
HAL Id: hal-01527345
https://paris1.hal.science/hal-01527345v1

Submitted on 29 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Requirements Analysis for Context-oriented Systems
Manuele Kirsch-Pinheiro, Raul Mazo, Carine Souveyet, Danillo Sprovieri

To cite this version:
Manuele Kirsch-Pinheiro, Raul Mazo, Carine Souveyet, Danillo Sprovieri. Requirements Analysis for
Context-oriented Systems. The 7th International Conference on Ambient Systems, Networks and
Technologies (ANT 2016) , May 2016, Madrid, Spain. �10.1016/j.procs.2016.04.123�. �hal-01527345�

https://paris1.hal.science/hal-01527345v1
https://hal.archives-ouvertes.fr

Available online at www.sciencedirect.com

ScienceDirect	
Procedia Computer Science 00 (2015) 000–000

 www.elsevier.com/locate/procedia

1877-0509 © 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

The 7th International Conference on Ambient Systems, Networks and Technologies (ANT 2016)

Requirements Analysis for Context-oriented Systems

Manuele Kirsch-Pinheiro*, Raúl Mazo, Carine Souveyet, Danillo Sprovieri
Centre de Recherche en Informatique, Université Paris 1 Panthéon Sorbonne, 90 rue Tolbiac, Paris 75013, France

Abstract

Context-oriented systems are systems that observe and handle context information from the environment to guide their own
behavior. Engineering such systems represents a complex task not only due to their complexity, but also due to the notion of
context. Handling this notion involves tackling several challenges, demanding to system designers a certain knowledge and
expertise about this notion. In order to help designers on this engineering process, we propose in this paper a roadmap on context
management and a requirements elicitation process. This roadmap aims at sharing with non-expert designers the necessary
expertise on context management allowing them to better understand the notion of context and its challenges. The elicitation
process aims at guiding these non-expert designers across the roadmap, supporting them in their requirements elicitation process
concerning context management. The proposal is presented on a running example that illustrates the approach.
© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Keywords: Pervasive computing, context-aware computing, Information Systems, context modelling

1. Introduction

The notion of context corresponds to a large concept that has been explored in many different ways and systems1,

2,3,4. These systems, which we can call “context-oriented systems”, have reached different levels of maturity in the
way they consider the notion of context. Context-oriented systems are often distributed and composed of embedded
systems, control systems, real-time systems, physical systems, and network and communication systems. They are
seen in various application domains including irrigation, telecommunication (networks and communication devices
like sensors and smartphones) and online-shopping. These systems have in common the need to be capable to run
continuously under changing conditions. For instance, the price/furnisher of components can change, the
requirements and deployment conditions (temperature, bandwidth, etc.) permanently change, and partial failures of

* Corresponding author. Tel.: +33 1 44 07 86 34.

E-mail address: Manuele.Kirsch-Pinheiro@univ-paris1.fr

2 Author name / Procedia Computer Science 00 (2015) 000–000

subsystems can arise. To compare with traditional systems, systems that are able to respond to context changes are
more complex in terms of increasing modularity, functionality, integration and interoperability, growing importance
and reliance on software, and increasing number of non-functional constraints (e.g., robustness, scalability).

The ability to manage the execution context of an application is largely required in various application domains.
Qualities of systems such as flexibility, dynamicity, modularity and extensibility, are difficult to satisfy with ad-hoc
development processes. Various research works exist for handling context and for separating the infrastructure from
the application with context-oriented middleware. However, it is difficult to have a global vision or a large expertise
on context management because these works come from various research domains, each of them promotes a specific
view and treatment of the notion of context. It is then particularly difficult to identify the relevant requirements about
context management for a specific system in various application domains by a non-expert.

The purpose of this paper are (1) to propose a roadmap on context management in order to share expertise on this
topic and (2) to exploit it during the requirements elicitation process in order to support the identification of the
relevant requirements on context management for a given system.

This paper is organised as follows: Section 2 introduces a running example that illustrates the complexity of
engineering context-oriented systems. Section 3 exposes the roadmap. Section 4 shows its exploitation during the
requirements elicitation process applied on the running example. Section 5 discusses results and conclusions.

