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FINITELY DETERMINED FUNCTIONS AND CONVEX

OPTIMIZATION.

M. BACHIR, A. FABRE AND S. TAPIA-GARCÍA

Abstract. We study the notion of finitely determined functions defined
on a topological vector space E equipped with a biorthogonal system.
This notion will be used to obtain a necessary and sufficient condition for
a convex function to attain a minimum at some point. An application to
the Karush-Kuhn-Tucker theorem will be given. For real-valued convex
functions defined on a Banach space with a Schauder basis, the notion
of finitely determined function coincides with the classical continuity
but outside the convex case there are many finitely determined nowhere
continuous functions.
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1. Introduction

Let E be a topological vector space over the field R and E∗ its topological
dual. Let (en) be a linearly independent family of elements of E and (e∗n) be a
family of elements of E∗. The pair (en, e

∗
n) is said to be a biorthogonal system

if 〈e∗n, en〉 = 1 for all n ∈ N and 〈e∗n, ek〉 = 0 if n 6= k. Furthermore, (en, e
∗
n)

Date: 02/03/2019.

1



2 M. BACHIR, A. FABRE AND S. TAPIA-GARCÍA

it is called fundamental if E = span(en : n ∈ N). The linear mappings
Pk : E −→ E are defined for all k ∈ N as follows

x
Pk−→ Pk(x) =

k
∑

n=0

〈e∗n, x〉en.

A well known result asserts that each Banach space E contains a biorthogonal
system (en, e

∗
n)n. Moreover, whenever E is separable there exists a fundamen-

tal biorthogonal system, see [7].

Throughout the manuscript, we assume that the topological vector space
E is equipped with a biorthogonal system (en, e

∗
n). For further information

about biorthogonal systems, we refer to [1], [9], [10], [5] and [13].

Definition 1. We say that f : E → R is finitely determined by the biorthog-
onal system (en, e

∗
n) with respect to a ∈ E if we have:

f(x) = lim
n→+∞

f(a+ Pn(x − a)), ∀ x ∈ E,

If the above equality is satisfied with respect to all a ∈ E, then we say that
f is finitely determined by the biorthogonal system (en, e

∗
n). We say that f

is inf-finitely determined by the biorthogonal system (en, e
∗
n) with respect to

a ∈ E if we have:

f(x) ≥ inf
n∈N

f(a+ Pn(x− a)), ∀ x ∈ E,

If the above inequality is satisfied with respect to all a ∈ E, then we say that
f is inf-finitely determined.

When there is no confusion with the related biorthogonal system, we will
simply say that f is finitely determined (resp. inf-finitely determined) at a or
with respect to a.

Clearly, every finitely determined function is inf-finitely determined. The
aim of this paper is to study the notions of finitely determined and inf-finitely
determined function and their applications to optimization. The motivation
behind the study of these notions, lies in the following simple observations:

(1) If f is inf-finitely determined (not necessarily convex), then f has a
global minimum at x̄ = 0 (we take x̄ = 0 for simplicity) if and only if the
restriction f|Pk(E) has a global minimum at 0 for each k ∈ N, where Pk(E)
denotes the image of E under the linear mapping Pk. Since Pk(E) is of finite
dimension for each k ∈ N, the terminology of finitely determined function is
motivated.

(2) Let E = l∞(N) the Banach space of bounded sequences. We consider
the biorthogonal system given by the canonical basis (en) of c0(N), seen as
a subspace of E, and the coordinate functionals (e∗n). Let p : l∞(N) → R
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defined by p(x) = lim supn |xn|. We know from [14, Example 1.21] that p is
nowhere Gâteaux-differentiable. On the other hand, clearly, p is convex and
inf-finitely determined with respect to each point a of c0(N) (p is also a norm
continuous seminorm). Moreover, the directional derivative with respect to
the canonical basis (en) of l∞(N), exists and is equal to 0 at each point of
l∞(N) (see Example 1), that is, for all x ∈ l∞(N) and all n ∈ N,

p′(x; en) := lim
t→0

t6=0

1

t

(

p(x+ ten)− p(a)
)

= 0 (⋆)

We then notice trivially, that p has a minimum at a point a iff a ∈ c0(N).
Also, p is inf-finitely determined with respect a iff a ∈ c0(N). The question
in this paper is: is it true that every convex function f : l∞(N) → R which
is inf-finitely determined with respect to some point x0 ∈ l∞(N) and satisfies
the equation (⋆) at x0 (weaker than Gâteaux-differentiability), has necessarily
a minimum at this point? We answer this question positively, even in a more
general framework (Theorem 3). Thus, for inf-finitely determined function
with respect to x, the criterion (⋆) is sufficient to characterize a minimum at
x, and the stronger assumption of Gâteaux-differentiability can be relaxed.

We say that (en) is a topological basis (or Schauder basis) of E if for
each x ∈ E, there exists a unique sequence (an) of real number such that

x =
∑+∞

n=0 anen = limn

∑n

i=1 aiei, where the convergence is understood with
respect to the topology of E. In this case we have an = 〈e∗n, x〉 for all
n ∈ N. If E is a topological vector space with a topological basis (en), we have
a+ Pn(x − a) −→ x, for all a, x ∈ E. In this case, every continuous function
is finitely determined by (en, e

∗
n) and we prove in Corollary 4 , that the exis-

tence of partial derivatives (in the directions (en), when it is a Schauder basis)
coincides with Gateaux-differentiability for convex continuous functions.

The space (FDb(E), ‖.‖∞) (resp. (Cb(E), ‖.‖∞)) denotes the set of all
real-valued bounded finitely determined functions on E with respect to a
given biorthogonal system (en, e

∗
n) (resp. of all real-valued bounded contin-

uous functions on E) equipped with the sup-norm. It is easy to see that
(FDb(E), ‖.‖∞) is a Banach algebra.

