.

The first dimension we consider is the Purpose dimension, which focuses on the purpose of using

context information in a given application, and on the meanings and mechanisms for reaching it. This

dimension considers why a given application needs context information. Such a purpose has a

significant impact on how this information is exploited and consequently on what information will be

considered, how it will be acquired, represented and analyzed, which are issues considered by

subsequent dimensions of the roadmap. For instance, considering the scenarios presented in Section 2,

two main purposes can be highlighted: the adaptation purpose, such as in the third scenario, in which

the water supply is automatically adapted according to humidity conditions; but also, decision making,

like in CC-Sem scenario, in which information collected about energy consumption can be used by

power grid administrators for decision making.

The second dimension in this roadmap is the Subject dimension. It focuses on what information

could be considered as context and how to identify relevant elements. This is not a trivial question,

since the notion of context corresponds to a large and often ambiguous concept [42][7][25], potentially

referring to very different elements, whose relevance depends on the use we will make of it. The

subject dimension is directly connected to the first dimension, since the purpose of using context

information in an application will influence the relevance (or not) of a given information for that

application.

Multiple definitions have been proposed for the notion of context [7] [42] [25]. One of the most

commonly accepted considers context as any information that can be used to characterize the situation

of an entity (a person, place, or object) that is considered relevant to the interaction between a user and

a system [21]. This definition points out both an observed entity (e.g. the user) and a piece of

information that is observed about this entity. The entity delimitates the observation: the aim is to

observe a given entity, but when looking at this entity, different elements can be observed. For

instance, when considering a user (i.e. an entity), it is possible to observe his location, his mood, his

level of expertise, etc.; when considering a device (i.e. another entity), it is possible to observe its

available memory, network connection, etc. Thus, the entity corresponds to the subject of the

observation. It plays a central role in context modeling, as pointed out by [17] [9], since it is precisely

the context of this subject that is currently been observed. Everything we observe is related to this

subject [34]. He we call the information observed (location, memory, etc.) about a given entity/subject

the context element. For [34], when observing such context elements, we obtain values corresponding

to their current status that will probably evolve over the time. For instance, by observing the context

element „location‟ for a subject „user‟, we may obtain values for latitude and longitude, corresponding

to the current user‟s location. Similarly, in the smart agriculture scenario, the context element

„temperature‟ of a land parcel, representing our entity, can be estimated through multiple values

obtained from a temperature sensor. Figure 3.2 represents a meta-model proposed by [34] in which

context information corresponds to a set of context elements that are observed for a given subject

(entity) and for which multiple values can be dynamically observed.

© 2018 ISTE OpenScience – Published by ISTE Ltd. London, UK – openscience.fr Page | 10

Figure 3.2. Context meta-model from [34].

Identifying what information should be considered as a context element in a given application

means identifying what entities and context elements should be considered as relevant. This relevance

depends on the identified purpose. Context information is observed in order to satisfy this purpose. Its

relevance depends on its contribution to this purpose. For instance, in GridStix scenario (cf. Section 2),

considering that the goal of this system is the flooding prediction, the main entity to be considered is

the river and more precisely its state. The latter is determined by observing the depth and the flow rate

of the river at different points. Nevertheless, the GridStix nodes themselves can also be considered as a

possible entity since it is necessary to observe their battery level and communication capabilities

(Bluetooth and Wi-Fi connections) for self-adapting the overall infrastructure in order to reduce the

energy consumption.

This identification process remains a significant challenge, as identified by [21] [25] [2], notably

because any information that can be used to characterize something (an entity or the subject in the

metamodel in Figure 3.2) can be potentially considered as context. The main aspect to be taken into

account remains its relevance, if it is relevant for characterizing a given entity, considering the system

purpose. For instance, information related to the battery level can be considered as relevant in the

GridStix scenario because it supposes adapting node behavior according to this. In the CC-Sem

scenario the same information can be ignored since its domestic use allows us to suppose a continuous

power supply. According to [2], since context is a crucial element that defines the functionality of a

context-aware system and shapes its behavior, context selection becomes a significant task in the

design of these systems. For these authors, system designers need to anticipate the relevant

combinations and characteristics of context before implementing the system, and to decide which

context to include in their design.

However, just identifying relevant context information is not enough, it is also necessary to consider

how to represent this information in an appropriate manner. The Model dimension focuses precisely on

context modeling issues. Its main goal is to determine the most appropriate representation for context

information on a given application according to its identified purpose. Context information must

indeed be represented, internally, in a software application, in such a way that it becomes practical and

possible for this application to explore it and to realize its purpose. As pointed out by [34], a context

model ensures the definition of independent adaptation processes and isolates this process from context

acquiring techniques. An inappropriate model may compromise, or at least make more complex, the

implementation of a given application. For instance, in the GridStix scenario, the adoption of an

appropriate context model (e.g. an object-oriented model as suggested in [31]) allows, on the one hand,

the definition of adaptation rules (notably for turning on and off a given node) independently of precise

sensors or APIs used for obtaining the data. On the other hand, an inappropriate model (e.g. a too

complex model) may negatively impact the performance of the flooding prediction system since data

analysis by stochastic models may demand extra processing of the available data. Several approaches

of context modeling exist, from key-value sets and object-oriented models up to complex ontologies

Subject

<< Classifier >>

Context Element

<< Classifier >>
observes

*

1

Observed Value

<< Classifier >>

observation

Metadata

<< Classifier >>

*

*

© 2018 ISTE OpenScience – Published by ISTE Ltd. London, UK – openscience.fr Page | 11

[42] [6] [12] [33] [54] [24]. Simple models, such as key-value ones, will be easy to implement but will

offer no particular reasoning mechanism. On the contrary, ontology-based models will be more

complex to implement, but they will allow complex reasoning mechanisms.

Representing context information is a challenging issue due to the nature of this information. Firstly,

context information can be heterogeneous. Since different kinds of context element can be observed,

the information obtained may vary from numeric information, like GPS coordinates or a percentage

(e.g. CPU load), to symbolic values (e.g. the role of a user in a group). Such heterogeneity can be

observed on both content and data structure. For instance, in the GridStix scenario, multiple elements

can be considered (as pointed out in [31]), such as the flow rate and depth of the river (the observed

entity), and the battery level and Bluetooth state from the nodes. Most of these consider numeric

values, followed by a timestamp (meta-data describing the observation), except the Bluetooth state,

which can be represented by a symbolic value („on‟ or „off‟). However, in other scenarios, context

elements with a more complex structure can be observed. For instance, when considering location

information, multiple representations are possible, such as GPS coordinates or postal address. Both

representations are composed of multiple values (at least latitude and longitude for the former, street

name and number, locality, zip code, country, etc. for the latter). It is the context model that organizes

and structures data obtained from sensors and other data sources into valuable information that can be

explored by the application.

Furthermore, context information is naturally dynamic, varying among observations. For instance,

in our hydric stress scenario (cf. Section 2), observed values for humidity levels will vary between

observations according the plants‟ consumption and weather conditions. This dynamicity must be

supported by the context model, which should keep values associated with context elements and

assume that these values will vary over time. Indeed, we may consider that, by definition, context is

about characterizing the situation of an entity that is (or may) be constantly evolving.

Finally, context information is also uncertain and often incomplete or presenting errors and

imprecisions [58] [14] [13] [37], mainly due to problems during the acquisition of data (connection

problems, interferences, etc.), resulting in erroneous or missing data. For instance, in the CC-Sem

scenario, the weather conditions and notably exposing temperature sensors to direct sunlight may

adulterate the quality of the measurements. Similarly, in the GridStix scenario, the river conditions

(e.g. an important flow in a flood period) may damage GridStix nodes, causing missing data on

portions of the river. This uncertainty represents an important issue since this data influences the

behavior of a context-aware application, making the quality of context a very important issue when

considering context support on software applications. The influence of quality concerns on the context

management is not limited to only context modeling, representing a transversal concern. We will

discuss this concern and its influence on all dimensions of the roadmap in Section 3.2.

It is worth noting that these three aspects (heterogeneity, dynamicity and uncertainty) profoundly

characterize context information. Handling these aspects is a key factor for successfully exploiting

context information in a software application. More than in traditional applications, managing context

data implies handling these aspects as a priority.

Context information should be acquired by observing the environment around a given entity. The

Acquisition dimension highlights the challenges of acquiring context information from the

environment, which implies considering the capture devices, the observation process and the

management of context sources. Indeed, in order to correctly capture context information from the

environment, one has to observe this environment, using an appropriate acquisition device. The main

challenges here are the heterogeneity and the interoperability of these devices since their nature can be

quite variable. For instance, a user‟s location can be acquired using a GPS device or calculated from a

Wi-Fi connection; temperature data, necessary for CC-Sem and smart agriculture scenarios, can be

observed using very different kinds of sensors, which are not necessarily interoperable. Such

© 2018 ISTE OpenScience – Published by ISTE Ltd. London, UK – openscience.fr Page | 12

heterogeneity makes it more complex to support different context elements in a given application, as

well as the evolution of existing applications (e.g. observing new context elements or modifying the

acquisition device), since changing the observation device may seriously affect the application code or

design. This is particularly true in large deployment scenarios, such as CC-Sem and smart agriculture

ones. In these cases, in which a large number of sensors are to be deployed, it is particularly important

to support multiple models of sensors (e.g. temperature sensors on CC-Sem scenario) and to easily

replace one sensor with another similar one (e.g. a soil moisture sensor by another humidity sensor).

