INTRODUCTION TO THE PROBABILISTIC 1-LIPSCHITZ MAPS

Mohammed Bachir

To cite this version:
Mohammed Bachir. INTRODUCTION TO THE PROBABILISTIC 1-LIPSCHITZ MAPS. 2017.
hal-01672758

HAL Id: hal-01672758
https://paris1.hal.science/hal-01672758
Preprint submitted on 27 Dec 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
INTRODUCTION TO THE PROBABILISTIC 1-LIPSCHITZ MAPS

MOHAMMED BACHIR

(20/12/2017)

Laboratoire SAMM EA4543, Université Paris 1 Panthéon-Sorbonne, centre P.M.F., France.

ABSTRACT. We introduce the notion of probabilistic 1-Lipschitz map defined on a probabilistic metric space and give an analogous to the result of Mac Shane on the extension of real-valued Lipschitz functions from a subset of a metric space to the whole space.

54E70, 47S50, 46S50

Contents

1. Introduction 1
2. Probabilistic 1-Lipschitz Maps 2
References 4

1. Introduction

We introduce the notion of probabilistic 1-Lipschitz map defined on a probabilistic metric space and give an analogous to the result of Mac Shane (see [2]) on the extension of real-valued Lipschitz functions from a subset of a metric space to the whole space.

A distribution function is a function $F : [-\infty, +\infty] \rightarrow [0, 1]$ which is non-decreasing and left-continuous with $F(-\infty) = 0; F(+\infty) = 1$. The set of all distribution functions will be denoted by Δ. The subset of Δ consisting on distributions F such that $F(0) = 0$ will be denoted by Δ^+. For $F, G \in \Delta^+$, the relation $F \leq G$ is meant by $F(t) \leq G(t)$, for all $t \in \mathbb{R}$. For all $a \in \mathbb{R}$, the distribution H_a is defined as follow

$$H_a(t) = \begin{cases}
0, & \text{if } t \leq a \\
1, & \text{if } t > a
\end{cases}$$

For $a = +\infty$,

$$H_\infty(t) = \begin{cases}
0, & \text{if } t \in [-\infty, +\infty[\\
1, & \text{if } t = +\infty
\end{cases}$$
It is well known that (Δ, \leq) and (Δ^+, \leq) are complete lattice with the minimal element H_∞ and the maximal element H_0 (see [1]). Thus, for any nonempty set I and any family $(F_i)_{i \in I}$ of distributions in Δ (resp. in Δ^+), the function $F = \sup_{i \in I} F_i$ is also an element of Δ (resp. of Δ^+).

Axioms 1.1. In this work, we assume that Δ^+ is equipped with a law \ast (a triangular function) satisfying the following axioms:

(i) $F \ast L \in \Delta^+$ for all $F, L \in \Delta^+$.
(ii) $F \ast L = L \ast F$ for all $F, L \in \Delta^+$.
(iii) $F \ast (L \ast K) = (F \ast L) \ast K$, for all $F, L, K \in \Delta^+$.
(iv) $F \ast H_0 = F$ for all $F \in \Delta^+$.
(v) $F \leq L \Longrightarrow F \ast K \leq L \ast K$ for all $F, L, K \in \Delta^+$.
(vi) Let I be a set, $(F_i)_{i \in I}$ a family of distributions in Δ^+ and $L \in \Delta^+$. Then, $\sup_{i \in I} (F_i \ast L) = (\sup_{i \in I} (F_i)) \ast L$.

Definition 1.2. We say that \ast is continuous at $(F, L) \in \Delta^+ \times \Delta^+$ if $\lim_{n \to +\infty} (F_n \ast L_n)(t) = (F \ast L)(t)$ for all $t \in \mathbb{R}$ point of continuity of $F \ast L$, whenever $\lim_{n \to +\infty} F_n(t) = F(t)$ for all $t \in \mathbb{R}$ point of continuity of F and $\lim_{n \to +\infty} L_n(t) = L(t)$ for all $t \in \mathbb{R}$ point of continuity of L.

Example 1.3. (see [3], [1]) Let $T : [0, 1] \times [0, 1] \to [0, 1]$ be a left-continuous t-norm, then the operation \ast defined for all $F, L \in \Delta^+$ and for all $t \in \mathbb{R}$ by

$$ (F \ast L)(t) = \sup_{s + u = t} T(F(s), L(u)) \tag{1.1} $$

is continuous at each point $(F, L) \in \Delta^+ \times \Delta^+$ and satisfies the axioms (i)-(vi).

In all this work, we assume that Δ^+ is equipped with a continuous law \ast satisfying the axioms (i)-(vi).

Definition 1.4. Let G be a set and let $D : G \times G \to (\Delta^+, \ast, \leq)$ be a map. We say that (G, D, \ast) is a probabilistic metric space if the following axioms (i)-(iii) hold:

(i) $D(p, q) = H_0$ iff $p = q$.
(ii) $D(p, q) = D(q, p)$ for all $p, q \in G$.
(iii) $D(p, q) \ast D(q, r) \leq D(p, r)$ for all $p, q, r \in G$.

2. Probabilistic 1-Lipschitz Maps

We define probabilistic continuous functions.

Definition 2.1. Let (G, D, \ast) be a probabilistic metric space and $f : G \to \Delta$ be a function. We say that f is continuous at $x \in G$ if $\lim_{n \to \infty} f(x_n)(t) = f(x)(t)$ for all $t \in \mathbb{R}$ point of continuity of $f(x)$ and all sequence $(x_n)_{n} \in G$ such that $\lim_{n \to \infty} D(x_n, x) = H_0$ (i.e. such that $\lim_{n \to \infty} D(x_n, x)(t) = H_0(t)$ for all $t \in \mathbb{R}$).