2. Motivating example

The concepts presented in this paper are considered within the flood-warning scenario proposed by Hughes et
al.5. That scenario, called GridStix, considers a Wireless Sensor Network (WSN) deployed on the Rivers Ribble and
Dee in England and Wales, respectively, as shown in Fig. 1. The WSN is used for collecting data from the physical
environment through a network of sensors that communicate by means of a wired telecommunication infrastructure
and without access to fixed power supplier. Each GridStix node consists of depth and flow sensors where power for
these devices is supplied by batteries, replenished by solar panels. Nodes are equipped with both 802.11b (Wi-Fi)
and Bluetooth communications for inter-node data transmission, with a single GSM uplink node.

A stochastic model predicts flooding according to the information sensed by each active node. In addition to the
different transmission and data collecting modes of each node, they can be activated or deactivated according to the
power level of the corresponding battery and the state of the river. The model’s accuracy is a function of the number
and distribution of nodes contributing sensor data and of the resources committed to processing the data. WSN
designers need to make assumptions about the QoS that will be achieved by deployed components. For example,
“the terrain, weather and other factors affect radio signal propagation, which in turn can affect QoS properties such
as resilience. This is a key point; that systems and their environment do not always behave as expected and self-
adaptation is a means to tolerate the unexpected”6.

Fig. 1. A GridStix node next to the River Ribble, taken from Sawyer et al.6

For supporting dynamic adaptation of the configuration of the WSNs, each system should be aware of changes in its
context and responds in a reactive and proactive manner. For engineering these kinds of systems it is necessary to
specify adaptation policies that state the actions required to adapt the running system to a configuration that better
fits not just its current context but sometimes the future context for the proactive adaptations. In order to do so, the
occurrence of context changes (e.g. the low level of a battery) should be predicted to allow the system to change

 Author name / Procedia Computer Science 00 (2015) 000–000 3

(e.g. change a node with a low battery by a neighboring node with a high level of battery) itself to better answer to
the new context and prevent the occurrence of a predicted anomaly. Engineering systems like GridMix is then a
challenge that heavily depends on context management. Different aspects should be considered, which represent a
hard task for non-expert designers. The next section intends to tackle this challenge.

3. Contribution

The notion of context corresponds to a large notion explored by different kinds of systems. These systems, called
here “context-oriented systems”, are not limited to context-aware systems, which are systems capable of adapting
their behavior to any change in their execution context2,4. We consider as “context-oriented systems” all kinds of
systems that explore this notion in their execution behavior for different purposes. Due to the complex nature of the
notion of context, engineering such systems can easily become a hard task since different aspects should be taken
into account in that task. Although several surveys on context-aware computing exist1,3,4,7,8,9, they focus often on this
community and its experts, and not on non-experts designers from other communities. These are left alone for
understanding and identifying the necessary concepts and components for building context-oriented applications. In
order to help such non-expert designers to better understand challenges that raise from the notion of context, we
propose in this paper a roadmap, which summarizes results from the literature (e.g.1,4,7,8,9,10) and from our own
experience (e.g.3,6,11,12,13,14,15), and a requirements analysis process, which guides non-expert users on identifying
requirements of these systems during the engineering process. Based on an extended review of literature, we could
identify several dimensions that characterize context-oriented systems and the use they made of the notion of
context. Each dimension reveals particular challenges and issues that should be considered when engineering such
systems. The roadmap presented in Section 3.1 summarizes these dimensions in order to bring to a non-expert the
necessary knowledge for this engineering process, while Section 3.2 describes a process for exploring this roadmap.

3.1. The context management roadmap

Engineering context-oriented systems implies to take into account different aspects involving the notion of
context and its support. The roadmap we propose below aims at identifying such aspects and guiding the
requirements elicitation process of such systems. By analyzing several existent works from different research areas,
we could identify most relevant characteristics of the context management required by context-oriented systems and
organize them according to six dimensions (Fig. 2): purpose, subject, model, acquisition, interpretation and
diffusion. Each dimension identifies challenges and issues, leading to the identification of functional and non-
functional goals that should be considered and satisfied (at least partially) by these systems.

