
HAL Id: hal-01527357
https://paris1.hal.science/hal-01527357

Submitted on 24 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Continuous monitoring of adaptive e-learning systems
requirements

Lamiae Dounas, Raul Mazo, Camille Salinesi, Omar El Beqqali

To cite this version:
Lamiae Dounas, Raul Mazo, Camille Salinesi, Omar El Beqqali. Continuous monitoring of adaptive
e-learning systems requirements. 12th ACS/IEEE International Conference on Computer Systems
and Applications (AICCSA), Nov 2015, Marrakech, Morocco. �10.1109/AICCSA.2015.7507210�. �hal-
01527357�

https://paris1.hal.science/hal-01527357
https://hal.archives-ouvertes.fr


Continuous Monitoring of Adaptive e-learning Systems Requirements 

Lamiae DOUNAS1,2, Raul MAZO1, Camille SALINESI1, Omar EL BEQQALI2 
1CRI, University Paris 1 Panthéon-Sorbonne, Paris, France 

2 LIAAN, Faculty of Sciences Dhar el Mehraz USMBA, Fez , Morocco 
lamiae.dounas@usmba.ac.ma, {raul.mazo, camille.salinesi} @univ-paris1.fr, omar.elbeqqali@usmba.ac.ma 

 
Abstract—E-learning is a promising research area, as 

they are expected to increase enrollment and improve the 
quality of education. Adaptive e-learning systems, 
traditionally focused on content personalization, are in 
need to cope with continuous changing requirements and 
changing environment. Indeed, the specification and the 
management quality attributes of such systems, supported 
throughout the whole lifecycle are still missing. In this 
paper, we present an approach for continuous 
requirements monitoring that uses constraint 
programming to evaluate the satisfaction of the 
requirements in adaptive e-learning systems and identify 
solutions (valid configurations) when deviations occur at 
runtime. To this end, the requirements are conceptualized 
as a dynamic software product line. A new requirements 
engineering tool that supports (dynamic) software product 
line engineering is used for the specification of the adaptive 
e-learning systems and its continuous monitoring. 

Keywords— adaptive e-learning systems; requirements 
engineering; requirements monitoring; dynamic software 
product lines; constraint programming; goal-driven 
requirements.  

I. INTRODUCTION 
As advances in digital technologies increase, e-learning 

domain moves from being a purely "one-fits-all" online 
content delivery to an adaptive learning that fits a wide range 
of students and leads companies to bolster the productivity and 
the skills of their employees through more flexible and 
adaptive approaches.  

The adaptation takes place at different areas of adaptive e- 
learning systems (AESs), it includes: (1) the presentation by 
adapting the content or the used media to each learner, and (2) 
the navigation by providing learners optimal paths for a 
flexible access to information and orientation supports. In that 
regard, the adaptation decision making involves the analysis of 
gathered information from learner interaction like learner’s 
background, cognitive style, personal preferences, and 
knowledge level. Several techniques like artificial intelligence 
or semantic web are then used to interpret this information and 
propose educational resources that comply with learners needs 
[1-9]. 

However, while most of the research in the field focuses 
on the adaptation techniques to improve the learning 
experience and offer a personalized learning, less attention has 
been given to the specification of AESs. Indeed, with the 
complexity of the learning environment in which a multitude 

of connection and interactions come into play, the design of 
such systems is still a challenging task. Hence, it is important 
to support the requirements of such systems and allow their 
evolution at runtime, especially in dynamic changing 
environmental conditions (e.g., changing learner's need and 
learner device infrastructure). In our previous work [10], we 
stressed the need for a runtime requirements monitoring to 
detect deviations from the requirements at runtime. Therefore, 
here we present a requirements monitoring framework built as 
an autonomic MAPE (Monitor-Analyze-Plan-Execute) loop 
[11]. Our contribution focuses on the planning phase which is 
based on a constraint program (CP) to select optimal 
configurations (herein, refers to the set of educational 
resources proposed to a learner) whenever deviations occur at 
runtime. A constraint program is a set of constraints that 
define relations between declarative variables. In the context 
of adaptive systems these constraint programs are executed by 
tools, called solvers, to find solutions that satisfy the 
maximum number of constraints at the same time.   

The idea of our modelling approach is to specify the 
requirements as a dynamic software product line (DSPL) 
using REFAS (Requirements for (Self-) Adaptive Systems) 
language [12] and the VariaMos tool [23] that supports some 
DSPL languages. Afterwards, the CP corresponding to our 
DSPL is automatically generated [28] from the specification. 