This paper is organized as follows. In Section 2, we prove that if E is a
Banach space and (en)n is a Schauder basis, the property of finite determina-
tion coincides with continuity for real-valued convex functions. Nonetheless,
outside the convex case there are a many finitely determined nowhere con-
tinuous functions, in particular we prove that FDb(E) \ Cb(E) is an open
dense subset of FDb(E) (Theorem 1 and Theorem 2). On the other hand,
if E is a separable Banach space without Schauder basis and (en, e

∗
n) is a
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fundamental biorthogonal system of E, then the norm of E is not finitely
determined by the biorthogonal system (en, e

∗
n) (Corollary 1). A character-

ization of Schauder basis in term of the equivalence between continuity and
the notion of finitely determined for convex functions is given in Corollary 2.
In Section 3, using the notion of inf-finitely determined functions, we give a
necessary and sufficient condition for a convex function to have a minimum
at some point (Theorem 3). In Section 4, we use this result to generalize the
Karush-Kuhn-Tucker theorem. Finally, in Section 5, we give some examples.

Notation: Throughout this paper, E denotes a topological vector (or
Banach) space, (xn) ⊂ E denotes a sequence in E and whenever E is a normed
space, BE(x, ρ) denotes the open ball centered at x of radius ρ. E∗ denotes
the dual space of E and 〈·, ·〉 the duality product. For a convex function f ,
∂f(x) denotes the convex subdifferential of f at the point x.

2. Finitely determined functions

In this section, we study some properties of inf-finitely determined and
finitely determined functions in Banach spaces equipped or not with a Schauder
basis.

2.1. Banach space with a Schauder basis. Recall that a Banach space
(E, ‖.‖) with a Schauder basis is necessarily separable. In our proofs, we wille
use the following well known result.

Lemma 1. [1, Proposition 1.1.9] A sequence (en) of nonzero vectors of a
Banach space E is a Schauder basis in span(en : n ∈ N) if and only if there
is a positive constant K such that

∥

∥

∥

∥

∥

m
∑

k=1

akek

∥

∥

∥

∥

∥

≤ K

∥

∥

∥

∥

∥

n
∑

k=1

akek

∥

∥

∥

∥

∥

for every sequence of scalars (ak) and all integers m, n such that m ≤ n.

Remark 1. In the context of the paper, Lemma 1 can be reformulated as
follows: A sequence (en) ⊂ E is a Schauder basis if and only if the linear
operators (Pn) are uniformly bounded, i.e. there exists some K > 0 such that
‖Pn‖ < K for all n ∈ N.

The following is the main theorem of this subsection:

Theorem 1. Let E be a Banach space equipped with a fundamental biorthog-
onal system (en, e

∗
n) such that (en) is a Schauder basis. Then, for every

real-valued convex function, the notions of finitely determined by (en, e
∗
n) and

classical continuity coincides.
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Before proceeding with the proof of Theorem 1, we recall simple facts
about convex functions: every convex function f : Y → R defined on a
finite dimensional Banach space Y is continuous and every convex function
F : E → R defined on a Banach space E is continuous if and only if it is
locally bounded from above at each point x ∈ E. Moreover, the last property
is equivalent to be locally bounded from above at just one point x ∈ E. Also,
we need the following lemma (see [4, Theorem 5.43, p. 188]).

Lemma 2. Let f : E → R be a convex function and Y, Z be two closed
subspace of E such that E = Y + Z and Y ∩ Z = 0. Let x0 = y0 + z0 ∈ E,
where y0 ∈ Y and z0 ∈ Z fixed. Let g : Y → R, h : Z → R be the convex
functions defined by g(y) = f(y + z0) and h(z) = f(y0 + z). Then f is
continuous if and only if both g and h are continuous.

Proof. The necessity is straightforward. To prove the sufficiency, we show
that f is locally bounded. Let x = y + z ∈ E where y ∈ Y and z ∈ Z. Let
ǫ > 0, u ∈ BY (y, ǫ) and v ∈ BZ(z, ǫ), then:

f(u+ v) = f
(

u−
y0
2

+
z0
2

+ v −
z0
2

+
y0
2

)

≤
1

2
f(2u− y0 + z0) +

1

2
f(2v − z0 + y0)

=
1

2
g(2u− y0) +

1

2
h(2v − z0).

Since g and h are continuous, then f is locally bounded. �

We also highlight the definition of a finitely determined function f with
respect to the point a = 0, i.e. if f is finitely determined at 0, it holds:

f(x) = lim
n

f(Pn(x)) for all x ∈ E.(1)

Proof of Theorem 1. Let f : E → R be a continuous function. Since (en)n is
a Schauder basis of E, f is finitely determined. Indeed, for every a ∈ E and
x ∈ E, the sequence (a+Pn(x−a))n converges to x. On the other hand, let us
assume by contradiction that there exists a finitely determined convex function
f : E → R which is discontinuous. The idea of the proof is to find a point x ∈
E (by induction) such that f(x) must take the value +∞. Since f is convex
and its domain is E, it must not be locally bounded from above at any point,
in particular at 0. Let x1 ∈ E such that ‖x1‖ < 1 and f(x1) > 1. By equation
(1), we get N1 ∈ N such that f(PN1

(x)) > 1. Let us call x1 = PN1
(x1). In

order to use Lemma 2, consider the subspaces Y1 := span(en : n ≤ N1) and
Z1 := span(en : n > N1) and the point x1 = x1 + 0. Since f is discontinuous
and Y1 is a finite dimensional space, then the function g1 : Z1 → R defined by
g1(z) := f(x1+z) is also discontinuous and satisfies equation (1). Inductively,
suppose that we have constructed the vectors {xi}ki=1 and the familly {N i}ki=1,
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where xi ∈ span(en : n ∈ {Ni−1 + 1, ..., Ni}), N0 = −1, gi−1(xi) > i and
‖xi‖ ≤ ‖PNi

‖/2i−1. Let us define Zk = span(en : n > Nk). By Lemma

2, the convex function gk : Zk → R defined by gk(z) = f(
∑k

i=1 xi + z) is
discontinuous and equation (1) is still valid for it. Since gk is not locally
bounded from above at 0, there exists xk+1 ∈ Zk such that ‖xk+1‖ ≤ 1/2k

and gk(xk+1) > k + 1. But using equation (1), we get an integer Nk+1 > Nk

such that the vector xk+1 = PNk+1
(xk+1) also satisfies gk(xk+1) > k + 1.