Thus, when considering the acquisition dimension, it becomes imperative to consider how to isolate

the software application and its behavior from the precise technology used for acquiring context

information, as underlined by authors such as in [21] [6].

Moreover, using a given acquisition device for observing the environment means fulfilling the

context model with observed values. The Observation process should consider not only the device used

for this, but also the observation frequency, according to the expected dynamicity of the observed

information. For instance, location information will demand an active observation in order to guarantee

some accuracy, while the user‟s role can be acquired on-demand. Once observed, this information also

has to be kept updated in order to represent the current context of the observed entities. For instance, in

the smart agriculture scenario (cf. Section 2), the information obtained from a soil moisture sensor

must be regularly updated in order to keep track of changes on the plants‟ hydric stress level. These

updates should be frequent enough to satisfy plants‟ hydric requirements, but too frequent observations

will probably be inefficient or even useless since the plants‟ current hydric situation will not change

drastically over a very short period of time (e.g. several seconds). The acquisition dimension also

involves managing the environment. The environment itself being dynamic, the availability of devices

used for observation is not guaranteed. Some devices may disappear (e.g. being switched off) and

others may join the environment, becoming available for capturing the context of a given entity. The

management of this dynamic environment is also a challenge, considering the evolution of the

environment and the availability of the acquisition devices in it. The GridStix scenario is a good

example of this management, since GridStix nodes can be switched on and off, coming in and out the

system, according to battery conditions.

Data collected during the acquisition process corresponds to raw data that often have to be

aggregated or interpreted in order to be better exploited by context-aware applications. The

Interpretation dimension focuses on this issue, considering the challenges related to the interpretation

of context information in its different forms (interpretation rules, context mining, etc.). It considers

how to transform raw context data on useful knowledge for a given application. For instance, when

considering the smart agriculture scenario, a soil moisture sensor has been used in the prototype

illustrated in Figure 2.1b for evaluating the humidity level. Raw data offered by this sensor

corresponds in fact to impedance values observed on the soil parcel around the sensor. This raw data is

compared to predefined thresholds in order to deduce the parcel humidity level. The goal of this

dimension is then to specify appropriate interpretation mechanisms and to consider necessary

reasoning and aggregation mechanisms that can be applied according to the capabilities of the context

model. Different interpretation mechanisms can be considered, from ad-hoc reasoning up to complex

rule-based systems [54][23]. Those mechanisms cannot be dissociated from the context model. Not

only will the context model limit the possibilities of interpretation (i.e. a key-value structure will offer

fewer reasoning opportunities than an object-oriented or an ontology-based model), but the information

that will also be deduced from the interpretation mechanism will also feed the context model, similar to

an acquisition mechanism, building for instance high level information from raw data.

© 2018 ISTE OpenScience – Published by ISTE Ltd. London, UK – openscience.fr Page | 13

Figure 3.3. Influence and data flow among Model, Acquisition and Interpretation dimensions.

The three dimensions, Model, Acquisition and Interpretation, are then intrinsically connected and

cannot be dissociated, as illustrated by Figure 3.3. Firstly, they are connected because the mechanisms

on these dimensions exchange data, represented by the data flow in Figure 3.3: acquisition mechanisms

feed context model with raw data, which is also consumed by the interpretation mechanism, whose

results will again feed the model extension (i.e. instances). Secondly, these three dimensions influence

choices about each other (as illustrated by the influence arrow in Figure 3.3): acquisition devices may

influence the interpretation mechanisms that can be applied (for example, gyroscope and accelerometer

data that can be interpreted on a user‟s movement information thanks to statistical methods such as in

[51]); conversely, the interpretation mechanism can influence the selection of acquisition methods (for

instance, triangulation methods can be used to deduce a location from GSM-based data instead of GPS,

as in [48]). Similarly, decisions about interpretation and acquisition may influence the model, both its

intention (i.e. structure) and extension (i.e. instances), and the model will guide and limit interpretation

possibilities (for instance, rule-based mechanisms, such as [23], will be hard to apply without an

ontology-based model, and statistical methods such as Bayesian networks applied on [51], often

require a numeric representation of data).

Finally, the Diffusion dimension explores the issues related to the transmission of context

information among multiple nodes. Indeed, context-aware applications often behave as distributed

applications, in which multiple nodes communicate and exchange information about their current state.

In some cases, the context information should be distributed from the node in which it is observed to a

different node, in which it will be processed, interpreted or stored. For instance, in the GridStix

scenario (cf. Section 2), context information about the river and the nodes‟ conditions is transmitted for

remote processing, for a flooding warning application. Similarly, in the CC-Sem scenario (cf. Section

2), context information should be transferred from acquiring devices to an appropriate computational

infrastructure allowing the data analysis of the energy consumption. Several challenges arise from this

distribution, above all, the stability of the context information (how long does a given piece of

information remain valid and useful after being transferred from a different node?) and the coherence

of the collected data, since contradictory data can be reported from multiple nodes observing a given

entity (e.g. multiple temperature sensors observing different values for a given room according to

external influences such as sunlight or heating).

In addition to the dimensions considered by the roadmap in Figure 3.1, another concern must be

considered: the quality of context (QoC). As one may observe, the roadmap presented here does not

consider the influence of quality in depth. In our opinion, managing the quality of context is not only a

matter of correctly representing the context information or its meta-data. It demands a deeper reflection

on the influence of QoC on all aspects of context management. For us, quality should be a transversal

Model structure

Model

Raw data
Interpreted

data

 intention

extension

Acquisition Interpretation

influence

data flow

© 2018 ISTE OpenScience – Published by ISTE Ltd. London, UK – openscience.fr Page | 14

concern affecting all dimensions of the context management. In the next section, we discuss this

influence, extending what we introduced in [32].

3.2. Quality on context support

As introduced earlier, Quality of Context (QoC) is a transversal concern that influences all aspects

of the context management. According to [5], Quality of Context is usually defined as the set of

parameters that express quality requirements and properties for context data (e.g., precision, freshness,

trustworthiness...). Being able to observe and handle these properties requires the consideration of their

influence on every aspect of context management, transforming QoC concerns on a transversal plan,

affecting all other dimensions of the context engineering roadmap, as represented in Figure 3.4. In

every dimension, particular challenges are considered and somehow influenced by the notion of

quality. When considering each dimension, we should consider the influence of taking QoC into

account on supporting the dimension challenges. This influence is materialized in Figure 3.4 by the

verbs attached to each dimension of the roadmap, representing a guideline when considering QoC on

the dimension. Thus, for each dimension, we tried to identify in [32] questions, represented through the

verbs in Figure 3.4, that should be considered when thinking about the influence of QoC. Similar to the

context engineering roadmap presented earlier (cf. Section 3.1), the main goal of this proposal is not

necessarily to give solutions to these questions, but mainly to raise discussion on the impact of QoC on

context management.

The first dimension, Purpose, considers the purposes for which the notion of context is used in an

application. According its purpose (e.g. adaption, decision making, etc.), an application can be more or

less sensitive to errors or low-quality context information, since errors on context information may lead

to erroneous decisions from the application, which may be more or less important, according to the

application domain. For example, let us consider a healthcare application that proposes to

automatically adapt insulin levels according to a patient‟s blood sugar levels or to call the emergency

services if a patient falls over. Reliability of this kind of application depends on the quality of context

observed since erroneous information may lead to a wrong decision with significant consequences for

the patient‟s health. The same can be assumed in the smart agriculture scenario (cf. Section 2), in

which errors on context information could directly affect water supply and consequently production.

The question raised by the Purpose dimension is essentially whether to and how to follow QoC in a

given application. The management of QoC should consider the consequences of a poor-quality

context information and the consequences of having no information about it. These consequences

should be considered but also the costs of managing QoC. For example, still considering the smart

agriculture scenario, errors on humidity data may lead to an excessive water provision. Similarly, a

problem affecting the humidity data provisioning (i.e. missing context information) may lead to an

insufficient water provision. Both cases can be very harmful for the plants and affect productivity.

Furthermore, reaching application purposes implies several mechanisms that are potentially affected by

QoC. Including QoC in these may represent a cost that should be considered. Will the cost of

observing QoC be more or less important than the risk of not observing it? For instance, in a healthcare

application, considering QoC in the adaptation process implies using different algorithms for detecting

and eliminating suspicious measures. Such algorithms will consume processing and battery power in

the hosting device. These represent an execution cost, in addition to design and development costs.

Even if these can be significant compared to overall application costs, the risks and the possible

consequences of not considering QoC justify these costs. The application developer should then

consider the risks and the costs that will follow QoC observation on the application purpose. However,

one question arises from this dimension: how can we measure such risks and costs? This point remains

an open question.