The remainder of this paper is organized as follows. In 
Section 2 we reviewed some of work related to adaptive e-
learning systems and requirements monitoring of self-adaptive 
systems.  Section 3 introduces the running example that is 
used throughout this paper to illustrate our proposal. Section 4 
presents our approach. Section 5 shows simulation of how the 
requirements monitoring detects deviations and plans optimal 
configurations using the CP. Finally, Section 6 concludes the 
paper.  

II. RELATED WORK 
This section presents related work on adaptive e-learning 

systems and requirements monitoring. 

A. Adaptive e-learning systems 
Several research has been developed to support adaptive e-

learning systems including the learning monitoring. As far as 
we know, this monitoring aims to provide teachers with a data 
visualization tools through which they can track and record 
learners preferences during the interaction with the system, so 
that they can have a reliable view to help them understand 
learners behavior, and subsequently to enhance the quality of 
the proposed courses [13],[14],[15]. However, this passive 

Dounas Lamiae, Mazo Raúl, Salinesi Camille, El-Beqqali Omar. Continuous Monitoring of Adaptive e-learning Systems Requirements. 
12th ACS/IEEE International Conference on Computer Systems and Applications (AICCSA), Marrakech-Morocco, November 17-20, 2015. 

 



monitoring is related to the ability of teachers to spend more 
time and effort in order to interpret these data.  With our 
approach, the monitoring aims to detect deviations from the 
desired requirements and propose a list of alternative 
configurations to improve the learning process at runtime. 

B. Requirements monitoring 
Interesting work has been performed in modeling and 

monitoring requirements for self-adaptive systems. Fickas et 
al. [16] and Feather et al. [17] proposed a runtime monitoring 
system that applies a formal language FLEA (Formal 
Language for Expressing Assumptions) that allows translating 
KAOS (Knowledge Acquisition and Automated Specification) 
assertions into temporal combinations of events. 
Consequently, if an event occurs, the system applies its 
remedial actions stored in a triggered database. Robinson [18] 
extended Feather’s model and proposed a requirements 
monitoring for adaptive service-based applications, named 
ReqMon.  In his approach, the requirements model is 
conceptualized using KAOS language and a time model is 
used to detect obstacles from which the web service monitors 
are derived automatically and applied to the running system. 
Goldsby et al. [19] proposed LOREM, an approach to specify 
the requirements of a dynamic adaptive system (DAS) as i* 
goal models; however, LOREM does not support the 
specification of requirements at runtime. In short, despite, the 
requirements monitoring using goal driven specification like 
KAOS and i* are widely adopted, they are still based on a 
static strategy that enumerates all alternative behavior at 
design time. To address this gap, Baresi & Pasquale [20] 
introduced the concept of “adaptive goals” to represent “fuzzy 
requirements” which can be satisfied at different degrees using 
a fuzzy logic operators. In their approach, a membership 
function is maintained to assess the satisfaction of goals at 
runtime and whenever a boundary level is reached, it activates 
adaptation actions (adding/removing goals) to update the 
KAOS goal model. Sawyer et al. [21] proposed an extend 
KAOS goal model to construct a requirements model and 
enable a transformation of the resulting requirements model 
into a constraint program. This latter is intended to carry out 
the re-configurations of self-adaptive systems. Along the same 
lines, we use REFAS language to specify the requirements. 
The specification is then automatically transformed into a 
constraint program. Our approach supports the design time 
modeling and verification of models through simulations (see 
Section V) using a graphical tool, namely VariaMos1 [22].  

Finally, other formalisms such probabilistic and real-time 
temporal logics are also applied for the requirements 
specification. The significant benefits of using such techniques 
include the ability to define rigorous requirements 
specifications and to analyze them using mathematically-
based tools like probabilistic model checker [23]. However, 
the formalization and inference are generally complicated and 
resource-consuming [24]. Moreover, our main objective is to 
predict the deviations and not just to react when anomalies are 
detected.  

                                                             
1 http://www.variamos.com/ 

III. RUNNING EXAMPLE 
In this section, we describe the running example used to 

illustrate our approach. Further, we introduce REFAS 
language and explain in more detail how it supports the 
requirements modeling of dynamic product lines. 