Fig. 2. The context management roadmap

The first dimension of the roadmap is the “purpose” dimension. It considers why a given system needs context
information. A context-oriented system uses the notion of context for a precise purpose, which determines how this
information is explored. Context-aware systems, for instance, use context information for adaptation purposes:
adapting content supplied to the user16,17; adapting services11,18 or the system composition19,20 according to the
execution conditions. Still, adaption is not the only purpose of context-oriented systems. Context information may
also be used to characterize other information or for decision-making. For instance, Kornyshova et al.21 use context

Model

Context

Subject

Acquisition

Device

Observation

Management

Diffusion

Interpretation

Purpose

4 Author name / Procedia Computer Science 00 (2015) 000–000

information for characterizing fragments of methods on Method Engineering, and Kirsch-Pinheiro et al. 12 associate
context and group awareness information on Groupware Systems for helping users to better coordinate their actions.

Once the “purpose” dimension is clearly identified, it is possible to consider what information precisely will be
considered as a context. That is not a trivial question, since the notion of context corresponds to a large and often
ambiguous concept3,10. The dimension “subject” aims at tackling this question.

Multiple definitions have been proposed for the notion of context1,3,10. The most accepted one considers context
as any information that can be used to characterize the situation of an entity (a person, place, or object) that is
considered relevant to the context-oriented system2. This definition points out both an observed entity (e.g. the user)
and information that is observed about this entity. The entity acts as a focus guiding the observation: the focus is the
entity, but when looking at this entity, different elements can be observed. For instance, when considering a user
(i.e. an entity), it is possible to observe his location, his mood, his level of expertise, etc.; when considering a device
(i.e. another entity), it is possible to observe its available memory, network connection, etc. We call here context
element the information observed (location, memory, etc.) about a given entity.

What information about an entity could be considered as context remains an open question and it depends on the
application2,10. The purpose of a context-oriented system determines what information will be observed. Different
entities and context elements can be considered as relevant: information about the user (e.g. location), about a device
(battery level, network connection…), etc. In addition to these commonly observed elements, other context elements
can be considered, such as organizational elements characterizing an entity inside an organization or a group21,12.

Identifying relevant context information raises other related issues. The first one concerns the relationship among
the observed elements. Context elements are not necessarily independent and their relationship can be also relevant.
It is notably the case of cooperative applications (e.g. knowing that an activity is related to a group can be as
important as knowing the group itself12). Another issue is the granularity of the observed information. Some context
elements can be decomposed on lower-levels elements or regrouped forming higher-level elements. Managing
different levels of abstraction can be required by complex context-oriented systems (e.g. Da et al.20).

The “subject” dimension leads to a new question: how to represent observed context elements and their
relationships? The dimension “model” intends to analyze this question. Its main goal is to determine the most
appropriate representation for context information on a given system according to its identified purpose. An
inappropriate model may compromise the implementation of the system. Several approaches of context modeling
exist, from key-value sets and object oriented models up to complex ontologies3,8. Simple models, such as key-value
ones, will be easy to implement but will offer no reasoning mechanism. In the opposite, ontology-based models will
be more complex to implement, but they will allow complex reasoning mechanisms.

Representing context information is a challenging issue due to the nature of this information. First of all, context
information can be heterogeneous. Since different kinds of context elements can be observed, the information
obtained may vary from numeric information, like GPS coordinates or a percentage (e.g. CPU load), up to symbolic
values (e.g. the role of a user in a group). Context information is also uncertain and often incomplete11,22, mainly due
to problems during the acquisition of data (connection problems, interferences…), resulting on erroneous or missing
data. This uncertainty represents an important issue since these data influence the behavior of a context-oriented
system. Different approaches on quality of context23 exist. They underline the importance of this issue when
modeling context information. Finally, context information is naturally dynamic, and therefore varying among
observations. This dynamicity must be supported by the context model, which should assume that values associated
to context elements will vary on time.

The context model should be feed with values corresponding to the current state of observed entities and context
elements. The dimension “acquisition” considers this question. The process of acquiring context information from
entails three sub-questions, thus, three sub-dimensions: (i) how to observe the environment? (device); (ii) how to
feed context model? (observation); (iii) how to manage dynamicity of the environment? (management).

The “device” dimension considers the devices used for observation purposes on a given system. The main
challenge here concerns the heterogeneity, since the nature of the acquisition device can be quite variable. For
instance, user’s location can be acquired using a GPS device or calculated from a Wi-Fi connection; the information
about the user’s role on a team can be acquired from the Information System. These examples illustrate different
natures of acquisition devices. Context-oriented systems must handle this heterogeneity and the interoperability

 Author name / Procedia Computer Science 00 (2015) 000–000 5

among devices. Several researches2,24 consider this issue, proposing mechanisms for isolating these systems from the
heterogeneity of the environment and allowing a better interoperability among different observation devices.