© 2018 ISTE OpenScience – Published by ISTE Ltd. London, UK – openscience.fr Page | 15

Figure 3.4. Quality plan on the context engineering roadmap [32].

The remaining dimensions may give us some insights about the costs and risks of observing (or not)

QoC. The Subject dimension considers what kind of information can be observed as context

information. When identifying relevant context information, one should also identify possible QoC

indicators that can be associated with it. Often, QoC consists of several elements such as precision, up-

to-dateness, freshness or probability of correctness [37][5]. Identifying what context information will

be observed allows application developers to identify either what quality information is relevant to be

associated with it for reaching the application‟s purpose. For instance, when considering location

information, different quality indicators can be considered, such as estimated error or precision,

freshness (which can be obtained regarding production time) or even the number of available satellites,

when considering GPS data. Indeed, several QoC criteria are possible, as illustrated by [37]. These

authors have identified and compared different QoC indicators proposed in the literature, highlighting

the variation in terms and in meaning of these criteria. Similar to context information itself, the

relevance of a given indicator often depends on the use that will be made of it. Again, the purpose of a

system highly influences the relevance of context and QoC information. Both are observed considering

this purpose, their contribution with its satisfaction determines their relevance. For instance,

considering the CC-Sem and hydric stress scenarios presented in Section 2, both may consider

accuracy as a QoC indicator, but their needs considering this indicator will not be the same, errors

would be better tolerated on the first scenario than on the latter.

All identified information should be represented in an appropriate context model. Considering QoC

on the Model dimension implies considering how to represent QoC information, how it will be

associated with observed context. Several research works have been carried out on context models

[6][7][8] [42], and multiple proposes have already considered the question of QoC [14] [13] [37] [27],

often through meta-data representing QoC indicators. As summarized by [6], a good context modeling

approach must include modeling of context information quality to support reasoning about context.

It is impossible to consider context information without considering its acquisition. The same can be

said about QoC information. The Acquisition dimension considers this question through three different

points of view (or sub-dimensions): device, observation and management. QoC will influence the

analysis of each of these sub-dimensions. First, when considering the necessary devices for acquiring

context information, it is also important to consider if these devices are able to support acquiring QoC

indicators. Similarly to context information, QoC indicators are calculated based on information

supplied by acquiring devices. The possibility of obtaining a given QoC indicator depends on the

capability of these devices offering basis information. For example, when considering GPS data, the

Model

Context

Subject

Acquisition

Device

Observation

Management

Diffusion

Interpretation

Purpose

identify

follow
represent

support

observe

manage

influence

guarantee

Quality dimension

© 2018 ISTE OpenScience – Published by ISTE Ltd. London, UK – openscience.fr Page | 16

number of satellites can be used for supposing data precision. If this information cannot be obtained for

any reason, this criterion will be unavailable. In the hydric stress scenario presented in Section 2, one

may consider using precision as a valuable QoC indicator. However, it is also necessary to consider

how to obtain such an indicator, since most soil moisture sensors are unable to calculate this by

themselves. A calibration phase is necessary, which may offer only an estimation of the sensor

precision.

Similarly, data confidence can also be considered as a possible quality indicator. Considering, for

example, a team application that constantly informs users about project context (and progress),

information about task progression might heavily depend on the information supplied by the users

themselves. In this case, it seems difficult to estimate data confidence and thus trustworthiness of this

information. Furthermore, assuring quality of context information leads to choosing appropriate

acquisition devices, and consequently, to the costs associated with such devices. For instance, on a

smart home application, one may consider using ground sensors for detecting a resident‟s fall, since

these devices may offer a better accuracy for fall detection than simple accelerometers. The costs

associated with these devices are not the same, but they can be justified according to the application

purposes (e.g. if the application is designed for supporting medical care or special needs residents).

Software developers must be aware of these issues when considering their QoC indicators and the

devices used to obtain them.

Furthermore, context observing policies are directly influenced by QoC considerations. For instance,

considering if a given context information needs very frequent observation probably implies that

freshness is a relevant QoC indicator for this information, and vice versa: high levels of freshness

demand very frequent observations. This is often the case of location information on transport

applications: when considering moving vehicles, the freshness of location information will indicate if

this information can still be used or if new measures are necessary. Application developers must then

consider how to observe QoC indicators during context observation process and how often this

observation process should be realized. Finally, the management of acquiring infrastructure is also

influenced by QoC. Observed environment being more and more dynamic, it is necessary to manage

acquiring devices on this environment. This management can be influenced by QoC indicators (for

example, deactivating a given device if precision offered by it is too low or reactivating it in order to

increase overall system precision). This example is visible on GridStix scenario mentioned in Section

2, in which GridStix nodes containing flood and depth sensors are turned off in order to save battery

and on again in order to guarantee that every portion of the river has enough sensors observing it,

improving the quality of overall observation system. It is then important to consider not only how to

manage QoC information, but also how to manage acquisition environment according to QoC

information.

Similar to previous dimensions, the Interpretation dimension is also influenced by QoC

considerations. Quality of context information may affect interpretation and reasoning mechanisms and

influence the reliability of the target application. An illustration of this influence is given by [60]. In

this work, the authors discuss a set of metrics evaluating QoC and propose using such metrics on

context prediction, in order to prevent low quality information affecting prediction mechanism. Works

such as [60] demonstrate the importance of considering how QoC influences context reasoning and

interpretation, and how these reasoning mechanisms can explore QoC information for better results.

Indeed, it is worth noting that interpretation mechanisms may consume both context data and QoC

data. Context being dynamic and uncertain, context data and their quality indicators will evolve over

time, making possible different historical and statistical analysis (and then interpretation). For instance,

the analysis of outliers and weak signals on context values and on QoC indicators (e.g. means,

accuracy, precision, etc.) may contribute to predicting new tendencies and anticipating actions. Weak

signals are usually seen as abnormal values or “information on potential change of a system to an

unknown direction” [39]. The analysis of such signals can be particularly interesting in some scenarios,

revealing undiscovered events or phenomena. In the CC-Sem scenario (cf. Section 2), the analysis of

© 2018 ISTE OpenScience – Published by ISTE Ltd. London, UK – openscience.fr Page | 17

weak signals and outliers may contribute to the energy consumption prevision, revealing new

tendencies on energy consumption (for example the presence of a new device) or forecasting variation

due to seasonal climate changes. Similarly, in the smart agriculture scenario, the analysis of weak

signals on mean values of temperature and soil moisture sensors may help in identifying possible

misfunctioning sensors.

Finally, with the growing distribution of software applications, the distribution of context

information over multiple nodes is becoming a necessary. For instance, in IoT scenarios, context

information is often transferred to distant servers or cloud platforms for data analysis. In these cases,

quality indicators such as latency or packet loss can significantly affect the information reliability. The

Diffusion dimension considers the challenges related to the distribution of the context information.

When considering QoC on such distributed environments it is important to consider whether this

transmission may affect the quality of transmitted context information. According to [5], it is necessary

to consider the quality of both the exchanged context data and the distribution process to ensure user

satisfaction. Indeed, if the context data distribution is not aware of the data quality, possible service

reconfigurations could be misled by low quality data. For instance, real time context information may

be affected by network latency and become out-of-date. When considering, for example, an application

such as [18] that deploys its components on remote nodes according to available resources, if

information about these resources is outdated because of network latency, deployment decision may

lead to user dissatisfaction and performance loss. It is then necessary for application developers to

consider not only how to guarantee QoC information transfer, but also how to guarantee that this

diffusion of context information will not affect QoC?

As illustrated in Figure 3.4, quality concerns affect all aspects of context management and

consequently all kinds of software applications using this notion. Both the context engineering

roadmap represented in Figure 3.1 (cf. Section 3.1) and its quality concerns illustrated in Figure 3.4

offer a multi-dimensional view of the multiple aspects of context management in software applications.

It is worth noting that, as the variety of examples given in this section leads us to suppose, every

dimension proposed in the roadmap in Figures 3.1 and 3.4 will not equally influence all kinds of

applications. The relevance of each dimension depends on the purpose of the application itself and on

the considered context information. It is then essential to consider and discuss each dimension,

considering its possible relevance for an application and the influence of the quality concern on it. In

this section, we raise questions about the support of context information on software applications and

about the influence of quality concerns on it. More than solutions, the main goal here is to initiate

discussion and to point out challenges and issues of context management and QoC on software

applications.

4. Literature review: challenges and solutions

The main goal of the context engineering roadmap presented in Section 3 is to help non-expert

designers to better understand challenges and issues related to the support of the notion of context on

software applications. Some of the challenges suggested here have already be highlighted by previous

works in the literature. A good example of this is the context lifecycle proposed by [46] (see Figure

4.1), which considers the movement of context data on software applications, focusing on context

modeling, acquisition, reasoning and dissemination. All these steps are considered in the roadmap as

dimensions (respectively modeling, acquisition, interpretation and diffusion), to which we have added

the purpose and the subject dimensions. Indeed, the context engineering roadmap intends to represent a

summary of the main challenges highlighted in the literature, such as [1][42][7][6][25][14][5][37][46].

In this section, we introduce a brief summary of the literature review in which the roadmap is based.