A. Description of the system 
As an illustrative example, we use an adaptive e-learning 

system (AES) from a case study in [10]. The AES proposed by 
Franzoni et al. [25] offers a personalized teaching environment 
based on an adaptive taxonomy that combines Felder & 
Silverman’s learning style (FSLS) [26] with suitable teaching 
strategies and electronic media. The learners are also 
supported by collaborative learning. 

According to FSLM (see Table 1), learners are classified 
under four dimensions that describe the way in which they (1) 
receive (visual/verbal), (2) perceive (sensitive/intuitive), (3) 
understand (global/sequential) and (4) process 
(reflexive/active) information. 

Table 1: FSLS dimensions 
Dimension Learning style 
Perception Sensitive :  

-prefer fact, experiments, sounds, physical 
sensations 
Intuitive : 
-prefer abstract material 
- learn through hunches and  theories 

Entry Channel Visual : prefer images, diagrams and graphics 
Verbal : prefer spoken words and sounds  

Understanding  Global :learn through leaps and an integral 
approach 
Sequential: 
-learn through small and continuous steps 

Processing Reflective: 
- think about information quietly and stop 
periodically to review. 
-  prefer to work alone 
Active:  
- assimilate new information through physical 
activities 
-  enjoy discussions (chat, forum ...) 

In our running example, the system encourages 
collaborative learning by supporting two collaborative groups: 
“online group” and “physical self-help group”. As a result, 
learners who share the same geographical space are able to 
have face-to-face communications in addition to online 
meetings.  

B. Overall requirements 
This subsection presents the requirements of the adaptive 

e-learning system we use as running example (functional and 
non-functional requirements), the relationships among them  
and the assumptions about the environment.  

R0: Learners should have educational resources that match 
their learning styles. 

R0 is a hard requirement that should be ensured by the 
system.  



R1: Learners should not face a long waiting time for 
downloading educational resources. 

The monitoring shall identify relevant educational 
resources in term of media (text, graphics, mage and video). 
This requirement can be monitored by keeping track of 
network performance over time. For instance, for an 
educational video resource, the monitoring may take 
bandwidth measurements and continuously suggest a video in 
different quality proportional with the measurements, or in 
case of inappropriate bandwidth inform the system to ask 
learners if they prefer other optimal media format even if they 
do not match their learning style. 

R2: The system should encourage collaborative learning 
and maintain homogeneous discussion groups. 

The monitoring shall keep track of learners’ location and 
update collaborative groups accordingly, to enable learners to 
meet their peers who attend the same course if they are 
nearby. In this way, e-learning can be extended to face-to-face 
meetings, which help learners to be actively engaged. 

R3: The system should ensure an available and effective 
communication tools. 

The monitoring shall detect effective communication tools 
for every learner with regard to the frequency of accessing the 
learning system. As consequence, if the frequency is low, the 
system needs to communicate with the learner using Email or 
SMS to keep him aware of current events and available 
educational resources. This would increase the learner’s 
motivation and   the probability that the learner will not drop 
the course. 

R4: Educational resources should be accessible to all 
potential learners. 

The monitoring shall identify noisy environment and then 
provide learners text captioning or transcription for audio and 
video media. 

C. REFAS language and requirements model 
It is increasingly common for adaptive systems to support 

user requirements, system resources and the operating 
environment. In this context, the requirements models are used 
as specifications for the developers and the designers of the 
system. The system must deal with many variability decisions, 
which make the design a challenging task.  In our modelling 
approach, we propose to use REFAS, a requirements 
engineering language that supports variability modelling 
concepts and relations to design accurate requirements 
models. Several types of views are proposed to specify 
different requirements concerns [11]. In particular, we use the 
following views to represent our requirements model. 

(i)  Variability view 
This view represents functional requirements as goals and 

relations between them. A goal refinement decomposes each 
goal in several sub-goals (AND refinement) or alternative 
combinations of sub-goals (OR refinement). The refinement 
process of goals terminates when they can be 
“operationalized”; i.e., solved by components or operations. 
Each leaf-goal may have different operationalizations that 
represent system's variability. Moreover, relations like 
“requires” or “excludes” can be used to constrain the selection 
of some operationalizations and, subsequently, reduce the 
configuration space.  