The “observation” dimension considers how these devices will feed the context model. Different observation
modalities can be considered according the observed information and its dynamicity. For instance, location
information will demand an active observation in order to guarantee some accuracy, while the user’s role can be
acquired on-demand. Once observed, this information will feed the context model, which needs to be kept updated
in order to represent the current context of the observed entities. It is during the observation that all information
needed for handling quality of context should be acquired and associated with observed values.

The environment itself being dynamic, the availability of devices used for observation is not guaranteed. Some
devices may disappear (e.g. being switched off) and others may join the environment, becoming available for
capturing the context of a context-oriented system. The management of this dynamic environment is the goal of the
“management” dimension, which considers the evolution of the environment and the availability of the acquisition
devices on it. Several approaches on resource discovery exist25 and can be considered on such environments.

Data collected during acquisition process correspond often to a raw data that should be aggregated or interpreted
in order to be better exploited by context-oriented systems. The “interpretation” dimension focuses on this
challenge, on how to transform raw context data on useful knowledge for context-oriented systems. Different
interpretation mechanisms exist in the literature, such as rule-based reasoning based on ontologies20,26. The goal of
the interpretation dimension is then to specify appropriate interpretation mechanisms and to consider necessary
reasoning and aggregation mechanisms according to the capabilities of the context model. The interpretation cannot
be dissociated from the context model. Not only the context model will constraint the possibilities of interpretation
(i.e. a key-value structure will offer fewer reasoning opportunities than an object-oriented or an ontology-based
model), but also the information that will be deduced from the interpretation mechanism will also feed the context
model, similar to an acquisition mechanism. For instance, the context plugins proposed by Paspallis et al.24 allow
deducing new information that is integrated to the context model as new observed value. The three dimensions,
model, acquisition and interpretation are then intrinsically connected and cannot be dissociated.

Besides, a new tendency of interpretation can be observed: the mining of context information. The idea is to
apply data mining techniques on context information for different purposes: to discover missing information27, to
anticipate context evolution28, or to determine the relevance of a context element on a given system13. These mining
techniques allow context-oriented systems to assume a predictive behavior, anticipating environment evolution.

Last but not least, the “diffusion” dimension considers the distribution of context information over a distributed
set of nodes. Context-oriented systems are often distributed, in which multiple nodes communicate and exchange
information about their current state. In some cases, the context information should be distributed from the node in
which it is observed to a different node, in which it will be processed, interpreted or stored. For instance, Da et al. 20

consider distributing context information about the nodes in order to better adapt application deployment to
available resources. Different approaches exist for assuring the diffusion of context information: by proximity of
nodes, by grouping nodes, etc.9,14. Several challenges arise from this distribution, above all, the stability of the
context information (how long a given information remains valid and useful after being transferred from a different
node?) and the coherence of the collected data are originated, since contradictory data can be reported from multiple
nodes observing a given entity.

All these dimensions and their challenges should be considered when engineering a context-oriented system. The
next section presents a process for guiding this engineering based on the proposed road map.

3.2. Engineering context-oriented system

On a context-oriented system, designers must also consider requirements related to context management issues.
The process below uses the proposed roadmap for guiding the elicitation of these requirements. Starting from
functional (FR) and non-functional (NFR) requirements of a system, this process guides non-expert designers across
the roadmap for better understanding the system needs concerning context management.

The first step of this process (Step 1 in Fig. 3) leads system designers to consider the purpose dimension. As
explained in Section 3.1, a context-oriented system may explore the notion of context for different purposes. The
first step for engineering this kind of system is then to clearly identify this purpose. After defining the purpose, Step

6 Author name / Procedia Computer Science 00 (2015) 000–000

2 considers the subject dimension; designers must determine the entities and context elements that will be observed
(Step 2). After identifying the entities and the relevant context elements to observe, a context representation model
must be chosen to implement these concepts and their corresponding data (Step 3- model dimension).

Fig. 3. Requirements analysis process of a context-oriented system.