The main goal here is to discuss solutions and open issues proposed in the literature for each dimension

of the roadmap. This summary is a necessary complement to the roadmap for non-expert designers,

giving concrete examples of the challenges considered on each dimension.

© 2018 ISTE OpenScience – Published by ISTE Ltd. London, UK – openscience.fr Page | 18

Figure 4.1. Context life cycle proposed by [46]

When analyzing the literature, a first class of applications advocating using the notion of context is

represented by context-aware applications, which use context information for adaptation purposes.

This adaptation may affect different aspects of the application behavior: one may adapt the content

supplied to the user [56][15], the services offered by the application [58] [12], or even the application

composition itself [49][18][22] according to the execution and the user‟s context. Still, as mentioned

earlier, adaption is not the only purpose for using context information on software applications. In [14],

the authors underline six common uses for context information: (i) context display (i.e. presenting

context information to the user); (ii) contextual augmentation (i.e. annotating data with context

information); (iii) context-aware configuration (i.e. configuring a service using context information);

(iv) context triggered actions (i.e. triggering actions according to context information); (v) contextual

mediation (i.e. modifying services and content to best match context of use); and (vi) context-aware

presentation (i.e. adapting user interface or content presentation).

As one may observe, most of these uses refer to adapting application behavior (content, actions,

services or interface) according to the context of use, but for [14], context information can also be used

for annotation or simply displayed. Indeed, annotating data or objects using context information allows

applications, services or even users to better characterize information or data, while displaying context

may contribute to decision-making processes. For instance, [35] uses context information for

characterizing fragments of methods on Method Engineering, while [47] [54] use context information

for characterizing tasks on workflow models, and [33] associates context and group awareness

information on Groupware Systems for helping users to better coordinate their actions. More recently,

IoT applications are being considered for massively observing information from the environment,

opening new perspectives for the use of this context information on many different applications. Works

on IoT and smart cities [46][40][50][64], as well as projects such as CC-Sem mentioned in Section 2,

illustrate this tendency quite well. They demonstrate the interest of using context information as a

support for decision making as well as for adaptation.

When considering subject dimension, the literature illustrates quite well the variability of the notion

of context. From initial works on context-aware computing, which mostly consider the user‟s location

and device as the main context elements [56] [10], up to works considering complex situations on their

behavior [58] [18], multiple visions of what can be considered as context are given. First of all,

multiple definitions can be found in the literature [42]. For instance, [56] defines context as the

location, the identity of nearby people and objects, and changes in those objects. Through this

definition, these authors focus on three main questions: where, who is around and the surrounding

resources. For [41], context refers to physical and social situation in which computational devices are

embedded. This definition focuses on computational devices, delimitating this notion to its software

perception, without considering precisely possible elements, keeping yet its generality. Currently, one

© 2018 ISTE OpenScience – Published by ISTE Ltd. London, UK – openscience.fr Page | 19

of the most accepted definitions is given by [21], which considers context as “any information that can

be used to characterize the situation of an entity. An entity is a person, place, or object that is

considered relevant to the interaction between a user and an application, including the user and

applications themselves”. Similar to [41], [21] examines the notion of context from a software

background, by focusing on the interaction between a user and a system.

As one may observe from these definitions, the notion of context may cover several different

elements. For instance, in [56][15][10], location is mainly considered, while in [22] [24] information

about the execution environment, such as available memoire and network connection, is considered. In

[49] [18], information about the executing device but also about surrounding devices is considered as

context and used for better identifying the user‟s situation and deploying application over these devices

consequently. On [51], data obtained from a smartphone accelerometer is used for activity detection,

while in [48], location detected using GPS and GSM data, as well as connectivity information, is used

for adapting content delivery on a health record application.

A similar question arises when considering QoC. Considering quality of context on a software

application means considering what indicators or properties to use for measuring such quality. Several

authors have highlighted different indicators for context information, as demonstrated by [37]. Among

common indicators, we may cite precision, up-dateness, accuracy or freshness.

There is a consensus in the literature about the arduousness of defining what context elements or

QoC indicators can be considered as relevant for a given application (e.g. [21][2][25][37]). This

question of choosing elements remains an open issue. Even if cited works do not tackle this issue of

selecting context information and QoC indicators directly, some of them [24][22][27][13][37] propose

interesting solutions for supporting these elements during the design phases. For instance, [24] and

[13] propose a MDE (Model Driven Engineering) approach for developing context-aware applications.

Both properties corresponding to the observed context elements (for the first) or to the QoC indicators

(for the later) are modeled using UML and other high-level model representations at the very

beginning of the design process. By focusing on this modeling, these approaches help designers to

better conceptualize the necessary elements for their software applications. On the one hand, freeing

designers from implementation details at the very beginning of the project allows those to focus on

concepts and then to consider more easily the necessary information for their applications. On the other

hand, by producing code from these model specifications, such approaches help designers in the

development task itself.

Furthermore, the literature also reveals other issues that follow from identifying relevant context

information. The first one concerns the relationship among the observed elements. Context elements

are not necessarily independent, and their relationship can also be relevant. This is notably the case of

cooperative applications, in which group members, tasks and objects can be related in different ways.

For instance, [33] considers that knowing that an activity is related to a group can be as important as

knowing the group itself. These authors explore information about these relationships in order to

characterize the relevance of given information to a user. In [23], these relationships are explored

through rules, allowing reasoning about access rights on shared resources according to the user‟s

context. Another issue is the granularity of the observed information. Some context elements can be

broken down into lower-level elements or regrouped forming higher-level elements. Managing

different levels of abstraction can be required by complex applications. For instance, in [18], the

authors propose to aggregate low level information in order to describe a complex user‟s situations.

Similarly, in [45], the authors propose a pluggable architecture that allows new context information to

be composed based on lower level data. In both cases, this composition of more complex information

based on lower-level context data can also be assimilated into the interpretation of raw data for

producing new context information.

© 2018 ISTE OpenScience – Published by ISTE Ltd. London, UK – openscience.fr Page | 20

Another common topic in the literature concerns context modeling. Several works have tackled this

question, proposing many different context models [42][6][7]. All these works highlight several

challenges related to context modeling, and notably how to deal with the heterogeneity and dynamicity

of context information, as well as with the uncertainty that characterizes context information. Indeed,

QoC concerns strongly affect context modeling, since those models should include quality information

in order to handle QoC concerns on application behavior. As suggested by [14] or [27], quality

information should be part of the context model and cannot be dissociated from it, in a holistic view of

context modeling. Furthermore, context modeling plays an important role in the application

extensibility and evolution. Context models contribute to isolating application behavior from the

acquisition technologies. By doing so, these models contribute to the possibility of evolution, allowing

new context information to be easily considered in the application without demanding large recoding

efforts from the developers.

 (a)

 (b)

Figure 4.2. Object oriented context meta-model (a) and context ontology (b) proposed on [62].

As underlined by [42][6], different kinds of context models have been proposed in the literature.

They vary from simple “key-value” models up to complex ontologies (e.g. [54]), passing by structured

models (XML or RDF based, for instance [36]) and object-oriented models (e.g. [33]). These multiple

modeling paradigms involve different degrees of complexity, both in implementation and execution.

They also offer different reasoning capabilities, which may include ad-hoc processing, statistical and

data analysis techniques or complex rule-based reasoning. For instance, in [33] an object-oriented

model allows the representation of different information from a user‟s physical and organizational

context. Organizational elements are also considered by [54], which use an ontology-based model for

representing context information (time, location, availability, etc.) of entities related to a business

process (actors, resources, etc.). In [62], different paradigms are combined. First, a context ontology,

illustrated in Figure 4.2a, allows significant concepts related to context information to be described,

including context entities (the user, an object, etc.), information elements about it (e.g. location) and

their representation. Then, an object-oriented meta-model, resuming the same concepts, is used mainly

for implementation purposes (see Figure 4.2b). Finally, an XML schema representing these concepts is

used for exchanging context information among different computing nodes.

© 2018 ISTE OpenScience – Published by ISTE Ltd. London, UK – openscience.fr Page | 21

Modeling is also an important concern when considering QoC. In [14], a context model is proposed

considering in particular the uncertainty of context information. This is performed notably through the

definition of relations allowing context information to be compared under uncertainty. In [27], authors

analyze the effects of quality on a context model. They consider a MDE approach for context

modeling, proposing a DSL (Domain Specific Language) for creating context models. Through this

language, it is possible to describe different context elements and its data sources, as well as more

complex situations combining different context elements. Similarly, [13] [37] have also considered a

MDE approach, focusing particularly on the modeling and support of QoC indicators. In [37], the

authors have proposed a QoC meta-model in which quality indicators are associated with context

information. Each QoC indicator has a set of associated values and it is defined by a QoC criterion

containing a set of defined metrics, allowing a full definition of each QoC indicator, from the concept

definition to its metrics.

