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Abstract. We introduce the notion of probabilistic 1-Lipschitz map defined
on a probabilistic metric space and give an analogous to the result of Mac
Shane on the extenstion of real-valued Lipschitz functions from a subset of a
metric space to the whole space.

54E70, 47S50, 46S50

Contents

1. Introduction 1
2. Probabilistic 1-Lipschitz Maps 2
References 4

1. Introduction

We introduce the notion of probabilistic 1-Lipschitz map defined on a probabilis-
tic metric space and give an analogous to the result of Mac Shane (see [2]) on the
extenstion of real-valued Lipschitz functions from a subset of a metric space to the
whole space.

A distribution function is a function F : [−∞,+∞] −→ [0, 1] which is non-
decreasing and left-continuous with F (−∞)) = 0; F (+∞) = 1. The set of all
distribution functions will be denoted by ∆. The subset of ∆ consisting on distri-
butions F such that F (0) = 0 will be denoted by ∆+. For F,G ∈ ∆+, the relation
F ≤ G is meant by F (t) ≤ G(t), for all t ∈ R. For all a ∈ R, the distribution Ha is
defined as follow

Ha(t) =

{

0, if t ≤ a

1, if t > a

For a = +∞,

H∞(t) =

{

0, if t ∈ [−∞,+∞[
1, if t = +∞
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It is well known that (∆,≤) and (∆+,≤) are complet lattice with the minimal
element H∞ and the maximal element H0 (see [1]). Thus, for any nonempty set
I and any familly (Fi)i∈I of distributions in ∆ (resp. in ∆+), the function F =
supi∈I Fi is also an element of ∆ (resp. of ∆+).

Axioms 1.1. In this work, we assume that ∆+ is equipped with a law ⋆ (a triangual
function) satisfying the following axioms:

(i) F ⋆ L ∈ ∆+ for all F,L ∈ ∆+.
(ii) F ⋆ L = L ⋆ F for all F,L ∈ ∆+.
(iii) F ⋆ (L ⋆ K) = (F ⋆ L) ⋆ K, for all F,L,K ∈ ∆+.
(iv) F ⋆ H0 = F for all F ∈ ∆+.
(v) F ≤ L =⇒ F ⋆ K ≤ L ⋆ K for all F,L,K ∈ ∆+.
(vi) Let I be a set, (Fi)i∈I a familly of distributions in ∆+ and L ∈ ∆+. Then,

supi∈I(Fi ⋆ L) = (supi∈I(Fi)) ⋆ L.

Definition 1.2. We say that ⋆ is continuous at (F,L) ∈ ∆+×∆+ if limn→+∞(Fn⋆

Ln)(t) = (F⋆L)(t) for all t ∈ R point of continuity of F⋆L, whenever limn→+∞ Fn(t) =
F (t) for all t ∈ R point of continuity of F and limn→+∞ Ln(t) = L(t) for all t ∈ R

point of continuity of L.

Example 1.3. (see [3], [1]) Let T : [0, 1] × [0, 1] −→ [0, 1] be a left-continuous
t-norm, then the operation ⋆ defined for all F,L ∈ ∆+ and for all t ∈ R by

(F ⋆ L)(t) := sup
s+u=t

T (F (s), L(u)) (1.1)

is continuous at each point (F,L) ∈ ∆+ ×∆+ and satisfies the axiomes (i)-(vi).

In all this work, we assume that ∆+ is equipped with a continuous law ⋆ satisfying
the axioms (i)-(vi).

Definition 1.4. Let G be a set and let D : G×G −→ (∆+, ⋆,≤) be a map. We say
that (G,D, ⋆) is a probabilistic metric space if the following axioms (i)-(iii) hold:

(i) D(p, q) = H0 iff p = q.
(ii) D(p, q) = D(q, p) for all p, q ∈ G

(iii) D(p, q) ⋆ D(q, r) ≤ D(p, r) for all p, q, r ∈ G

2. Probabilistic 1-Lipschitz Maps

We define probabilistic continuous functions.

Definition 2.1. Let (G,D, ⋆) be a probabilistic metric space and f : G −→ ∆
be a function. We say that f is continuous at x ∈ G if limn f(xn)(t) = f(x)(t)
for all t ∈ R point of continuity of f(x) and all sequence (xn)n ⊂ G such that
limn D(xn, x) = H0 (i.e. such that limn D(xn, x)(t) = H0(t) for all t ∈ R).

Now, we introduce the notion of probabilistic 1-Lipschitz map.