Step 4 considers the acquisition dimension. Three aspects should be considered: the acquisition devices (Step
4.1), the observation (Step 4.2) and the device management (Step 4.3). In the first one, designers should define the
devices that will be used for acquiring context information, while the second considers the observation frequency
and quality of context criteria. In the third step, designers should consider the management of the observation
devices and the dynamicity of the environment. Analyzing requirements on context acquisition may reveal new
requirements on context modeling and subject. For instance, when considering quality of context (Step 4.2) or
device management (Step 4.3), other context information may appear as necessary, forcing to reconsider Step 2.

Once context model and acquisition are fully defined, Step 5 considers the interpretation dimension. Not all
context-oriented systems will need interpretation capabilities. System designers must consider whether interpretation
is needed and the different interpretation mechanism that could be used (aggregation of data, transformation, if-then
rules, reasoning, etc.). According to requirements on interpretation, the context model can be eventually affected,
since the chosen model should allow these interpretation requirements, which may lead back to Step 2.

Steps 1 up to 5 reveal the basic requirements on context management. These should contribute to the purpose
satisfaction. Step 6 considers whether the identified requirements permit to fully accomplish system purposes or if
new elements are necessary. As shown in Fig. 3, the proposed elicitation process is an iterative process, involving
multiple cycles. These cycles are due to the interdependency among the roadmap dimensions. The analysis of a
given dimension may lead to new requirements on previously analyzed dimensions.

Finally, the last step (Step 7) considers the distribution of context information between different nodes (diffusion
dimension). This step is particularly important on distributed systems in which context information acquired in a
node should be made available. Next section illustrates the application of the proposed process on the running
example introduced in Section 2.

4. Preliminary results

To show the relevance of our contribution, the process below is applied on our running example system (cf.
Section 2). The main goal of this system is to predict the flooding of the river in order to help users to make decision
and trigger actions according to the river state (FR1). The goal is combined with a non-functional requirement
expressing that the system must be energy-efficient (NFR1). This flood monitoring system can be seen as a context-
oriented system because it should observe in real-time the depth and the flood rate of river Ribble and according to
their level it should alert the users and support them in their decision making. Following the process in Fig. 3, Step 1
defining the purpose leads to choose decision making as purpose of the system.

Step 2 defining subject considers the “subject” dimension, identifying the entities to observe and all information
related to them. Our main entity is the river and more precisely its state. In order to determine the state of the river,
we need to observe the depth and flow rate of the river at different points. The state of the river is classified in three
categories: normal, alert and emergency. It is calculated by assembling depth and flow rate from ordered relevant
points. Besides, the analysis of the subject allows determining that two levels of granularity must be managed in the
context: the river level and the point level.

Step 3 defining the context model. According to the “model” dimension, several paradigms exist to implement
the context model3,8 (key-value, semi-structured model, object orientation, graph orientation or ontology). In order
to choose the appropriate one, we have to consider several criteria such as: dynamism, heterogeneity, generality or
extensibility, quality and semantic richness. Inspired by the framework proposed by Najar et al.3 and by the analysis

Step 1: Defining
Purpose

Step 2: Defining
Subject

Step 4:
Acquisition

Step 5:
Interpretation

Step 6: Purpose
Satisfaction

data
 determined?

no no

information and rules
fulfil goal?

Step 7: Distributing
Context Information

interpretation
possible?

no

Step 3: Defining
Context Model

yes yes yes

 Author name / Procedia Computer Science 00 (2015) 000–000 7

performed on multiple surveys1,4,7,8, we could classify on Table 1 different context model paradigms considering
these criteria, themselves resulting from the roadmap and its sources. According to the importance of these criteria
for the system, Table 1helps to select the more appropriate paradigm to implement the context model. In the
GridStix case, dynamism and quality are two main criteria and generality & extensibility are also useful if the
control of the river intended to be extended to the water quality, for instance. According to these criteria, the object
paradigm seems appropriate to implement the context model for the GridStix case, combining the necessary criteria
and the easiness of use and implementation.

Table 1. Classification matrix for context model paradigms.