As mentioned before, context models play an important role in isolating the application‟s behavior

from the technology used for acquiring context information. By doing so, context models also

contribute to hiding the heterogeneity of the acquisition devices. Indeed, many different devices can be

used for acquiring a single context element. Maybe the most common example of this is location

information, which can be observed using different devices and methods (GPS, GSM-based estimation,

Wi-Fi triangulation, etc.), but the same can be said about other context elements. For instance,

temperature can be observed using several different models of sensors. Not all these sensors

necessarily offer the same support according to the programming language, libraries and platforms. As

an illustration, the website HomeAutomation.org
4
 compares about 5 different temperature sensors for

Arduino, with different C programming codes for accessing each one. Code and process necessary to

capture data from sensors is not necessarily the same according to the sensor model. This heterogeneity

makes the acquisition process more complex and can seriously compromise the interoperability among

acquisition devices.

Several research works have considered this issue, proposing mechanisms for isolating applications

from the heterogeneity of the environment and consequently allowing a better interoperability among

different acquisition devices. Among these, we may cite the Context Toolkit proposed by [21]. This

toolkit isolates the application itself from the acquiring technology through different abstractions, and

notably the notion of the context widget, which encapsulates the access to the physical device. The

application only has to handle these abstractions, no direct knowledge about the physical device is

necessary. This knowledge is concentrated inside each context widget, which offers a standard

interface for the application, improving interoperability, from the application point of view. A similar

approach is assumed in [45], which proposes a pluggable architecture in which context plugins are

dynamically loaded according to the application needs. Again, applications are not directly faced with

the real physical environment, keeping contact only with their context plugins, which provide a

standard interface for accessing context information. All the interaction with the real environment is

confined in the context plugin, reducing the application‟s complexity and improving interoperability

and possibilities of code reuse.

Less discussed in the literature but still important, the acquisition of quality information suffers from

a similar issue. Indeed, not all sensors offer the necessary information or metrics for quality indicators,

and often software designers have to consider other means to calculate or estimate such indicators. For

instance, considering temperature sensors like those mentioned by HomeAutomation.org
3
, these

sensors may easily be influenced by external factors (e.g. exposition to sunlight or to heating/cold

source), which may lead to significant errors in acquired data. In the experiment we performed with the

students (cf. Section 2.2), we used five temperature sensors of the model I2C BMP 280 in a single

room (about 35 m
2
) and obtained up to 2~3°C of difference in the perceived temperature among the

4 http://www.homautomation.org/2014/02/18/arduino-temperature-sensor-comparison/

© 2018 ISTE OpenScience – Published by ISTE Ltd. London, UK – openscience.fr Page | 22

sensors. Unfortunately, sensors like BMP 280 do not offer natively meta-data or any quality

information allowing an application to automatically calculate QoC indicators. Calculating QoC

indicators such as precision demands, in this case, extra equipment or processes for calibration. This

issue of how to obtain or estimate QoC indicators remains until now an open question left in charge of

the application designer.

The same can be affirmed about the observation process. This process as well as the QoC

considerations concerning it have not received the same attention in the literature as other dimensions

considered in the roadmap. One of the reasons motivating this could be the dependency between this

process and the application itself. Indeed, this process greatly depends on the application needs

considering the context information and its freshness or up-dateness. Nonetheless, most of the

middleware solutions for context management, such as [22][45][24], offer push (a.k.a. publish-

subscribe) and pull mechanisms for capturing context data from the environment. Such mechanisms

represent the basis for successful observation policies. Nevertheless, the definition of these policies is

left under the responsibility of the application designers, according to the application needs.

Furthermore, one of the main challenges of context-aware applications is the dynamicity of

pervasive environments in which these applications are supposed to execute. This is the main aspect

analyzed by the management dimension. By its own nature, context data is in constant evolution.

Context is a dynamic construct as viewed over a period of time, episodes of use, social interaction,

internal goals, and local influences [25]. Context is not simply the state of a predefined environment

with a fixed set of interaction resources. It is part of a process of interacting with an ever-changing

environment composed of reconfigurable, migratory, distributed, and multiscale resources [17].

Dynamicity is intrinsic to the notion of context and it should be taken into account properly when

considering it on a software application. It should be considered through appropriate models and

acquisition mechanisms, but also in the management of the surrounding environment. Indeed, this

environment cannot be supposed to be static. By definition, context-aware applications must consider a

dynamic environment, in which execution conditions may vary, users and devices may move,

resources may come in or disappear at any moment. Such a dynamic environment leads to multiple

challenges and notably service and resource discovery. As resources move or change their current

state, the composition of the surrounding environment and its available resources also change, making

the ability of discovering and managing such surrounding resources a necessity. Multiple works have

considered this issue, such as [52] which proposes a dynamic binding and component discovery

mechanism for service component architectures. Moreover, this question also has be considered on

other domains, such as the grid systems [43], proposing interesting solutions that could also be applied

for handling the dynamicity of pervasive environments.

The dynamicity of pervasive environments also impacts the diffusion of context information.

Diffusion of context information to other nodes is often necessary mainly when considering adapting

applications to the surrounding available resources, such as [18], in which context information about

surrounding nodes is used for adapting application deployment. As underlined by [5], multiple

approaches for distributing context information have been considered, including centralized

approaches, peer-to-peer and hybrid or hierarchical ones. We may cite, for instance, [59] and [19]. The

former proposes to organize the distribution of context information on dynamic groups, which regroup

nodes presenting a similar situation. Groups are established dynamically based on distribution policies,

which indicate context information that can be shared among group members and the common context

elements that define group membership. The latter propose a hierarchical solution based on a SIP

communication protocol for sharing context information among members of a community.

Most of these context distribution approaches are now faced with an IoT environment, which

imposes an important requirement: scalability. Indeed, in an IoT environment, the number of pieces of

equipment may grow exponentially [44], demanding distribution mechanisms to be able to scale up.

Many of the approaches underlined by [5] are unable to scale up and potentially handle hundreds of

© 2018 ISTE OpenScience – Published by ISTE Ltd. London, UK – openscience.fr Page | 23

nodes, such as considered in IoT scenarios. Hybrid architectures, using hierarchical approaches, such

as [53] or architectures combining IoT and cloud infrastructures such as [40] [61], are increasingly

being considered.

The use of cloud computing infrastructures leads us to consider the persistence of context

information and its access control policies. Unfortunately, these questions remain marginal in the

literature compared with their importance for a user‟s privacy. One possible reason explaining this is

the fact that context information is often supposed to be consumed in “real time”: it is the context of a

given entity (user, object, service, etc.) at this particular moment. In this case, storage and historical

analysis are not necessarily taken into account. However, this is about to change with the massive

adoption of cloud-based solutions for storage and the application of data mining techniques for context

analysis, such as in [51] [29]. The question of security and access control for context information will

also become more and more relevant in the next few years. Nowadays the number of works

considering these issues is not proportional to their relevance. Only a few works have, for instance,

focused on how to control the access to context information produced by a given node. For instance,

[20] proposes access policies based on the XACML standard using a FOAF (Friend Of A Friend)

approach. We hope that, with the development of IoT technologies, these questions will in the near

future receive the attention they need in the literature.

Finally, the interpretation dimension has been considered in the literature through several different

approaches, according to the application purposes. Indeed, as mentioned in Section 3, context data is

often acquired as raw data that must be interpreted to become information or knowledge. Different

ways to proceed to such an interpretation are possible, such as the possibility to aggregate low level

data on more complex context information. The previously mentioned context plugins proposed by

[45] represent an interesting mechanism for aggregating context data in a transparent way: the

application may handle aggregated context information in the same way as it handles raw data through

these context plugins.

More sophisticated interpretation mechanisms are also possible. For instance, [33] and [58] consider

similarity measures for analyzing and comparing context information, while [23] considers rule-based

systems for deducing new information from context information. In all these cases we may observe the

relationship between interpretation mechanisms and context models: none of these proposals would be

applied without an appropriate context model. For instance, rules proposed by [23] are possible thanks

to the ontology-based model adopted by these authors. Other complex mechanisms, not necessarily

based on ontology-based models, can also be cited. In [18] a workflow mechanism is used in order to

deduce complex situations from the context data, while in [55] context data is used with constraint

programming in order to control application self-adaptation according to environment changes.

Furthermore, a new tendency towards interpretation can be observed: the mining of context

information. The idea is to apply data mining techniques on context information for different purposes:

to discover missing information [51][57], to anticipate context evolution [38], or to determine the

relevance of a context element on a given system [29]. For instance, [51] considers different statistical

methods, and notably Bayesian networks, for analyzing accelerometer and gyroscope data and

identifying a user‟s movement related situation (e.g. walking, running, etc.). In [38], the authors

propose using Markov chains in order to deduce the next context information and thus to anticipate a

user‟s possible situation. Finally, [29] analyzes the relevance of context elements in the use of a given

application by crossing context and application use data using Formal Concept Analysis (FCA). All

these mining techniques may contribute to context-aware applications by allowing them to assume a

more predictive behavior, anticipating pervasive environment evolution.

All the works cited in this section contribute somehow to the support and management of context

information in software applications. They illustrate the challenges and possible solutions for different

issues considered by the roadmap dimensions. Through this literature review we intend to contribute to

© 2018 ISTE OpenScience – Published by ISTE Ltd. London, UK – openscience.fr Page | 24

a better understanding of these challenges, complementing the roadmap dimensions by concrete

examples of these dimensions in action. Table 4.1 summarizes what has been discussed here,

associating dimensions identified in the context roadmap with their key concepts and the main

questions that raise these dimensions, as well as examples from the literature review.