Having constructed a sequence (xn) ⊂ E using the previous induction, we
can check that the function f at the point:

x =

∞
∑

i=1

xi,

must take the value +∞. In fact, to show that the point x is well defined,
we just use Lemma 1 to recall that the norm of the projections (Pn)n are
uniformly bounded and compute:

∞
∑

k=1

‖xk‖ =
∞
∑

k=1

‖PNk
(xk)‖ ≤

∞
∑

k=1

supk{‖Pk‖}

2k
< ∞.

Finally, using equation (1) we deduce that:

f(x̄) = lim
k

f(Pk(x̄)) = lim
k

f(PNk
(x̄)) = lim

k
gk(xk+1) = ∞,

which leads to a contradiction. Hence, we proved that, for real-valued convex
functions, the notions of finitely determined and classical continuity coincide.

�

In the following theorem, we prove that outside the convex case there are
lots of finitely determined nowhere continuous functions.

Theorem 2. Under the hypothesis of Theorem 1, there exists a Gδ dense
subset G of E such that for every f ∈ Cb(E) and every ε > 0, there exists

f̃ε ∈ FDb(E) nowhere continuous on E \ f−1(0) such that ‖f̃ε − f‖∞ < ε

and f̃ε = f on f−1(0) ∪ G. In particular, Cb(E) is a closed subspace of
(FDb(E), ‖.‖∞) with empty interior.

Proof. Let us define the following function:

σ(t) =

{

1 if t ∈ Q

0 if t ∈ R \Q

Let ε > 0 and f ∈ Cb(E) \ {0}. Let us set

f̃ε(x) =

(

1−
εσ(〈e∗0, x〉)

‖f‖∞

)

f(x) for all x ∈ E.
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Then, we have that for all x ∈ E

|f̃ε(x) − f(x)| =
εσ(〈e∗0, x〉)

‖f‖∞
|f(x)|

≤ ε.

It follows that ‖f̃ε − f‖∞ ≤ ε and f̃ε = f on f−1(0) ∪ (e∗0)
−1(R \ Q). Let us

set Q = ∪n∈N{qn}, we have

G := (e∗0)
−1(R \Q) = ∩n∈N(e

∗
0)

−1(R \ {qn}).

For each n ∈ N, the set (e∗0)
−1(R \ {qn}) is an open dense subset of E (in

fact the complement of an affine subspace). Thus G is a Gδ dense subset of

E and f̃ε = f on f−1(0) ∪ G. To see that f̃ε ∈ FDb(E), it suffices to show
that the function σ̃ : x 7→ σ(〈e∗0, x〉) belongs to FDb(E), since FDb(E) is
a Banach algebra and Cb(E) ⊂ FDb(E). Indeed, for all a, x ∈ E, we have

σ̃(a + Pk(x − a)) = σ̃(x). Thus, σ̃ ∈ FDb(E) and so we have f̃ε ∈ FDb(E).

Now, we prove that f̃ε is nowhere continuous on E \f−1(0). Indeed, let x ∈ E
and a ∈ E \ f−1(0),

|f̃ε(x)− f̃ε(a)| = |(1 −
εσ(〈e∗0, x〉)

‖f‖∞
)(f(x) − f(a)) +

ε(σ(〈e∗0, a〉)− σ(〈e∗0, x〉))

‖f‖∞
f(a)|

≥ |
ε(σ(〈e∗0, a〉)− σ(〈e∗0, x〉))

‖f‖∞
f(a)| −(2)

|1−
εσ(〈e∗0, x〉)

‖f‖∞
||f(x)− f(a)|

Case 1: if 〈e∗0, a〉 ∈ R \Q, we choose rational numbers rk(a) ∈ Q such that
|rk(a)−〈e∗0, a〉| ≤ 2−k for all k ∈ N, and we set xk = a+(rk(a)−〈e∗0, a〉)e0 for
all k ∈ N. Then, ‖xk−a‖ ≤ 2−k for all k ∈ N and |σ(〈e∗0, a〉)−σ(〈e∗0, xk〉)| = 1.
It follows from (2) that

|f̃ε(xk)− f̃ε(a)| ≥
ε|f(a)|

‖f‖∞
− |1−

εσ(〈e∗0, xk〉)

‖f‖∞
||f(xk)− f(a)|.

Since f is continuous, sending k to +∞, we have that

lim inf
k

|f̃ε(xk)− f̃ε(a)| ≥
ε|f(a)|

‖f‖∞
> 0,

which implies that f̃ε is not continuous at a.

Case 2: in a similar way, if 〈e∗0, a〉 ∈ Q, we choose irrational numbers
rk(a) ∈ R \ Q such that |rk(a) − 〈e∗0, a〉| ≤ 2−k for all k ∈ N, and we put
xk = a+ (rk(a)− 〈e∗0, a〉)e0 for all k ∈ N. Then, ‖xk − a‖ ≤ 2−k for all k ∈ N



8 M. BACHIR, A. FABRE AND S. TAPIA-GARCÍA

and |σ(〈e∗0, a〉) − σ(〈e∗0, xk〉)| = 1. Then, using (2) and sending k to +∞, we
have that

lim inf
k

|f̃ε(xk)− f̃ε(a)| ≥
ε|f(a)|

‖f‖∞
> 0,

which implies also that f̃ε is not continuous at a.