 
Figure 1: Functional variability view (from [10]) 

Figure 1 depicts the functional variability of our running 
example. The top goal “Promote Learning Process” depends 
on the two sub-goals “Individualize Course Material” and 
“Provide Communication Service” to be satisfied.  
Additionally, the goal “Provide Communication Service” 
depends on the two leaf-goals “Offer Communication Tools” 
and “Update Collaboration Group” to be satisfied, and so on.    

Finally, each leaf-goal has at least one operationalization. 
For example, “Individualize Media Delivery” goal can be 
operationalized by relevant media like text, video, graphics 
and images. 

 
(ii)  Soft goals view 
It represents the non-functional requirements as soft goals 

and relations between them. 

 
Figure 2: Soft goals view (from [10]) 

Figure 2 shows the soft-goals view for the running 
example. This model is composed of five soft goals related to 

the aforementioned “soft-requirements” {R1, R2, R3, and 
R4}:  

1. Waiting time optimization 
2. Relevant communication  
3. Group homogeneity  
4. Interactive communication 
5. Accessibility enhancement. 
 

(iii)  Soft goals satisficing view 
This view defines the impact of the operationalizations and 

the context variables on satisficing the soft-goals. To this end, 
it specifies (1) claims to define expected satisficing levels 
from the operationalizations and (2) soft-dependencies to 
define required satisficing levels for each context variable 
values.  The satisficing level is defined using 5-point scale 
ranging from (0) completely denied to (4) completely 
satisficed. 

Figure 3 depicts 4 soft-dependencies and 13 claims. For 
instance, C7 indicates that using Audio with a low Audio 
Bitrate fully satisfices Waiting Time Optimization, while the 
SD4 indicates that the soft-goal Waiting Time Optimization 
should be fully satisficed when Network Speed is low.  

 



 
Figure 3: Soft goals satisficing view (from [10]) 

(iv)  Context view 
It supports the definition of context variables and relations 

between them. 
Figure 4 depicts the following context variables for the 

running example:  
• Video bitrate {high, low} 
• Network speed {high, low} 
• Audio bitrate {high, low} 
• Geographical change space {true, false} 
• Frequency of use {high, low}    
• Noisy environment {true, false} 

 
Figure 4 : Context view (from [10]) 

 
Notice that to avoid overloading the operating system, the 

running example allows Geographic change only for long 
stays; i.e., when the stay last more than 30 days. In this regard, 
when the monitoring system detects a change in learner 
geographical space, it alerts the system to verify and send 

feedback about the nature of the stay (long or short). We will 
return to the running example and give more details after 
describing our proposal. 

IV. PROPOSED APPROACH 
In this paper, we propose a monitoring process that should 

be performed in two stages: at design time and at runtime. The 
idea within the design time monitoring is to simplify the 
requirements specification and carry out the verification of the 
specification using graphical simulations. The verified 
specification is used as a good starting point to automatically 
build a CP. At runtime, the requirements monitoring rest on 
the generated CP to verify the satisfaction of the requirements 
and generate optimal configurations that satisfy most of the 
constraints regarding the learning requirements and the 
operating environment. 

A. At design time  
The administrator elucidates business goals, the 

requirements to be monitored and assumptions about the 
environment. And then the designer builds the requirements 
model as a DSPL using REFAS language and verifies the 
requirements model through VariaMos. This latter is used to 
automatically transform the verified requirements model into a 
CP, where context variables, soft-goals, goals, and 
operationalization goals are mapped as variables, and soft-
dependencies and claims as constraints. 



B. At runtime 
The requirements monitoring framework is built as MAPE 

loop, under adaptive e-learning systems, which continuously 
checks the learning requirements satisfaction at runtime using 
the generated CP. 

Figure 5 depicts the overall framework of our approach. 
The right upper part shown a general architecture of AES 
which is composed of three models: (1) the learner model 
represents the current state of a learner that includes relevant 
information such preferences, goal, learning style, progress 

and behavior. This information is derived from questionnaires, 
logging data and interaction sequences and it allows the 
system to perform the desired adaptation. (2) The domain 
model represents relations between concepts in the target 
subject area and general information such media format 
options of educational resources. And (3) the adaptation model 
provides different adaptations strategies to personalize the 
learning process by matching the educational resources to 
each learners. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
As depicted in the Figure 5 (lower part), the MAPE loop 
involves feedback processes with four stages:  

The first stage collects relevant data about the context 
(environment, learners and educational resources) from 
environmental sensors (external sensors) or other sources 
such logging data (internal sensors). In this stage, the 
requirements monitoring may verify certain variables values 
by working closely with the system and learners. For 
example, the requirements monitoring module may ask the 
system for available courses to enable or disable a specific 
media format option. 