 Paradigm
Criteria	

Key Value	 Semi-structured
languages (e.g. xml)	

Object-
Oriented	

Graph-
based	

Ontology	

Dynamism	 + +	 - -	 + +	 - -	 - -	
Heterogeneity	 + +	 + +	 + +	
Generality & Extensibility +	 -	 + 	 +	 + +	
Quality	 - -	 +	 +	 -	 + 	
Semantic Richness	 - -	 +	 + +	 +	 + +	

Step 4 acquisition analyzes the requirements about the infrastructure and the process of context acquisition. Step
4.1 deals with the device required to observe the river entity. In our case, GridStix sensor/activator is situated at
each point of a river to capture the flow rate and depth parameters. In addition, these sensors will be organized
through a network and communicate data among them by means of Bluetooth or Wi-Fi communication modes. Step
4.2 leads to the identification of the observation frequency and the quality of context related data. Each observation
of flow rate and depth follows a preconfigured frequency of time between two observations. This frequency is
parameterized at the deployment according to each point of the river. Since the quality of the context is an important
criterion for us, the model context needs to register especially the timestamp associated with flow rate and depth
data. The support for decisions will be more accurate if the system keeps track of all data observed and calculated in
the context management (flow rate, depth and state). This modification brings us back to Step 2 to change the
context model by adding the timestamp to each context information of a point of the river: flow rate, depth and state.

The last step of the “acquisition” dimension deals with the device management (Step 4.3). The availability and
the dynamic of the observation infrastructure are important aspects of the GridStix case, since this infrastructure
must be energy efficient (NFR1). Each sensor becomes an observed entity with relevant information such as: battery
level, Bluetooth status (on/off), Wi-Fi status (on/off) and general status (on/off). It is then necessary to return to Step
2 to extend the subject and the model with this new context information.

Step 5 interpretation aims at defining the interpretation rules. These rules will enable the derivation of new
context information that is not observed by the acquisition infrastructure. This step leads to determine the
computations of the energy state of each sensor (low or high), the state at each point and the whole river (normal,
alert or emergency). Step 6 purpose satisfaction intends to verify that context information and rules are enough to
fulfill the goals. The functional goal (FR1: predict flooding) can be satisfied with the current context and the
interpretation rules. However, the non-functional requirement “energy efficient” (NFR1) cannot be satisfied because
the rules for adapting the information transmission and the energy consumption of each sensor have not yet been
defined. Therefore, Step1 must be performed again to refine the purpose of our context-oriented system. The energy
efficiency of the acquisition infrastructure leads to define a new purpose: self-adapting the acquisition infrastructure
according to the energy consumption. It means a two-level architecture: one dedicated to the management of the
acquisition infrastructure, and a higher level one dedicated to the flooding monitoring system. The first one manages
the network of sensors and context information related to them, and the second one considers the context of the river
including its overall level and the level of its observed points. Thus, returning to Step 2 leads us to revise the context
model and to verify that all information about each sensor and the network of sensors is enough to perform the
adaptation rules required for monitoring the energy consumption and for the data transmission through the network.
Step 4 allows checking if this information about the sensors can be acquired. Besides, the sensor is also an activator
on which an API is defined to get information but also to react by changing its status (general, Wi-Fi, Bluetooth).
This API will be used on Step 5 and on Step 6, which determine the interpretation rules for the acquisition of the
sensor context and rules for adapting each sensor according to the energy consumption.

8 Author name / Procedia Computer Science 00 (2015) 000–000

Finally, Step 7 considers distribution of context information in our system. The diffusion rule is then determined
to adapt the transmission of context information between nodes in order to satisfy the flooding prediction (FR1), and
to adapt the acquisition infrastructure to the energy consumption (NFR1).

The Fig. 4 resumes the architecture resulting from this elicitation process. In this architecture multiple elements
of context management could be identified during the different iterations of the process (elements in green were
identified in the first cycle, while elements in orange were defined during subsequent interactions). We can also
observe two different levels of architecture using these context management features: one level handling the
flooding prediction system (in green in Fig. 4), corresponding to the first requirements FR1, and a second level (in
orange in Fig. 4) in charge of self-adapting the sensor network for energy saving (requirement NFR1).

Fig. 4. Conceptual architecture resulting from the elicitation process.