Dimension Key concepts Questions Examples

Purpose

Adaptation

Quality of Context

(QoC)

Why use context information? What is the purpose of using this

information in the application?

How will this information be explored?

Why should the application follow QoC indicators?

Is QoC relevant enough for the application?

[11] [12] [15]

[18] [22] [49]

[56] [58]

[33] [50]

[35] [47] [54]

Subject

Context

information

QoC indicator

What information is considered context?

How can we identify it?

What information is needed for the application?

What quality indicators can be used?

[2] [3]

[10] [48] [51]

[56] [37]

Model

Context model

QoC metric &

models

How can we internally represent context and QoC data?

How can we structure this data?

How can we handle heterogeneity, dynamicity and uncertainty

in this representation?

[6] [24] [33]

[36] [54] [62]

[13] [14] [27]

[37]

Acquisition

Sensor devices

Acquiring

platform

QoC measurement

How can we acquire context and QoC data?

What acquisition devices can be used?

How and how often should data be collected?

How can we manage the environment and its devices?

How can we support devices‟ heterogeneity?

Are QoC indicators supported by the devices?

[21] [18] [22]

[45] [52]

Interpretation
Reasoning

Context mining

How can we interpret context and QoC data?

How can we produce new context and QoC data from low level

data?

How can we apply a reasoning/analysis method on available

data?

How can we take into account QoC during interpretation?

[14] [18] [23]

[29] [38] [51]

[55] [57]

Diffusion

Context

distribution

Scalability

How can we transfer context and QoC data among nodes?

May this transfer affect QoC?

How can we guarantee the reliability of these data during

transfer? How can we ensure data validity and coherence?

How can we manage scalability when the number of nodes

grow?

How can we ensure privacy and data access policies?

[5] [19] [20]

[44] [53] [59]

Table 4.1. Context management dimensions with their main questions and some related examples.

5. Discussion & conclusions

The notion of context has been widely explored in different ways through software applications.

This use is likely to grow in the next few years with the development of IoT technologies, which allow

© 2018 ISTE OpenScience – Published by ISTE Ltd. London, UK – openscience.fr Page | 25

applications to observe the physical environment using low cost devices. Nevertheless, the notion of

context remains an obscure and ambiguous concept. What information can be considered as context,

what information cannot, is a justified question for software developers. Information such as available

memory, battery level or user‟s role can be considered as context for some [45][24][33], and as a

simple application parameter for others [28][55]. This is also perceptible through some answers in the

survey we performed (cf. Section 2.2). For example, a student that has declared having previous

experience with “smart” applications and “mastering” the topic of context-aware computing assumed

context in his/her application as “keywords” spoken by the user to “activate a feature”. Clearly, an

element that can be perceived as a simple input parameter and not necessarily as “context” by context-

aware computing literature, is being considered as such in this case. Some authors, such as [11], tried

to bring a distinction between context data and application data. For these authors, context data

corresponds to a set of parameters, which are external to the application and that influence the behavior

of the application. Despite the efforts to clarify this distinction, the boundary between context and

application data remains blurred, as well as the notion of context itself, which remains often unclear for

software developers.

There is an ambiguity not only on what can be considered as context, but also on what is a context-

aware application and the possible distinctions between those and self-adapting applications. The smart

agriculture and GridStix scenarios illustrate these ambiguities. In the former, context information can

be easily seen as application data, while the latter was considered in [55] as a self-adapting application.

According to [30], the concepts of context awareness and self-adaptation are often sources of

confusion because self-adaptive applications often adapt their behavior based on the context stimuli

and therefore it is often difficult to make a clear distinction between these two concepts. Indeed, both

can be considered as adaptive systems, which, according to [16], aim to achieve a certain goal through

the definition of some form of loop whereby the environment and/or the system itself is monitored, the

information gathered is analyzed, a decision is taken as to what change is needed in response, and these

changes are then enacted in the system. For these authors, ‘self-awareness’ means that changes can

often be handled automatically compared with conventional systems that require off-line re-design,

implementation and redeployment, which is also true for context-aware systems since they

automatically adapt their behavior according to context changes without any particular human

intervention. Some authors have tried to establish some distinction between these concepts [16] [30].

Nevertheless, the most important question here is not actually these potential differences (if they really

exist), but the support of these systems. Both are very complex and poorly known concepts for non-

expert designers. Both base their behavior on a very dynamic and complex kind of data. Whenever we

call it context or not, the management of such dynamic data raise several challenges that should be

considered when developing such a system. While these challenges remain misunderstood by non-

expert designers, the possible distinctions between context-awareness and self-adapting, between

context data and application data will remain irrelevant faced with these challenges.

The main question is not whether or not a given piece of information can be considered as context,

but how to support and manage it in a software application. As pointed out by [17], it is commonly

agreed that context is about evolving structured and shared information spaces, and that such spaces

are designed to serve a particular purpose. Whatever information is considered as context profoundly

depends on the application and on its purposes, and whatever this information could be, it is necessary

to support it appropriately. This support requires understanding the challenges that it implies and the

main characteristics of context information, such as its heterogeneity, its dynamicity and its

uncertainty. The main goal of the roadmap discussed in this paper is precisely to contribute to this

understanding.

The roadmap presented in this paper analyzed these different challenges of context management,

organized through six dimensions. Each dimension has considered a precise aspect of context

management and its quality concerns. Through this roadmap, we hope helping non-expert designers to

better understand the challenges of supporting context information in software application. Indeed, in

© 2018 ISTE OpenScience – Published by ISTE Ltd. London, UK – openscience.fr Page | 26

our opinion, the main challenge now may not only be dealing with the remaining unsolved issues in

this support, but perhaps it is about acquiring the necessary knowledge for developing new

applications. Non-expert software developers, when developing context-aware applications, are faced

with a very complex concept, the understanding and management of which is far from simple, as the

multiple dimensions of the roadmap and the literature review we presented demonstrate. With the

development of IoT and connected devices, and their integration into our everyday life, it is becoming

essential to form a new generation of software developers that are able to reason about context support

and its challenges, including quality concerns. More than just technical solutions (which are still

necessary), we also need to go further towards context engineering approaches, offering a global

approach to understand the context notion in software development. Raising questions and discussion

about context management and the impact of Quality of Context on it is, for us, an important step

towards a true context engineering approach.

Finally, we are strongly convinced that, as underlined by [17], context is key in the development of

new services that will impact social inclusion for the emerging information society. More than ever it

is important to encourage a better understanding of the notion of context and its support in young non-

expert software designers in order to incite the development of new services and applications using this

notion in a responsible way.

Acknowledgments

The authors would like to thank the students from the MIAGE Sorbonne master‟s degree program

for accepting to participate to our survey. We would like to thank Dr. Raul Mazzo, from Université

Paris 1 Panthéon Sorbonne, for his inestimable help with the GridStix scenario and testing the

roadmap, as well as Dr. Luiz Angelo Steffenel, from Université Reims Champagne-Ardenne, for his

also inestimable help on the CC-Sem project and on the setup of the students‟ experiment.

Bibliography

[1] BALDAULF M., DUSTDAR, S., ROSENBERG, F., « A survey on context-aware systems », Int. J. of Ad Hoc and

Ubiquitous Comp., vol. 2-4, 91-S46, p. 263-277, 2007.

[2] BAUER C., DEY A., “Considering context in the design of intelligent systems: Current practices and suggestions for

improvement”, J. of Systems and Software, vol. 112, p. 26-47, 2016, Elsevier.

[3] BAUER, J. S., NEWMAN, M. W., KIENTZ, J. A., “Thinking About Context: Design Practices for Information

Architecture with Context-Aware Systems”, iConference 2014 Proceedings, p. 398–411, 2014, doi:10.9776/14116.

[4] BELL G., DOURISH P., “Yesterday's tomorrows: notes on ubiquitous computing's dominant vision”, Personal and

Ubiquitous Computing, vol. 11, p. 133-143, 2007.

[5] BELLAVISTA, P., CORRADI, A., FANELLI, M., FOSCHINI, L., “A survey of context data distribution for mobile

ubiquitous systems”. ACM Comput. Surv., vol. 45, p. 1–49, 2013.

[6] BETTINI, C., BRDICZKA, O., HENRICKSEN, K., INDULSKA, J., NICKLAS, D., RANGANATHAN, A., RI-BONI, D., “A

survey of context modelling and reasoning techniques”, Pervasive and Mobile Computing, vol. 6 issue 2, p. 161-180,

2010.

[7] BRÉZILLON, J., BRÉZILLON, P., “Context Modeling: Context as a Dressing of a Focus”. In: Kokinov, B.; Richardson,

D.; Roth-Berghofer, T. & Vieu, L. (Eds.), Modeling and Using Context, Springer, LNCS 4635, p. 136-149, 2007.

[8] BRÉZILLON, P., “Context-Based Development of Experience Bases”. In: Brézillon, P.; Blackburn, P. & Dapoigny, R.