Finally, we proved that for every f ∈ Cb(E) \ {0} and every ε > 0, there

exists f̃ε ∈ FDb(E) nowhere continuous on E\f−1{0} such that ‖f̃ε−f‖∞ ≤ ε

and f̃ε = f on f−1{0} ∪G (the case of f = 0 is also clear). Since Cb(E) is a
closed subset of FDb(E), it is now clear that FDb(E) \Cb(E) is an open and
dense subset of FDb(E). This concludes the proof.

�

2.2. Topological vector space without Schauder basis. In the follow-
ing proposition, it is shown that a convex norm-continuous function is not
necessarily finitely determined by a biorthogonal system if the sequence is
not a Schauder basis. Note that, finding a separable Banach space without a
Schauder basis is non-trivial result due to P. Enflo [8].

Proposition 1. Let E be a separable Banach space without Schauder ba-
sis. Then for every fundamental biorthogonal system (en, e

∗
n) there exists a

continuous linear form y∗ ∈ E∗ which is not finitely determined by (en, e
∗
n).

Proof. First, since the function φn : E∗ → R defined by φn(x
∗) := ‖x∗◦Pn‖ is

convex continuous for each n ∈ N, the function Φ : E∗ → R∪{+∞} defined by
Φ(x∗) := supn φn is convex and lower semi continuous (lsc from now on). We
prove that there exists x∗ ∈ E∗ such that Φ(x∗) = +∞. Indeed, by Lemma
1 we already know that supn ‖Pn‖ = +∞, with which we can compute the
following estimation:

+∞ = sup
n

‖Pn‖ = sup
n

sup
‖x‖=1

‖Pnx‖ = sup
n

sup
‖x‖=1

sup
‖x∗‖=1

|〈x∗, Pnx〉|

= sup
n

sup
‖x∗‖=1

sup
‖x‖=1

|〈x∗ ◦ Pn, x〉| ≤ sup
n

sup
‖x∗‖=1

‖x∗ ◦ Pn‖ = sup
‖x∗‖=1

Φ(x∗),

thus, we can deduce that the function Φ is not locally bounded at 0, then
it is not continuous. Since Φ is lsc, there exists some x∗ ∈ E∗ such that
Φ(x∗) = +∞. Hence, x∗ is not finitely determined by (en, e

∗
n), otherwise,

from equation (1) and Banach-Steinhaus Theorem we have that Φ(x∗) ∈ R,
which is a contradiction. �

Remark 2. Since Φ is a convex lsc function, in the proof of Proposition 1 we
have proven that its domain has empty interior.

By f∗ we denote the Fenchel conjugate of a function f : for all x∗ ∈ E∗

f∗(x∗) := sup
x∈E

{〈x∗, x〉 − f(x)}.
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Corollary 1. Let E be a separable Banach space without Schauder basis and
let (en, e

∗
n)n be a fundamental biorthogonal system of E. Then, there is no

finitely determined (by (en, e
∗
n)) convex continuous function f : E → R such

that int(dom(f∗)) 6= ∅. In particular, the norm ‖ · ‖ of E is never finitely
determined.

Proof. Let f : E → R be a convex function such that the domain of its
Fenchel conjugate f∗ has nonempty interior. Let x∗ ∈ int(dom(f∗)). Since
f∗ is convex and lsc, it is bounded from above at x∗. Then there exists some
ρ > 0 and M > 0 such that f∗(y∗) ≤ M for all y∗ ∈ BE∗(x∗, ρ). By definition
of f∗, we have:

〈y∗, x〉 ≤ f∗(y∗) + f(x) ≤ M + f(x), ∀x ∈ E, ∀y∗ ∈ BE∗(x∗, ρ).(3)

Let Φ : E∗ → R∪{+∞} be the function defined in the proof of Proposition
1. We know that its domain has empty interior, thus there exists a y∗ ∈
BE∗(x∗, ρ) such that Φ(y∗) = +∞. By Banach-Steinhaus Theorem, there
exists x ∈ X such that the sequence (y∗ ◦ Pn(x)) is not bounded from above.
Hence, by equation (3) we have that equation (1) is not satisfied at the point
x. Finally, since the Fenchel conjugate of the norm is the function f : E∗ →
R∪ {∞} such that f(y∗) = 0 if ‖y∗‖ ≤ 1 and +∞ otherwise, we conclude the
theorem. �

The notion of finitely determined function, applied to convex functions,
characterizes the Banach spaces with a Schauder basis.

Corollary 2. Let E be a separable Banach space and let (en, e
∗
n)n be a funda-

mental biorthogonal system of E. Then, (en) is a Schauder basis if and only
if the notions of finitely determined by (en, e

∗
n) and norm continuity coincide

for real-valued convex functions.

Proof. The proof is a consequence of Theorem 1 and Corollary 1. �

We give below a useful example of inf-finitely determined (with respect
to some points) convex function having directional derivative but which is
nowhere Gâteaux-differentiable. We need the following definition.

Definition 2. (Directional-differentiability) Let E be a Banach space and let
(en, e

∗
n)n be a biorthogonal system of E. We say that f is differentiable at a

in the directions (en) if the following limit exists for all n ∈ N

f ′(a; en) := lim
t→0

t6=0

1

t

(

f(a+ ten)− f(a)
)

.

Example 1. Let E = l∞(N) the Banach space of bounded sequences. We
denote en := (δnj ) the elements of l∞(N) where δnj is the Kronecker symbol
satisfying δnj = 1 if j = n and 0 if j 6= n. Let (en, e

∗
n) be the natural
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biorthogonal system of l∞(N). Let p : l∞(N) −→ R be the function defined
for all x = (xn) ∈ l∞(N) by

p(x) = lim sup |xn|.