The collected information about the managed elements 
are stored in a parameter file and periodically updated 
whenever a change is detected. 

Next, the analysis phase checks the impact of the change 
on the requirements satisfaction. The requirements 
evaluation is performed by the constraint programming 
solver which uses the available values of the variables from 
the parameter file, and if deviations are detected (i.e., the 

system is not providing the desired satisficing level of the 
soft-goals) triggers the planning phase. 

Next, the planning stage is in change of executing the 
constraint program to find optimal configurations that 
maximizes the satisfaction of the soft goals. 

Finally, the executing stage is charged to send feedbacks 
to inform the system about deviations and a list of available 
optimal configurations. 

V. MORE ON THE RUNNING EXAMPLE—SIMULATION 
Scenario: Let us suppose we deal with a verbal learner. 

According to FSLS, this learner apprehends knowledge by 
listening to spoken words. Consequently, the system should 
deliver educational video resources to this learner. 

Design time simulation  
By executing a simulation in VariaMos, the designer can 

verify the requirements model and generate solutions for a 
specific combination of context variables and 
operationalization goals. For instance, by considering an e-
learning system with Video, External Mail, Physical-Self-

Figure 5 : Monitoring requirements framework under adaptive e-learning systems 

Deviations 

If alternative configurations exist 

Change 

Adaptation Model 

Student Model Domain Model 

  Adaptive e-learning system 

 

 Educational resources 
repository 

 

Learner 

CP generates alternative 
configurations that satisfy 
most the constraints with 
free operationalizations 

under the current context 

CP analyzes the 
change impact on 

the soft-goals 
satisficing 

Monitor context 
variables and system 

configuration 

Execute alert 
function 

Se
ns

or
s 

Requirements Monitoring 

 

 
 

Environment 



helpGr and Use Subtitles, and this context: Network Speed 
is ‘low’, Frequency Of Use is ‘low’, Geographic Change 
Space is ‘true’, Video Bitrate is ‘high’, Is Long Stay is ‘true’ 
and Noisy Environment is ‘false’, the designer can visualize 
the claims, soft dependencies and soft goals that are 
satisfied (or not) by VariaMos. This scenario is presented in 
Figure 6. 

 
Figure 6 : Simulation of a configuration through VariaMos 

Runtime reasoning 
Consider the scenario described above. While the 

system is in operation, the requirements monitoring 
module selects the claim CL9 (see Figure 7) that 
indicates the highly positive influence of Video in 
satisficing the Waiting Time Optimization soft goal (i.e., 
expected level = 4). Whereas the Soft dependency SD1 
(see Figure 7) indicates that the Waiting Time Optimization 
soft goal should be completely satisficed if the Network 
Speed connection is low. Therefore, the requirements 
monitoring detects that the soft goal Waiting Time 
Optimization is not satisficed. 

As a next step, the requirements monitoring module 
looks for optimal configurations, then it generates 40 
relevant configurations that satisfice as many soft goals as 
possible, with respect to the context at hand.  For instance, 
as the scenario specifies a low Network Speed, an 
alternative may indicate the need to deliver a video 
with low Video Bitrate to satisfice the Waiting Time 
Optimization soft goal.  
 

SD4  ⇔ (NetworkSpeed = low) 

SD4  ⇒  (WaitingTimeOptimization_RequieredLevel = 4) 
CL9  ⇔ ((Video is selected) ∧ (VideoBitRate = high)) 
CL9  ⇒  (WaitingTimeOptimization_ExpectedLevel = 1) 

SD2  ⇔ (FrequencyOfUse=low) 
SD2  ⇒  (RelevantCommunication = 4) 
Cl2   ⇔  ((ExternalMail is selected)  ∧ (SMS is selected)) 
CL2  ⇒  (RelevantCommunications_ExpectedLevel = 4) 
CL2  ⇒ (InteractiveCommunications_ExpectedLevel = 1) 

SD1  ⇔ ((GeographicChangeSpace = true)  ∧ (IsLongStay = 
true)) 
SD1  ⇒ (GroupHomogeneity_RequieredLevel = 4) 
CL3  ⇔ (PhysicalSelf-helpGr is selected) 
CL3  ⇒  (GroupHomogeneity_ExpectedLevel = 2) 