Now, we introduce the notion of probabilistic 1-Lipschitz map.

Definition 2.2. Let (G, D, \ast) be a probabilistic metric space and $f : G \to \Delta$ be a map. We say that f is a probabilistic 1-Lipschitz map if, for all $x, y \in G$ we have:

$$ D(x, y) \ast f(y) \leq f(x). $$

Proposition 2.3. Every probabilistic 1-Lipschitz map is continuous.
Proof. Let f be a probabilistic 1-Lipschitz map and $(x_n)_n \subset G$ be a sequence such that $\lim_n D(x_n, x) = H_0$. On one hand, since (Δ, \leq) is a complete lattice, the law $*$ is continuous and $D(x_n, x) * f(x) \leq f(x_n)$, then $f(x) = H_0 * f(x) = \lim_{n} D(x_n, x) * f(x) \leq \lim_{n} f(x_n)$. Thus, $f(x) \leq \lim_{n} f(x_n)$. On the other hand, since $D(x_n, x) * f(x_n) \leq f(x)$, it follows that $\lim_{n} f(x_n) = H_0 * \lim_{n} f(x_n) = \lim_{n} (D(x_n, x) * f(x_n)) \leq f(x)$. Thus, $\lim_{n} f(x_n) = f(x)$ and so f is continuous.

By $\text{Lip}_1^1(G, \Delta)$ (resp. $\text{Lip}_1^1(G, \Delta^+)$), we denote the space of all probabilistic 1-Lipschitz maps (resp. all Δ^+-valued 1-Lipschitz maps). For all $x \in G$, by $\delta_x : G \rightarrow \Delta^+$ we denote the map $\delta_x : y \mapsto D(y, x)$ and by δ, we denote the operator $\delta : x \mapsto \delta_x$.

Proposition 2.4. Let $(G, D, *)$ be a probabilistic metric space. Then, we have that $\delta_a \in \text{Lip}_1^1(G, \Delta^+)$ for each $a \in G$ and the map $\delta : G \rightarrow \text{Lip}_1^1(G, \Delta^+)$ is injective.

Proof. The fact that $\delta_a \in \text{Lip}_1^1(G, \Delta^+)$ for each $a \in G$ follows from the property: $D(x, y) * D(y, a) \leq D(x, a)$ for all $a, x, y \in G$. Now, let $a, b \in G$ be such that $\delta_a = \delta_b$. It follows that $\delta_a(x) = \delta_b(x)$ for all $x \in G$. In particular, for $x = b$ we have that $D(a, b) = \delta_a(b) = \delta_b(b) = H_0$, which implies that $a = b$.

Let $f \in \text{Lip}_1^1(G, \Delta^+)$ and $F \in \Delta^+$, by $\langle f, F \rangle : G \rightarrow \Delta^+$, we denote the map defined by $\langle f, F \rangle(x) := f(x) * F$ for all $x \in G$. We easily obtain the following proposition.

Proposition 2.5. Let $(G, D, *)$ be a probabilistic metric space. Then, for all $f \in \text{Lip}_1^1(G, \Delta^+)$ and all $F \in \Delta^+$, we have that $\langle f, F \rangle \in \text{Lip}_1^1(G, \Delta^+)$.

Recall the Lipschitz extension result of Mac Shane in [2]: if (X, d) is a metric space, A a nonempty subset of X and $f : A \rightarrow \mathbb{R}$ is k-Lipschitz map, then there exist a k-Lipschitz map $\tilde{f} : X \rightarrow \mathbb{R}$ such that $\tilde{f}|_A = f$. We give below an analogous of this result for probabilistic 1-Lipschitz maps.

Theorem 2.6. Let $(G, D, *)$ be a probabilistic metric space and A be a nonempty subset of G. Let $f : A \rightarrow \Delta$ be a probabilistic 1-Lipschitz map. Then, there exists a probabilistic 1-Lipschitz map $\tilde{f} : G \rightarrow \Delta$ such that $\tilde{f}|_A = f$.

Proof. We define $\tilde{f} : G \rightarrow \Delta$ as follows: for all $x \in G$,

$$\tilde{f}(x) := \sup_{a \in A} D(a, x) * f(a).$$

We first prove that $\tilde{f}(x) = f(x)$ for all $x \in A$. Indeed, let $x \in A$. On one hand we have $f(x) = H_0 * f(x) = D(x, x) * f(x) \leq \sup_{a \in A} D(a, x) * f(a) = \tilde{f}(x)$. On the other hand, since f is probabilistic 1-Lipschitz on A and $x \in A$, then $D(a, x) * f(a) \leq f(x)$ for all $a \in A$. It follows that $\tilde{f}(x) := \sup_{a \in A} D(a, x) * f(a) \leq f(x)$. Thus, $\tilde{f}(x) = f(x)$ for all $x \in A$. Now, we show that \tilde{f} is probabilistic 1-Lipschitz on G. Indeed, let $x, y \in G$. For all $a \in A$ we have that $D(a, x) * D(x, y) \leq D(a, y)$. So, $D(a, x) * f(a) * D(x, y) \leq D(a, y) * f(a)$. By taking the supremum over $a \in A$ and using axiom (vi) we get $\tilde{f}(x) * D(x, y) \leq f(y)$. Hence, \tilde{f} is probabilistic 1-Lipschitz map on G that coincides with f on A. □
References