Then,
(1) p is a continuous seminorm (p(x) ≤ ‖x‖∞ for all x ∈ l∞(N)), is differen-

tiable in the directions (en)n≥1 at each x ∈ l∞(N) and we have p′(x; en) = 0 for
all n ∈ N∗ and all x ∈ l∞(N). However, p is nowhere Gâteaux-differentiable.

(2) p is inf-finitely determined on l∞(N) with respect to a if and only if
p(a) = 0 (i.e. a ∈ c0(N)).

Proof. It is well know that p is a continuous seminorm (with respect the
norm ‖.‖∞), nowhere Gâteaux-differentiable (see [14, Example 1.21]). We
show that p is differentiable at each x in the directions (en). Indeed, for each
fixed integer n ∈ N∗ and each t ∈ R, it is easy to see that p(x + ten) = p(x).
It follows that p′(x; en) = 0 for all n ∈ N∗ and all x ∈ l∞(N). On the other
hand, p is inf-finitely determined on l∞(N) with respect to each element a
satisfying p(a) = 0. Indeed, it is clear that p(a + Pk(x − a)) = p(a) for all
a, x ∈ l∞(N). So, if p(a) = 0, then we have that p(a+ Pk(x − a)) = 0 ≤ p(x)
for all x ∈ l∞(N). Thus, infk∈N p(a+ Pk(x− a)) ≤ p(x), for all x ∈ l∞(N). If
p(a) 6= 0, then p(a+ Pk(0− a)) = p(a) > 0 = p(0) and so in this case p is not
inf-finitely determined on l∞(N) with respect to a.

�

Note that in the Banach space (l∞(N), ‖.‖∞) the sequence en := (δnj )

(where δnj is the Kronecker symbol), is not a topological basis since in general
‖Pk(x) − x‖∞ does not converges to 0, when k −→ +∞.

Proposition 2. Let f : (l∞(N), ‖.‖∞) −→ R be a L-Lipschitz continuous
function (L ≥ 0) and p(x) = lim supk |xk|. Then, f + Lp is inf-finitely deter-
mined with respect to each point a of c0(N).

Proof. Since f is L-Lipschitz continuous, we have that for all x ∈ l∞(N)

|f(a+ Pk(x− a))− f(x)| ≤ L‖a+ Pk(x− a)− x‖∞

= L sup
n≥k+1

|an − xn|

≤ L sup
n≥k+1

|an|+ L sup
n≥k+1

|xn|

Besides, we have that p(a + Pk(x − a)) = p(a) = 0 since a ∈ c0(N). Thus,
using the above inequality we get

f(a+ Pk(x− a)) + Lp(a+ Pk(x− a)) ≤ f(x) + L sup
n≥k+1

|an|+ L sup
n≥k+1

|xn|.

Taking the limit superior over k ∈ N, we get that

lim sup
k−→+∞

(f(a+ Pk(x − a)) + Lp(a+ Pk(x− a))) ≤ f(x) + Lp(x).
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and so,

inf
k∈N

(f(a+ Pk(x− a)) + Lp(a+ Pk(x− a))) ≤ f(x) + Lp(x).

Hence, f is inf-finitely determined on l∞(N) with respect to a ∈ c0(N). �

3. Necessary and Sufficient Condition of Convex Optimality

Note that we can construct on l∞(N) canonical examples of convex inf-
finitely determined functions at some point a ∈ l∞(N) (and norm continuous)

f : (l∞(N), ‖.‖∞) −→ R

which are differentiable at a in the directions of the canonical basis (en)n≥1 of
c0(N) but are not Gâteaux-differentiable at this point. We proceed as follows:
let g : (c0(N), ‖.‖∞) −→ R be a convex L-Lipschitz continuous function which
is Gâteaux-differentiable but not Fréchet-differentiable at a ∈ c0(N) (such
function g always exists and can be constructed canonically, see for instance
[2]). Let us define f : (l∞(N), ‖.‖∞) −→ R by

f(x) := inf
y∈c0(N)

{g(y) + L(‖x− y‖∞ + p(x− y))},

where p(x) = lim supn |xn| for all x ∈ l∞(N). The function f is convex
and Lipschitz continuous satisfying f|c0(N) = g, where f|c0(N) denotes the
restriction of f to c0(N). It follows that f ′(a, ; en) = g′(a; en) exists for all
n ∈ N. However, f cannot be Gâteaux-differentiable at a ∈ c0(N), otherwise
f|c0(N) = g would be Fréchet-differentiable at a since the canonical embedding
i : c0(N) −→ l∞(N) is a limited operator (see [2, Corollary 1] for details). Note
also that f is inf-finitely determined on l∞(N) with respect to each point of
a ∈ c0(N).

Thus, in infinite dimension, the fact that a convex continuous function f is
differentiable at a in the directions (en) does not implies that f is Gâteaux-
differentiable at a (see also Example 1).

Definition 3. (Qualification condition) Let E be a topological vector space
equipped with a biorthogonal system (en, e

∗
n) (not necessarily a topological ba-

sis). Let X ⊂ E be a non-empty subset of E and let a ∈ X be a fixed point of
E. We say that the set X is qualified at a if the following conditions hold.

• For all n ∈ N, there exists αn > 0 such that a + ten ∈ X for all
|t| < αn.

• Pk(X − a) ⊂ X − a for all k ∈ N.

We define the space Ek as the image of E by Pk, that is, Ek = Pk(E), which
is a finite dimensional vector space isomorphic to Rk. Let X be a subset of
E. For all k ∈ N, we denote Xk := Pk(X) and by IntEk

(Xk) we mean the
relative interior of Xk, that is the interior of Xk in Ek ≃ Rk.
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Remark 3. Provided that X is a convex set, the qualification condition implies
that Pk(a) ∈ IntEk

(Xk) for all k ∈ N∗, but is in general weaker than the fact
that a ∈ IntE(X). Indeed, let E := (l1(N), ‖.‖1) and let X+ := {(xn) ⊂
l1(N) : xn > 0; ∀n ∈ N} be the convex positive cone of l1(N). Then,

• Int(X+) = ∅,
• however, X+ is qualified at each of its points.