Figure 7: Extract of the constraint program in a simplified 
language 

VI. CONCLUSION  
In this paper, we have shown how to monitor the 

requirements for an adaptive e-learning systems (AESs) in 
order to improve the requirements satisfaction of these kind 
of systems (i.e., systems that are highly personalized under 
changing environmental conditions at runtime). The 
monitoring module continuously checks the conformity of 
AES to its requirements and generates optimal 
configurations that contribute most positively to the non-
functional requirements (soft-goals). The proposed 
framework is implemented as a MAPE loop, our 
contribution focuses in the planning phase which is based 
on a generated constraint program (CP) from the 
requirements model. 
    Our approach allows designer to specify the requirements 
model with a high level specification language, to verify the 
resulting model at design time through simulations using 
VariaMos tool, and  finally to transform the verified model 
into a CP. This automation presents two advantages: (1) it 
avoids a misinterpretation of the specification and a loss of 
information during the transformation, and (2) it explores 
the power of constraints programming reasoning and the 
expressiveness of goal modelling to represent complex 
systems. 

Due to the fact that the tool uses a constraint 
programming representation of the dynamic product line, 
our approach is confronted to the limitations of any 
constraint program and the limitations of the solvers in 
which these programs are executed. Thus, we plan to 
conduct an empirical study to measure (i) the performance 
and scalability of this approach, (ii) the impact of the 
proposed framework on the learning process, and (iii) 
satisfaction of learners, using a real case. 

REFERENCES 
[1] Weber, G., & Brusilovsky, P. (2001). ELM-ART: An adaptive 

versatile system for Web-based instruction. International Journal of 
Artificial Intelligence in Education (IJAIED), 12, 351-384. 

[2] Mitrovic, A., Mayo, M., Suraweera, P. & Martin, B. (2001). 
Constraint-based tutors: A success story. In L. Monostori, J. Vancza & 
M. Ali (Eds.), Proceedings of the 14th International conference on 
industrial and engineering applications of artificial intelligence and 
expert systems IEA/AIE-2001,June 2001 (pp. 931–940). Budapest. 



[3]  De Bra, P., Aerts, A., Berden, B., De Lange, B., Rousseau, B., Santic, 
T., ... & Stash, N. (2003, August). AHA! The adaptive hypermedia 
architecture. In Proceedings of the fourteenth ACM conference on 
Hypertext and hypermedia (pp. 81-84). ACM. 

[4] Papanikolaou, K. A., Grigoriadou, M., Kornilakis, H., & Magoulas, G. 
D. (2003). Personalizing the Interaction in a Web-based Educational 
Hypermedia System: the case of INSPIRE. User modeling and user-
adapted interaction, 13(3), 213-267. 

[5] Tseng, J. C. R., Chu, H.-C., Hwang, G.-J., & Tsai, C.-C. (2008a). 
Development of an adaptive learning system with two sources of 
personalization information.Computers and Education, 51, 776–786. 

[6] Hwang, G. J., Kuo, F. R., Yin, P. Y. & Chuang, K. H. (2010). A 
heuristic algorithm for planning personalized learning paths for 
context-aware ubiquitous learning. Computers & Education, 54, 404–
415. 

[7] Wang, S. L., & Wu, C. Y. (2011). Application of context-aware and 
personalized recommendation to implement an adaptive ubiquitous 
learning system. Expert Systems with Applications, 38(9), 10831-
10838. 

[8]  Mampadi, F., Chen, S. Y., Ghinea, G., & Chen, M. P. (2011). Design 
of adaptive hypermedia learning systems: A cognitive style approach. 
Computers & Education, 56(4), 1003-1011 

[9] Chen, W., Niu, Z., Zhao, X., & Li, Y. (2014). A hybrid 
recommendation algorithm adapted in e-learning  environments. World 
Wide Web, 17(2), 271-284. 

[10] Dounas L., Mazo R., Munoz Fernandez J., Salinesic.,El Beqqali O., 
(2015). Runtime requirements monitoring framework for adaptive e-
learning systems. 26th edition of the International Conference on 
Software & Systems Engineering and their Applications 
(ICSSEA),,Paris, France. 