Definition 2.2. Let (G,D, ⋆) be a probabilistic metric space and f : G −→ ∆ be a
map. We say that f is a probabilistic 1-Lipschitz map if, for all x, y ∈ G we have:

D(x, y) ⋆ f(y) ≤ f(x).

Proposition 2.3. Every probabilistic 1-Lipschitz map is continuous.



PROBABILISTIC 1-LIPSCHITZ MAPS 3

Proof. Let f be a probabilistic 1-Lipschitz map and (xn)n ⊂ G be a sequence
such that limn D(xn, x) = H0. On one hand, since (∆,≤) is a complete lattice,
the law ⋆ is continuous and D(xn, x) ⋆ f(x) ≤ f(xn), then f(x) = H0 ⋆ f(x) =
lim infn D(xn, x) ⋆ f(x) ≤ lim infn f(xn) . Thus, f(x) ≤ lim infn f(xn). On the
other hand, since D(xn, x) ⋆ f(xn) ≤ f(x), it follows that lim supn f(xn) = H0 ⋆

lim supn f(xn) = lim supn(D(xn, x) ⋆ f(xn) ≤ f(x). Thus, limn f(xn) = f(x) and
so f is continuous.

�

By Lip1⋆(G,∆) (resp. Lip1⋆(G,∆+)), we denotes the space of all probabilistic
1-Lipschitz maps (resp. all ∆+-valued 1-Lipschitz maps). For all x ∈ G, by δx :
G −→ ∆+ we denote the map δx : y 7→ D(y, x) and by δ, we denote the operator
δ : x 7→ δx.

Proposition 2.4. Let (G,D, ⋆) be a probabilistic metric space. Then, we have that
δa ∈ Lip1⋆(G,∆+) for each a ∈ G and the map δ : G −→ Lip1⋆(G,∆+) is injective.

Proof. The fact that δa ∈ Lip1⋆(G,∆+) for each a ∈ G follows from the property:
D(x, y) ⋆ D(y, a) ≤ D(x, a) for all a, x, y ∈ G. Now, let a, b ∈ G be such that
δa = δb. It follows that δa(x) = δb(x) for all x ∈ G. In particular, for x = b we
have that D(a, b) = δa(b) = δb(b) = H0, which implies that a = b. �

Let f ∈ Lip1⋆(G,∆+) and F ∈ ∆+, by 〈f, F 〉 : G −→ ∆+, we denote the map
defined by 〈f, F 〉(x) := f(x) ⋆ F for all x ∈ G. We easly obtain the following
propostion.

Proposition 2.5. Let (G,D, ⋆) be a probabilistic metric space. Then, for all f ∈
Lip1⋆(G,∆+) and all F ∈ ∆+, we have that 〈f, F 〉 ∈ Lip1⋆(G,∆+).

Recall the Lipschitz extention result of Mac Shane in [2]: if (X, d) is a metric
space, A a nonempty subset of X and f : A −→ R is k-Lipschitz map, then there
exist a k-Lipschitz map f̃ : X −→ R such that f̃|A = f . We give bellow an
analogous of this result for probabilistic 1-Lipschitz maps.

Theorem 2.6. Let (G,D, ⋆) be a probabilistic metric space and A be a nonempty
subset of G. Let f : A −→ ∆ be a probabilistic 1-Lipschitz map. Then, there exists
a probabilistic 1-Lipschitz map f̃ : G −→ ∆ such that f̃|A = f .

Proof. We define f̃ : G −→ ∆ as follows: for all x ∈ G,

f̃(x) := sup
a∈A

D(a, x) ⋆ f(a).

We first prove that f̃(x) = f(x) for all x ∈ A. Indeed, let x ∈ A. On one hand we

have f(x) = H0 ⋆ f(x) = D(x, x) ⋆ f(x) ≤ supa∈AD(a, x) ⋆ f(a) = f̃(x). On the
other hand, since f is probabilistic 1-Lipschitz on A and x ∈ A, thenD(a, x)⋆f(a) ≤

f(x) for all a ∈ A. It follows that f̃(x) := supa∈AD(a, x) ⋆ f(a) ≤ f(x). Thus,

f̃(x) = f(x) for all x ∈ A. Now, we show that f̃ is probabilistic 1-Lipschitz on G.
Indeed, Let x, y ∈ G. For all a ∈ A we have that D(a, x) ⋆ D(x, y) ≤ D(a, y). So,
D(a, x) ⋆ f(a) ⋆ D(x, y) ≤ D(a, y) ⋆ f(a). By taking the supremum over a ∈ A and

using axiom (vi) we get f̃(x) ⋆D(x, y) ≤ f(y). Hence, f̃ is probabilistic 1-Lipschitz
map on G that coincides with f on A. �
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