We give below the main result of this section which gives a necessary and
sufficient condition of optimality by using the notion of inf-finitely determined
function. The proof is based on a reduction to the finite dimension. For recent
works on convex optimization in finite dimension, we refer for instance to [6]
and [15].

Theorem 3. Let E be a topological vector space equipped with a biorthogonal
system (en, e

∗
n) (not necessarily a topological basis). Let X ⊂ E be a non-

empty convex subset of E and let a ∈ X. Suppose that X is qualified at a.
Let f : X −→ R be a convex function, such that f is inf-finitely determined
on X with respect to a and differentiable at a in the directions (en). Then,
the following assertions are equivalent.

(a) f(a) = infx∈X f(x)
(b) f ′(a, en) = 0, ∀n ∈ N

Proof. The part (a) =⇒ (b) is easy. Indeed, suppose that f(a) = infx∈X f(x).
Then, we have that

0 ≤ f(x)− f(a) ∀x ∈ X.

In particular, since X is qualified at a, for all n ∈ N there exists αn > 0 such
that for all |t| < αn, we have that a+ ten ∈ X and so

0 ≤ f(a+ ten)− f(a).

Thus, we get that 0 ≤ limt−→0+
f(a+ten)−f(a)

t
= f ′(a; en). Simmilarly, we

have 0 ≥ limt−→0−
f(a+ten)−f(a)

t
= f ′(a; en). Hence, f

′(a, en) = 0, ∀n ∈ N.
Now, we prove (b) =⇒ (a). Let us define fk : Xk ⊂ Ek −→ R as follows:

for all x ∈ X ,
fk(Pk(x)) := f(a+ Pk(x− a)).

Note that fk is well defined and that Pk(a) ∈ IntEk
(Xk) for all k ∈ N (by the

qualification condition of X at a, see Remark 3). We prove that, for all k ∈ N,
the convex function fk is Fréchet-differentiable at Pk(a). Indeed, for all n ≤ k
we have that Pk(en) = en and we have that fk(Pk(a)) = f(a). Thus, for all
n ≤ k and all small t we have

fk(Pk(a) + ten)− fk(Pk(a)) = fk(Pk(a+ ten))− fk(Pk(a))(4)

= f(a+ ten)− f(a).

It follows that

f ′
k(Pk(a); en) = f ′(a; en).(5)
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This shows that f ′
k(Pk(a); en) exists for each en ∈ Ek, n ∈ {1, ..., k}. Since

fk is a convex function on the convex set Xk, Pk(a) ∈ IntEk
(Xk) and since

Ek is of finite dimension with (en)1≤n≤k as a basis, then it is well known (see
[11, Theorem 6.1.1]) that fk is Fréchet-differentiable at Pk(a).

Thanks to the equations (b) and (5), we have that for all k ∈ N,

Dfk(Pk(a)) = 0,

where Dfk(Pk(a)) denotes the Fréchet-derivative of fk at Pk(a). Moreover,
fk is a convex function defined on the convex set Xk ⊂ Ek and Pk(a) ∈
IntEk

(Xk) (by the qualification condition). It follows that

fk(Pk(a)) = inf
y∈Xk

fk(y).(6)

For all x ∈ X and all k ∈ N, we have that Pk(x) ∈ Xk, then by using (6)
we get

f(a) = fk(Pk(a)) = inf
y∈Xk

fk(y) ≤ fk(Pk(x)) := f(a+ Pk(x− a)).

Since f is inf-finitely determined on X with respect to the point a, then by
taking the infimum in the above inequality we obtain that for all x ∈ X

f(a) ≤ inf
k∈N

f(a+ Pk(x− a)) ≤ f(x).

It follows that f(a) = infx∈X f(x). �

Remark 4. The example of the (norm) continuous seminorm p : l∞(N) −→ R,
x 7→ lim supn |xn| shows that the condition of inf-finitely determined property
cannot be dropped from the hypothesis of Theorem 3. Indeed, we know that
for each a ∈ l∞(N), we have that p′(a, en) = 0 for all n ∈ N∗ (see Example 1).
On the other hand, if p(a) 6= 0, then clearly a is not a minimum for p. Thus,
Theorem 3 does not apply for p at a if p(a) 6= 0. This is due to the fact that p
is not inf-finitely determined on l∞(N) with respect to a if p(a) 6= 0. However,
if p(a) = 0, then p is inf-finitely determined on l∞(N) with respect a. In this
case Theorem 3 applies and p has a minimum at a (which is trivial here since
p(a) = 0 ≤ p(x) for all a ∈ c0(N) and all x ∈ l∞(N)).

The above Theorem shows that, for a convex function which is inf-finitely
determined with respect to a ∈ E and differentiable at a in the directions
(en)n≥0, a necessary and sufficient condition to have a minimum at a is to
satisfy f ′(a, en) = 0, ∀n ∈ N. In several examples, it is easy to calculate
the derivative f ′(a, en) and also to solve f ′(a, en) = 0, ∀n ∈ N. Thus, the
candidate for the minimum can be exhibited. Since the condition is also
sufficient, we get the points that realizes the minimum (see Section 5 for
examples). Moreover, in infinite dimension, the differentiability of f in the
directions (en) at some point a, does not implies in general its Gâteaux-
differentiable at a. An example in the space l∞(N) illustrating this situation
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was given in Example 1. Thus, Theorem 3 can be applied for instance in
E = l∞(N) without the Gâteaux-differentiability assumption. For example,
combining Proposition 2 and Theorem 3, we get the following corollary:

Corollary 3. Let f : (l∞(N), ‖.‖∞) −→ R be a convex L-Lipschitz continuous
function (L ≥ 0) and p(x) = lim supk |xk|. Suppose that there exists a ∈ c0(N)
such that f ′(a, en) = 0 for all n ∈ N. Then, f +Lp has a minimum on l∞(N)
at a.