5. Conclusion

This paper proposes a roadmap of context management challenges and issues for helping non-expert designers to
better understand and elicit requirements of context-oriented systems. We present some advantages for supporting
non-experts to define the architecture of context-oriented systems. By using the process of Fig. 3 for engineering
GridStix, we obtained different results than those obtained in other studies. For example, the architectures proposed
by Sawyer et al.6 and Muñoz et al.15 for the GridStix case are built in one block of requirements and restrictions that
belongs to all different levels of the system. That vision contrasts to the one presented in this paper, which leads to
the definition of a two-level architecture where each level has its own requirements and associated restrictions. Each
level should consider their own context and the requirements about the expected dynamicity, modularity and
extensibility that each level should guarantee in order to support the achievement of the requirements associated to
the higher-level systems. Moreover, the separation between the concepts associated to the systems and the
implementations of these concepts permit the definition of architectures that can easily evolve; while the physical
structure of the sub-systems and the technologies used to implement them keep changing. The approach presented in
this paper is a first step in that direction and we intend to continue its validation as part of our future work.

References

1. Brézillon, J.; Brézillon, P. Context Modeling: Context as a Dressing of a Focus. In: Kokinov, B., Richardson, D., Roth-Berghofer, T. & Vieu,
L. (eds.). 8th Int. and Interdisciplinary Conference on Modeling and Using Context. LNCS 8175. Springer Berlin / Heidelberg, 2007;136–149.

2. Dey, A. Understanding and using context. Personal and Ubiquitous Computing, 2001; 5(1): 4-7.
3. Najar, S.; Saidani, O.; Kirsch-Pinheiro, M.; Souveyet, C. & Nurcan, S. Semantic representation of context models: a framework for analyzing

and understanding. In: Gomez-Perez, J. M.; Haase, P.; Tilly, M. & Warren, P. (eds). Proceedings of the 1st Workshop on Context, information
and ontologies (CIAO 09), European Semantic Web Conference (ESWC'2009). ACM; 2009. p. 1-10.

C
ontext M

anagem
ent

M
od

el

Entity
-timestamp

Ctx Element Battery
Level

Bluetooth
Status

Battery
Level

Depth Flow Rate

River State

River

River
Point

Sensor

In
te

rp
re

ta
ti

on

En
er

gy
 s

av
in

g
ru

le
s

D
istribution

D
istribution rules

Acquisition
Sensor management API Sensor data acquisition API

Self adapting sensor network

Flooding monitoring & prediction

 Author name / Procedia Computer Science 00 (2015) 000–000 9

4. Baldauf, M.; Dustdar, S. & Rosenberg, F. A survey on context-aware systems. Int. J. of Ad Hoc and Ubiquitous Comp., 2007; 2(4):263-277
5. Hughes, D.; Greenwood, P.; Blair, G.; Coulson, G.; Grace, P.; Pappenberger, F.; Smith, P. & Beven, K. An Experiment with Reflective

Middleware to Support Grid-based Flood Monitoring. Concurr. Comput. : Pract. Exper. John Wiley and Sons Ltd., 2008; 20(11):1303-1316
6. Sawyer, P.; Mazo, R.; Diaz, D.; Salinesi, C. & Hughes, D. Using Constraint Programming to Manage Configurations in Self-Adaptive

Systems. Computer, 2012; 45(10): 56-63
7. Raychoudhury V, Cao J, Kumar M, Zhang D. Middleware for Pervasive Computing: A Survey. Pervasive Mob. Comput. Elsevier Science

Publishers, 2013; 9(2):177-200
8. Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan, A., Riboni, D.: A survey of context modelling and reasoning

techniques. Pervasive Mob. Comput., 2010; 6: 161–180.
9. Bellavista, P.; Corradi, A.; Fanelli, M.; Foschini, L. A survey of context data distribution for mobile ubiquitous systems. ACM Comput. Surv.,

2013; 45: 1–49.
10. S. Greenberg. Context as a Dynamic Construct. Human-Computer Interact., 2001; 16(2): 257–268
11. Vanrompay, Y.; Kirsch-Pinheiro, M.; Berbers, Y.: Service Selection with Uncertain Context Information, In: Stephan Reiff-Marganiec and

Marcel Tilly (eds.), Handbook of Research on Service-Oriented Systems and Non-Functional Properties: Future Directions. IGI Global, 2011.
p. 192-215.

12. Kirsch-Pinheiro, M.; Gensel, J.; Martin, H. Representing Context for an Adaptative Awareness Mechanism, In: de Vreede G.-J.; Guerrero
L.A.; Raventos G.M. (Eds.), LNCS 3198 - X International Workshop on Groupware (CRIWG 2004). Springer-Verlag, 2004; p. 339--34

13. Jaffal, A.; Kirsch-Pinheiro, M.; Le Grand, B. Unified and Conceptual Context Analysis in Ubiquitous Environments. The Eighth
International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies (UBICOMM 2014), 2014; pp. 48–55.