[11] Brun, Y., Serugendo, G. D. M., Gacek, C., Giese, H., Kienle, H., 
Litoiu, M., ... & Shaw, M. (2009). Engineering self-adaptive systems 
through feedback loops. In Software engineering for self-adaptive 
systems (pp. 48-70). Springer Berlin Heidelberg. 

[12]  Munoz-Fernández, J. C., Tamura, G., & Salinesi, C. (2014, 
September). Towards a requirements specification multi-view 
framework for self-adaptive systems. In Computing Conference 
(CLEI), 2014 XL Latin American (pp. 1-12). IEEE. 

[13]  Graphvis (2004) visualization tool monitoring group communications 
in order to help instructors detect collaboration problems. 

[14]  Mazza, R., & Dimitrova, V. (2007). CourseVis: A graphical student 
monitoring tool for supporting instructors in web-based distance 
courses. International Journal of Human-Computer Studies, 65(2), 
125-139. 

[15]  Romero-Zaldivar, V. A., Pardo, A., Burgos, D., & Kloos, C. D. 
(2012). Monitoring student progress using virtual appliances: A case 
study. Computers & Education, 58(4), 1058-1067. 

[16]  Fickas, S., & Feather, M. S. (1995). Requirements monitoring in 
dynamic environments. In Requirements Engineering, 1995., 
Proceedings of the Second IEEE International Symposium on (pp. 
140-147). IEEE. 

[17]  Feather, M. S., Fickas, S., Van Lamsweerde, A., & Ponsard, C. 
(1998). Reconciling system requirements and runtime behavior. In 
Proceedings of the 9th international workshop on Software 
specification and design (p. 50). IEEE Computer Society. 

[18]  Robinson, W. N. (2003). Monitoring web service requirements. In 
Requirements Engineering Conference, 2003. Proceedings. 11th IEEE 
International (pp. 65-74). IEEE. 

[19]  Goldsby, H. J., Sawyer, P., Bencomo, N., Cheng, B. H., & Hughes, D. 
(2008). Goal-based modeling of dynamically adaptive system 
requirements. In Engineering of Computer Based Systems, 2008. 
ECBS 2008. 15th Annual IEEE International Conference and 
Workshop on the (pp. 36-45). IEEE. 

[20]  Baresi, L., & Pasquale, L. (2010). Adaptive goals for self-adaptive 
service compositions. In IEEE international conference on Web 
Services (ICWS),  (pp. 353-360). IEEE. 

[21]  Whittle, J., Sawyer, P., Bencomo, N., Cheng, B. H., & Bruel, J. M. 
(2009). Relax: Incorporating uncertainty into the specification of self-

adaptive systems. In Requirements Engineering Conference, 2009. 
RE'09. 17th IEEE International (pp. 79-88). IEEE. 

[22]  Sawyer, P., Mazo, R., Diaz, D., Salinesi, C., & Hughes, D. (2012). 
Using constraint programming to manage configurations in self-
adaptive systems. Computer, (10), 56-63. 

[23]  Mazo R., Muñoz-Fernández J., Rincón L., Salinesi C., Tamura G. 
(2015). VariaMos: an extensible tool for engineering (dynamic) 
product lines. 19th International Software Product Line Conference 
(SPLC), Nashville-USA. 

[24]  Calinescu, R., Grunske, L., Kwiatkowska, M., Mirandola, R., & 
Tamburrelli, G. (2011). Dynamic QoS management and optimization 
in service-based systems. Software Engineering, IEEE Transactions 
on, 37(3), 387-409. 

[25]  Lalanda, P., McCann, J. A., & Diaconescu, A. (2013). Autonomic 
Computing. Springer London Limited. 

[26]  Franzoni, A. L., Assar, S., Defude, B., & Rojas, J. (2008, July). 
Student learning styles adaptation method based on teaching strategies 
and electronic media. In Advanced Learning Technologies, 2008. 
ICALT'08. Eighth IEEE International Conference on (pp. 778-782). 
IEEE. 

[27]  Felder, R. M., & Silverman, L. K. (1988). Learning and teaching 
styles in engineering education. Engineering Education, 75(7), 674-
681. 

[28] Mazo R., Salinesi C., Diaz D., Djebbi O., Lora-Michiels A. (2012) 
Constraints: the Heart of Domain and Application Engineering in the 
Product Lines Engineering Strategy. International Journal of 
Information System Modeling and Design IJISMD. pp. 33-68. ISSN 
1947-8186, eISSN 1947-819.Vol. 3, No. 2.  