However, in Hausdorff locally convex topological vector spaces equipped
with a biorthogonal system (en, e

∗
n), where (en) is a topological basis, the

situation is different. Indeed, as we show it in Corollary 4, in this situa-
tion, the differentiability of a convex continuous function f in the directions
(en) at some point a, is equivalent to the Gâteaux-differentiability of f at
a. This result is a natural extension of a well-known result concerning the
Gâteaux-differentiability of convex functions in finite dimension (see [11, The-
orem 6.1.1]). Note that this result applies even if E is not a normed space like
the Fréchet space (RN, dRN) of all real sequences, equipped with the distance:
for all x = (xn) and y = (yn),

dRN(x, y) :=

+∞
∑

i=1

2−i|xi − yi|

1 + |xi − yi|

Corollary 4. Let E be a Hausdorff locally convex topological vector space
equipped with a biorthogonal system (en, e

∗
n), where (en) is a topological basis.

Let f : E −→ R ∪ {+∞} be a convex function. Suppose that f is finite
and upper semicontinuous at a ∈ E and that f ′(a; en) exists for all n ∈ N

with ∂f(a) 6= ∅. Then, ∂f(a) is a singleton. In consequence, if f is convex
and continuous at a, then f ′(a; en) exists for all n ∈ N, if and only if f is
Gâteaux-differentiable at a.

Proof. Suppose that f ′(a; en) exists for all n ∈ N and let p, q ∈ ∂f(a). Then,
a is a minimum of the functions f−p and f−q. On the other hand, clearly E
is qualified at a and the functions f − p and f − q are inf-finitely determined
on E with respect to a since they are upper semicontinuous at this point.
Thus, applying Theorem 3, once to f − p and again to f − q, we obtain that
〈p, en〉 = f ′(a, en) = 〈q, en〉, ∀n ∈ N. It follows that p = q since p, q ∈ E∗

and (en)n≥1 is a topological basis. Thus, ∂f(a) is a singleton. If in addition
f is convex continuous at a then we know from [12, Proposition 10.c, p.60, ]
that ∂f(a) 6= ∅. It follows that ∂f(a) is a singleton. To conclude, we know
from [12, Corollary 10.g, p. 66] that f is Gâteaux-differentiable at a if and
only if ∂f(a) is a singleton.

�

It is well know (see for instance [14, Examples 1.4]) that the norm of l1(N),
‖x‖1 =

∑

n≥0 |xn| is Gâteaux-differentiable at x = (xn) if and only if xn 6= 0
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for all n ∈ N. This fact is a particular case of a more general result given
in the following proposition, which is a consequence of Corollary 4. Indeed,
it suffices to take un(t) = |t| for all t ∈ R and all n ∈ N in the following
proposition, to see more simply why, the norm ‖.‖1 is Gâteaux-differentiable
at x = (xn) if and only if xn 6= 0 for all n ∈ N.

Proposition 3. Let (E, ‖.‖) be a Banach space having a Schauder basis (en)
and let (en, e

∗
n) be a biorthogonal system. For each n ∈ N, let un : R −→ R

be a convex continuous function. Suppose that the series
∑+∞

n=1 un(〈e∗n, ·〉)
converges pointwise to a real valued continuous function f . Then,

(i) f is Gâteaux-differentiable at x ∈ E, if and only if, for all n ∈ N the
function un is differentiable at 〈e∗n, x〉. In this case, we have that for all h ∈ E,

Df(x)(h) =
+∞
∑

n=1

〈e∗n, h〉u
′
n(〈e

∗
n, x〉),

where Df(x) denotes the Gâteaux-derivative of f at x.
(ii) the set of points at which f is not Gâteaux-differentiable is a countable

union of affine hyperplanes.

Proof. (i) It is clear that for each n ∈ N, we have that f ′(x, en) exists if and
only if un is differentiable at 〈e∗n, x〉, in this case f ′(x, en) = u′

n(〈e
∗
n, x〉). Thus,

we conclude using Corollary 4.
(ii) It is well known that a convex continuous function from R to R is dif-

ferentiable at all but (at most) countably many points of R (see [14, Theorem
1.16.]). Thus, for each n ∈ N, the set

Cn := {t ∈ R : u′
n(t) does not exists },

is at most a countable subset of R. Using part (i), we clearly see that f is not
Gâteaux-differentiable at x ∈ E if and only if x ∈ ∪n∈N ∪t∈Cn

(e∗n)
−1({t}).

Finally, it is clear that (e∗n)
−1({t}) is an affine hyperplane for each n ∈ N and

each t ∈ Cn. �

4. Application to the Karush-Kuhn-Tucker theorem

We follow the notation given in [3]. Let E be a real linear space and
f : E −→ R ∪ {+∞} be a given function. Consider the minimizing problem
for the function f on a subset AE ⊂ E, that is, the problem

(P) min{f(x) : x ∈ AE}.

The set AE constitutes the constraints of Problem (P). We say that an
element x̄ ∈ E is feasible if x̄ ∈ AE∩dom(f). The mathematical programming
problem (P) is said to be consistent if AE ∩ dom(f) 6= ∅, that is, if it has
feasible elements. A feasible element x0 is called an optimal solution of (P) if

f(x0) = inf{f(x) : x ∈ AE}.
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The subset AE is often defined by the solutions of a finite number of inequal-
ities as in

AE := {x ∈ E : gi(x) ≤ 0, ∀i = 1, ...,m},

where gi are extended real-valued functions on E. Let us set

E0 := dom(f) ∩m
i=1 dom(gi).

We call Slater’s constraint qualification, the following condition:

(S) There exists a point x̄ ∈ AE such that gi(x̄) < 0, ∀i = 1, 2, ...,m.