(Eds.), 8th Int. and Interdisciplinary Conf. on Modeling and Using Context (CONTEXT), p. 87-100, 2013.

[9] BREZILLON, P., “Expliciter le contexte dans les objets communicants”. In: Kintzig, C., Poulain, G., Privat, G.,

Favennec, P.-N. (Eds.), Objets Communicants, Hermes Science Publications, p. 293–303, 2002.

[10] BROWN, P.; BOVEY, J. & CHEN, X., “Context-aware applications: from the laboratory to the marketplace”, IEEE

Personal Communications, vol. 4 issue 5, p. 58-64, 1997.

© 2018 ISTE OpenScience – Published by ISTE Ltd. London, UK – openscience.fr Page | 27

[11] CHAARI, T., LAFOREST, F., CELENTANO, A., “Adaptation in context-aware pervasive information systems: the

SECAS project”, Journal of Pervasive Computing and Communications, vol. 3-4, 2007.

[12] CHAARI, T.; DEJENE, E.; LAFOREST, F.; SCUTURICI, V.-M. “Modeling and Using Context in Adapting Applications to

Pervasive Environments”. IEEE Int. Conf. on Pervasive Services (ICPS’06), p. 111-120, 2006.

[13] CHABRIDON, S.; CONAN, D.; ABID, Z.; TACONET, C. “Building ubiquitous QoC-aware applications through model-

driven software engineering”. Sci. Comput. Program., vol. 78, p. 1912–1929, 2013.

[14] CHALMERS, D.; DULAY, N.; SLOMAN, M. “Towards Reasoning About Context in the Presence of Uncertainty”. 1st

Int. workshop on advanced context modelling, reasoning and management. Nottingham, UK, 2004.

[15] CHEVEREST, K.; MITCHELL, K.; DAVIES, N. “The role of adaptive hypermedia in a context-aware tourist guide”.

Communication of ACM, vol. 45, p.47–51, 2002.

[16] COLMAN, A., HUSSEIN, M., HAN J., KAPURUGE, M., “Context Aware and Adaptive Systems”. In: Brézillon, P.,

Gonzalez, A. J. (Eds.), Context in Computing, Springer, p. 63-82, 2014.

[17] COUTAZ, J.; CROWLEY, J.; DOBSON, S., GARLAN, D., “Context is the key”, Communications of the ACM, vol. 48 n° 3,

p. 49-53, 2005.

[18] DA, K.; ROOSE, P.; DALMAU, M.; NEVADO, J.; KARCHOUD, R. “Kali2Much: a context middleware for autonomic

adaptation-driven platform”. Proceedings of the 1st Workshop on Middleware for Context-Aware Applications in the

IoT (M4IoT@Middleware 2014), p. 25–30, 2014.

[19] DEVLIC, A., & KLINTSKOG, E., “Context retrieval and distribution in a mobile distributed environment”. In

Proceedings of the Third Workshop on Context Awareness for Proactive Systems (CAPS 2007). Guildford, UK. 2007.

[20] DEVLIC, A.; REICHLE, R.; WAGNER, M.; KIRSCH PINHEIRO, M.; VANROMPAY, Y.; BERBERS, Y., VALLA, M.,

“Context inference of users' social relationships and distributed policy management”, IEEE Int. Conf. on Pervasive

Computing and Communications (PerCom 2009), p. 1-8, 2009.

[21] DEY, A., « Understanding and using context », Personal and Ubiquitous Computing, vol. 5 issue 1, p. 4-7, 2001.

[22] FLOCH, J., FRÀ, C., FRICKE, R., GEIHS, K., WAGNER, M., LORENZO, J., SOLADANA, E., MEHLHASE, S., PASPALLIS, N.,

RAHNAMA, H., RUIZ, P.A., SCHOLZ, U., “Playing MUSIC: building context-aware and self-adaptive mobile

applications”. Softw.: Pract. Exp., vol. 43, p.359-388, 2013.

[23] GARCÍA, K.; KIRSCH-PINHEIRO, M.; MENDOZA, S.; DECOUCHANT, D. Ontology-Based Resource Discovery in

Pervasive Collaborative Environments. In: Antunes, P., Gerosa, M.A., Sylvester, A., Vassileva, J., and de Vreede,

G.-J. (eds.), 19th Int. Conf. on Collaboration and Technology (CRIWG 2013), LNCS 8224. Springer, p. 233–240,

2013.

[24] GEIHS, K., REICHLE, R., WAGNER, M., KHAN, M.U., “Modeling of Context-Aware Self-Adaptive Applications in

Ubiquitous and Service-Oriented Environments”, In: B.H.C. Cheng, R. de Lemos, H. Giese, P. Inverardi, J. Magee

(Eds.), Software Engineering for Self-Adaptive Systems, Lecture Notes in Computer Science, 5525, p. 146-163, 2009.

[25] GREENBERG, S. “Context as a Dynamic Construct”. Human-Computer Interact., vol. 16 issue 2, p. 257–268, 2001.

[26] HAGRAS H., “Intelligent pervasive adaptation in shared spaces”, In A. Ferscha (Ed.), Pervasive Adaptation: Next

generation pervasive computing research agenda, p. 16-17, 2011.

[27] HOYOS J.R., PREUVENEERS D., GARCÍA-MOLINA J.J., “Quality Parameters as Modeling Language Abstractions for

Context-Aware Applications: An AAL Case Study”, In: Brézillon P., Turner R., Penco C. (eds), Modeling and Using

Context. CONTEXT 2017. Lecture Notes in Computer Science, vol. 10257, p. 569-581, 2017.

[28] HUGHES, D.; GREENWOOD, P.; BLAIR, G.; COULSON, G.; GRACE, P.; PAPPENBERGER, F.; SMITH, P. & BEVEN, K., “An

Experiment with Reflective Middleware to Support Grid-based Flood Monitoring”, Concurr. Comput.: Pract. Exper.,

John Wiley and Sons Ltd., vol. 20 issue 11, p. 1303-1316, 2008.

[29] JAFFAL, A., LE GRAND, B., KIRSCH PINHEIRO, M., “Refinement Strategies for Correlating Context and User Behavior

in Pervasive Information Systems”, Int. Workshop on Big Data and Data Mining Challenges on IoT and Pervasive

Systems (BigD2M 2015), 6th Int. Conf. on Ambient Systems, Networks and Technologies (ANT-2015), Procedia

Computer Science, vol. 52, p.1040-1046, 2015.

[30] KHAN, M.U., “Unanticipated Dynamic Adaptation of Mobile Applications”, PhD thesis (Doktor der

Ingenieurwissenschaften), University of Kassel, German, 31 March 2010.

© 2018 ISTE OpenScience – Published by ISTE Ltd. London, UK – openscience.fr Page | 28

[31] KIRSCH-PINHEIRO, M., MAZO, R., SOUVEYET, C., SPROVIERI, D., “Requirements Analysis for Context-oriented

Systems”, 7th Int. Conf.on Ambient Systems, Networks and Technologies (ANT 2016), Procedia Computer Science,

vol. 83, p. 253-261, 2016.

[32] KIRSCH-PINHEIRO, M., SOUVEYET, C., “Quality on Context Engineering”. In: Brézillon P., Turner R., Penco C.

(Eds.) Modeling and Using Context. CONTEXT 2017. Lecture Notes in Computer Science, vol 10257, p. 432-439,

2017.

[33] KIRSCH­PINHEIRO, M., GENSEL, J., MARTIN, H. “Representing Context for an Adaptative Awareness Mechanism”,

In: de Vreede G.­J.; Guerrero L.A.; Raventos G.M. (Eds.), X Int. Workshop on Groupware (CRIWG 2004), LNCS

3198. Springer­Verlag, p. 339-34, 2004.

[34] KIRSCH­PINHEIRO, M., RYCHKOVA, I., “Dynamic Context Modeling for Agile Case Management”, In: Y.T. Demey

and H. Panetto (Eds.), OTM 2013 Workshops, LNCS 8186. Springer­Verlag, p. 144–154, 2013.

[35] KORNYSHOVA, E.; DENECKÈRE, R.; CLAUDEPIERRE, B. “Towards Method Component Contextualization”. IJISMD,

2, p. 49–81, 2011.

[36] LEMLOUMA, T., LAYAÏDA, N., "Context-Aware Adaptation for Mobile Devices". 5th IEEE International Conference

on Mobile Data Management (MDM 2004), p. 106-111, 2004.

[37] MARIE, P. DESPRATS, T., CHABRIDON, S., SIBILLA, M., “The QoCIM Framework: Concepts and Tools for Quality of

Context Management”. In: Brézillon, P. & Gonzalez, A. J. (Eds.), Context in Computing: A Cross-Disciplinary

Approach for Modeling the Real World, Springer New York, p.155-172, 2014.

[38] MAYRHOFER, R., HARALD, R., & ALOIS, F., “Recognizing and predicting context by learning from user behavior”. In.

W. Schreiner, G. Kotsis, A. Ferscha, & K. Ibrahim (Ed.), Int. Conf. on Advances in Mobile Multimedia

(MoMM2003), p. 25–35, 2003.