14. Kirsch-Pinheiro, M.; Vanrompay, Y.; Victor, K.; Berbers, Y.; Valla, M.; Frà, C.; Mamelli, A.; Barone, P.; Hu, X.; Devlic, A.; Panagiotou, G.
Context Grouping Mechanism for Context Distribution in Ubiquitous Environments. In: Meersman, R. and Tari, Z. (eds.) On the Move to
Meaningful Internet Systems (OTM 2008), CoopIS, DOA, GADA, IS, and ODBASE 2008, LNCS 5331. Springer, 2008; p. 571–588.

15. Muñoz, J. ; Tamura, G. ; Mazo, R. ; Salinesi, C. Towards a Requirements Specification Multi-View Framework for Self-Adaptive Systems.
CLEI electronic journal, August 2015, 18(2), Paper 5

16. Schilit, B.N.; Theimer, M.M. Disseminating Active Map Information to Mobile Hosts. Network, IEEE, 1994; 8: 22–32.
17. Cheverest, K.; Mitchell, K.; Davies, N. The role of adaptive hypermedia in a context-aware tourist guide. Commun. ACM, 2002; 45: 47–51.
18. Chaari, T.; Dejene, E.; Laforest, F.; Scuturici, V.-M. Modeling and Using Context in Adapting Applications to Pervasive Environments. IEEE

International Conference on Pervasive Services (ICPS’06), 2006. p. 111-120.
19. Preuveneers, D.; Berbers, Y. Context-driven migration and diffusion of pervasive services on the OSGi framework. Int. J. Auton. Adapt.

Commun. Syst., 2010; 3: 3–22.
20. Da, K.; Roose, P.; Dalmau, M.; Nevado, J.; Karchoud, R. Kali2Much: a context middleware for autonomic adaptation-driven platform.

Proceedings of the 1st Workshop on Middleware for Context-Aware Applications in the IoT (M4IoT@Middleware 2014), 2014; p. 25–30.
21. Kornyshova, E.; Deneckère, R.; Claudepierre, B. Towards Method Component Contextualization. IJISMD, 2011; 2: 49–81.
22. Chalmers, D.; Dulay, N.; Sloman, M.: Towards Reasoning About Context in the Presence of Uncertainty. 1st international workshop on

advanced context modelling, reasoning and management, 2004. Nottingham, UK.
23. Chabridon, S.; Conan, D.; Abid, Z.; Taconet, C. Building ubiquitous QoC-aware applications through model-driven software engineering.

Sci. Comput. Program., 2013; 78: 1912–1929.
24. Paspallis, N.; Rouvoy, R.; Barone, P.; Papadopoulos, G.A.; Eliassen, F.; Mamelli, A. A Pluggable and Reconfigurable Architecture for a

Context-Aware Enabling Middleware System. In: Meersman, R. and Tari, Z. (eds.) On the Move to Meaningful Internet Systems:
Confederated International Conferences, CoopIS, DOA, GADA, IS, and ODBASE 2008, LNCS 5331. Springer, 2008; p. 553–570.

25. Navimipour, N.J.; Rahmani, A.M.; Navin, A.H.; Hosseinzadeh, M. Resource discovery mechanisms in grid systems: A survey. J. Netw.
Comput. Appl., 2014; 41: 389–410.

26. García, K.; Kirsch-Pinheiro, M.; Mendoza, S.; Decouchant, D. Ontology-Based Resource Discovery in Pervasive Collaborative
Environments. In: Antunes, P., Gerosa, M.A., Sylvester, A., Vassileva, J., and de Vreede, G.-J. (eds.) 19th Int. Conf. on Collaboration and
Technology (CRIWG 2013), LNCS 8224. Springer, 2013; p. 233–240.

27. Ramakrishnan, A.; Preuveneers, D.; Berbers, Y. Enabling self-learning in dynamic and open IoT environments. In: Shakshuki, E. and Yasar,
A. (eds.) The 5th Int. Conf. on Ambient Systems, Networks and Technologies (ANT-2014), Procedia Computer Science, 2014; 32: 207–214.

28. Mayrhofer R. An Architecture for Context Prediction. PhD thesis, Johannes Kepler University of Linz. 2014.