In the following corollary, we give a Karush-Kuhn-Tucker theorem in in-
finite dimension, where Gâteaux-differentiability is replaced by the weaker
condition of differentiability in the directions of (en).

Corollary 5. Let E be a topological vector space equipped with a biorthogonal
system (en, e

∗
n) (not necessarily a topological basis). Let f, g1, ..., gm : E −→

R ∪ {+∞} be convex functions. Suppose that E0 is qualified at x0 ∈ AE and
that f, g1, ..., gm are finitely determined functions on E0 with respect to x0

and differentiable at x0 in the directions (en). Then, we have (1) =⇒ (2). If
moreover, the Slater’s condition (S) is satisfied, then (1) ⇐⇒ (2).

(1) There exists λ∗
i ≥ 0 for all i ∈ {1, ...,m} such that

λ∗
i gi(x0) = 0, ∀i ∈ {1, 2, ...,m}

f ′(x0, en) +

m
∑

i=1

λ∗
i g

′
i(a, en) = 0, ∀n ∈ N∗

(2) f(x0) = inf{f(x), x ∈ AE}.

Proof. (1) =⇒ (2). We apply Theorem 3 to the function f̃ = f +
∑m

i=1 λ
∗
i gi

which is finitely determined on E0 with respect to x0 and differentiable at x0

in the directions (en) with f̃ ′(x0; en) = 0 for all n ∈ N∗, to get that for all
x ∈ E0

f(x0) +

m
∑

i=1

λ∗
i gi(x0) ≤ f(x) +

m
∑

i=1

λ∗
i gi(x).

Since, λ∗
i gi(x0) = 0 for all i ∈ {1, 2, ...,m} by hypothesis, then for all x ∈

AE ∩ E0, we obtain that

f(x0) ≤ f(x) +

m
∑

i=1

λ∗
i gi(x)

≤ f(x) (Since ∀x ∈ AE : λ∗
i ≥ 0; gi(x) ≤ 0).

Hence, f(x0) = inf{f(x), x ∈ AE ∩ E0} = inf{f(x), x ∈ AE}.
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(2) =⇒ (1). If moreover (S) is satisfied, then the implication (2) =⇒ (1)
follows easily from [3, Theorem 3.4]. �

5. Examples

As proved in Example 1, in infinite dimention, the fact that a convex
continuous function f is differentiable at a in the directions (en)n≥1 does not
imply that f is Gâteaux-differentiable at a. We give simple examples showing
how Theorem 3 can be applied by using only differentiability in the directions
(en)n≥1.

Example 2. Let f : (l∞(N), ‖.‖∞) −→ R be the convex continuous function
defined by

f(x) = lim sup |xn|+
+∞
∑

n=1

βn(x2
n −

xn

n
),

where, 0 < β < 1 is a fixed real number. We prove that the problem
infx∈l∞(N) f(x) has a unique solution, that is a = ( 1

2n )n≥1.

Proof. The qualification condition is trivial at each point. On the other hand,
we have that f ′(x; en) = p′(x; en)+βn(2xn−

1
n
) = βn(2xn−

1
n
) for all n ∈ N∗

(where p(x) = lim sup |xn|, see Example 1). It follows that f ′(x; en) = 0
if and only if x = ( 1

2n ). In this case p(( 1
2n )) = 0 and so p is inf-finitely

determined with respect to this point (see Example 1). On the other hand,

x 7→ f1(x) =
∑+∞

n=1 β
n(x2

n − xn

n
) is finitely determined on l∞(N) with respect

to ( 1
2n ). Indeed, let a, x ∈ l∞(N), we have

|f1(a+ P k(x− a))− f1(x)| = |
+∞
∑

n=k+1

βn[(a2n −
an
n
)− (x2

n −
xn

n
)]|

≤ C

+∞
∑

n=k+1

βn,

where C is a positive real number depending only on a and x. Thus, f1 is
finitely determined on l∞(N) with respect to each a, and so f is inf-finitely de-
termined with respect to ( 1

2n ). Then, we can apply Theorem 3. Hence the se-

quence a = ( 1
2n ) is the unique optimal solution of the problem infx∈l∞(N) f(x).

Note that f is not Gâteaux-differentiable at ( 1
2n ) since p((xn)) = lim sup |xn|

is nowhere Gâteaux-differentiable (see Example 1). �

Example 3. Let E = RN and X := l1(N) ∩ (R+)
N (convex subset) and let

f : X −→ R be the convex function defined by

f((xn)n) =

+∞
∑

n=0

xn −
+∞
∑

n=0

2βnx
1
2
n



18 M. BACHIR, A. FABRE AND S. TAPIA-GARCÍA

(where 0 < β < 1 is a fixed real number). The problem is to minimize f on
X . A solution of this problem is a = (β2n) ∈ X .

Proof. The function f is differentiable in the directions (en)n≥1 at each x =

(xn) ∈ X such that xn > 0 for all n ∈ N and we have f ′(x; en) = 1 − βn

(xn)
1
2

for all n ∈ N. Now, suppose that f ′(x; en) = 0 for all n ∈ N. Then, we have
xn = β2n for all n ∈ N. Clearly, the point a = (β2n) belongs to X . To show
that a is an optimal solution of the problem of minimization, it suffices to
prove that X is qualified at (β2n) and that f is inf-finitely determined on X
with respect to (β2n). In fact, X is qualified at each point (xn) such that
xn > 0 for all n ∈ N (easy to see) and f is finitely determined on X with
respect to each point x of X . Indeed, let x, a ∈ X , then

f(a+ P k(x − a))− f(x) =
∞
∑

n=k+1

(an − xn)−
∞
∑

n=k+1

2βn((an)
1
2 − x

1
2
n ).

It follows that limk−→+∞ f(a+P k(x−a)) = f(x) since a−x ∈ l1(N). Hence,
f is finitely determined on X with respect each point x of X in particular
with respect the point a = (β2n). �
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