[39] MENDONÇA, S., PINA E CUNHA, M., KAIVO-OJA, J., RUFF, F., “Wild Cards, Weak Signals and Organizational

Improvisation”. FEUNL Working Paper No. 432, 2003. Available at SSRN: https://ssrn.com/abstract=882123

[40] MIORANDI, D.; SICARI, S.; PELLEGRINI, F. D. & CHLAMTAC, I., “Internet of things: Vision, applications and research

challenges”, Ad Hoc Networks, vol. 10 issue 7, p. 1497-1516, 2012.

[41] MORAN, T., DOURISH, P., “Introduction to this special issue on context-aware computing”, Human-Computer

Interaction, vol. 16 issue 2-3, p. 87-95, 2001.

[42] NAJAR, S., SAIDANI, O., KIRSCH-PINHEIRO, M., SOUVEYET, C., NURCAN, S. “Semantic representation of context

models: a framework for analyzing and understanding” In: J. M. Gomez-Perez, P. Haase, M. Tilly, and P. Warren

(Eds), Proceedings of the 1st Workshop on Context, information and ontologies (CIAO 09), European Semantic Web

Conference (ESWC'2009), p. 1-10, 2009.

[43] NAVIMIPOUR, N.J., RAHMANI, A.M., NAVIN, A.H., HOSSEINZADEH, M. “Resource discovery mechanisms in grid

systems: A survey”. J. Netw. Comput. Appl., vol. 41, p. 389–410, 2014.

[44] PARIDEL, K., YASAR, A., VANROMPAY, Y., PREUVENEERS, D., & BERBERS, Y., “Teamwork on the road: Efficient

collaboration in VANETs with context-based grouping”. Proceedings of The Int. Conf. on Ambient Systems,

Networks and Technologies (ANT-2011), Procedia Computer Science, vol. 5, p. 48-57, Elsevier, 2011.

[45] PASPALLIS, N., ROUVOY, R., BARONE, P., PAPADOPOULOS, G.A., ELIASSEN, F., MAMELLI, A. A Pluggable and

Reconfigurable Architecture for a Context-Aware Enabling Middleware System. In: Meersman, R. and Tari, Z. (eds.)

On the Move to Meaningful Internet Systems: Confederated International Conferences, CoopIS, DOA, GADA, IS,

and ODBASE 2008, LNCS 5331. Springer, p. 553–570, 2008

[46] PERERA, C., ZASLAVSKY, A.B., CHRISTEN, P., GEORGAKOPOULOS, D., “Context Aware Computing for The Internet

of Things: A Survey”. IEEE Communications Surveys & Tutorials, vol. 16 issue 1, p. 414-454, 2014.

[47] PLOESSER, K., RECKER, J., ROSEMANN, M., “Supporting Context-Aware Process Design: Learnings from a Design

Science Study”, In: zur Muehlen, M. & Su, J. (Eds.), Business Process Management Workshops, BPM 2010. Lecture

Notes in Business Information Processing, vol 66. Springer, Berlin, Heidelberg, p. 97-104, 2010.

[48] PREUVENEERS, D., NAQVI, N.Z., RAMAKRISHNAN, A., BERBERS,Y., JOOSEN, W., “Adaptive Dissemination for

Mobile Electronic Health Record Applications with Proactive Situational Awareness”. 49th Hawaii Int. Conf. on

System Sciences (HICSS 2016), p. 3229-3238, 2016.

[49] PREUVENEERS, D.; BERBERS, Y. “Context-driven migration and diffusion of pervasive services on the OSGi

framework”. Int. J. Auton. Adapt. Commun. Syst., vol. 3, p. 3–22, 2010.

© 2018 ISTE OpenScience – Published by ISTE Ltd. London, UK – openscience.fr Page | 29

[50] PUGLISI, S., MOREIRA, Á. T., TORREGROSA, G. M., IGARTUA, MÓ. A., FORNÉ, J., " MobilitApp: Analysing Mobility

Data of Citizens in the Metropolitan Area of Barcelona”, In: Mandler, B.; Marquez-Barja, J.; Mitre Campista, M. E.;

Cagáňová, D.; Chaouchi, H.; Zeadally, S.; Badra, M.; Giordano, S.; Fazio, M.; Somov, A. & Vieriu, R.-L. (Eds.),

Internet of Things: IoT Infrastructures, 2nd Int. Summit, IoT 360° 2015, Part I, Springer, p.245-250, 2016.

[51] RAMAKRISHNAN, A.K., “Support for Data-driven Context Awareness in Smart Mobile and IoT Applications:

Resource Efficient Probabilistic Models and a Quality-aware Middleware Architecture” (Ondersteuning voor data-

gedreven context-bewustzijn in intelligente mobiele en IoT applicaties: Hulpbronnenefficiënte probabilistische

modellen en een kwaliteit-aware middleware architectuur), PhD thesis, Katholieke Universiteit Leuven, Belgium

2016.

[52] ROMERO, D., ROUVOY, R., SEINTURIER, L., CARTON, P., “Service Discovery in Ubiquitous Feedback Control

Loops”. In: Eliassen, F., Kapitza, R. (Eds.), 10th IFIP WG 6.1 Int. Conf. on Distributed Applications and

Interoperable Systems (DAIS) / Int. Federated Conf. on Distributed Computing Techniques (DisCoTec), Lecture

Notes in Computer Science, vol. 6115, p.112-125, Springer, 2010.

[53] ROTTENBERG, S., LERICHE, S., TACONET, C., LECOCQ, C., DESPRATS, T., "MuSCa: A multiscale characterization

framework for complex distributed systems", 2014 Federated Conference on Computer Science and Information

Systems, Warsaw, p. 1657-1665, 2014.

[54] SAIDANI, O., ROLLAND, C., NURCAN, S., “Towards a Generic Context Model for BPM”. 48th Annual Hawaii

International Conference on System Sciences (HICSS’2015), Jan 2015.

[55] SAWYER, P., MAZO, R., DIAZ, D., SALINESI, C., HUGHES, D., “Using Constraint Programming to Manage

Configurations in Self-Adaptive Systems”. Computer, vol. 45 issue 10, p. 56-63, 2012.

[56] SCHILIT, B.N., THEIMER, M.M. “Disseminating Active Map Information to Mobile Hosts”, Network, vol. 8, IEEE, p.

22-32, 1994

[57] SIGG, S., HASELOFF, S., DAVID, K., “An alignment approach for context prediction tasks in ubicomp environments”.

IEEE Pervasive Computing, vol. 9, issue 4, p. 90–97, 2010.

[58] VANROMPAY, Y., KIRSCH-PINHEIRO, M., BERBERS, Y., “Service Selection with Uncertain Context Information”.

Reiff-Marganiec, S. & Tilly, M. (Eds.), Handbook of Research on Service-Oriented Systems and Non-Functional

Properties: Future Directions, p. 192-215, 2011.

[59] VANROMPAY, Y., KIRSCH PINHEIRO, M., BEN MUSTAPHA, N., AUFAURE, M.-A., “Context-Based Grouping and

Recommendation in MANETs”, In: Kolomvatsos, K.; Anagnostopoulos, C. & Hadjiefthymiades, S. (Eds.),

Intelligent Technologies and Techniques for Pervasive Computing, Chapter 8, IGI Global, p. 157-178, 2013.

[60] VANROMPAY, Y., “Efficient Prediction of Future Context for Proactive Smart Systems”, PhD thesis, Katholieke

Universiteit Leuven, Belgium, 2011.

[61] VILLALBA, L., PREZ, J.L., CARRERA, D., PEDRINACI, C., PANZIERA, L., “Servioticy and iserve: A scalable platform

for mining the IoT”. 6th Int. Conf. on Ambient Systems, Networks and Technologies (ANT-2015), Procedia Computer

Science, vol. 52, p.1022-1027, 2015.

[62] WAGNER, M., REICHLE, R., KHAN, M.U., GEIHS, K., LORENZO, J., VALLA, M., FRÀ, C., PASPALLIS, N.,

PAPADOPOULOS, G.A., “A Comprehensive Context Modeling Framework for Pervasive Computing Systems”, 8th

IFIP WG 6.1 International Conference on Distributed Applications and Interoperable Systems (DAIS 2008), Lecture

Notes on Computer Science, 5053, p. 281-295, 2008.

[63] WEISER M., “The computer for the 21st century”, Scientific American, vol. 265 issue 3, p. 66-75, 1991.

[64] ZAPPATORE, M., LONGO, A., BOCHICCHIO, M. A., ZAPPATORE, D., MORRONE, A. A., DE MITRI, G., “Towards Urban

Mobile Sensing as a Service: An Experience from Southern Italy”, In: Mandler, B.; Marquez-Barja, J.; Mitre

Campista, M. E.; Cagáňová, D.; Chaouchi, H.; Zeadally, S.; Badra, M.; Giordano, S.; Fazio, M.; Somov, A. & Vieriu,

R.-L. (Eds.), Internet of Things: IoT Infrastructures, 2nd Int. Summit, IoT 360° 2015, Part I, Springer, p. 377-387,

2016.

