Discrete time pontryagin principles in banach spaces
 Mohammed Bachir, Joël Blot

To cite this version:

Mohammed Bachir, Joël Blot. Discrete time pontryagin principles in banach spaces. 2017. hal01524112

HAL Id: hal-01524112
https://paris1.hal.science/hal-01524112

Preprint submitted on 17 May 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

DISCRETE TIME PONTRYAGIN PRINCIPLES IN BANACH SPACES

MOHAMMED BACHIR AND JOËL BLOT

Abstract

The aim of this paper is to establish Pontryagin's principles in a dicrete-time infinite-horizon setting when the state variables and the control variables belong to infinite dimensional Banach spaces. In comparison with previous results on this question, we delete conditions of finiteness of codimension of subspaces. To realize this aim, the main idea is the introduction of new recursive assumptions and useful consequences of the Baire category theorem and of the Banach isomorphism theorem.

Key Words: Pontryagin principle, discrete time, infinite horizon, difference equation, Banach spaces.
M.S.C. 2000: 49J21, 65K05, 39A99.

1. Introduction

The considered infinite-horizon Optimal Control problems are governed by the following discrete-time controlled dynamical system.

$$
\begin{equation*}
x_{t+1}=f_{t}\left(x_{t}, u_{t}\right), \quad t \in \mathbb{N} \tag{1.1}
\end{equation*}
$$

where $x_{t} \in X_{t} \subset X, u_{t} \in U_{t} \subset U$ and $f_{t}: X_{t} \times U_{t} \rightarrow X_{t+1}$. Here X and U are real Banach spaces; X_{t} is a nonempty open subset of X and U_{t} is a nonempty subset of U. As usual, the x_{t} are called the state variables and the u_{t} are called the control variables.

From an initial state $\sigma \in X_{0}$, we denote by $\operatorname{Adm}(\sigma)$ the set of the processes $\left(\left(x_{t}\right)_{t \in \mathbb{N}},\left(u_{t}\right)_{t \in \mathbb{N}}\right) \in\left(\prod_{t \in \mathbb{N}} X_{t}\right) \times\left(\prod_{t \in \mathbb{N}} U_{t}\right)$ which satisfy (1.1) for all $t \in \mathbb{N}$. The elements of $\operatorname{Adm}(\sigma)$ are called the admissible processes.

For all $t \in \mathbb{N}$, we consider the function $\phi_{t}: X_{t} \times U_{t} \rightarrow \mathbb{R}$ to define the criteria. We denote by $\operatorname{Dom}(J)$ the set of the $\left(\left(x_{t}\right)_{t \in \mathbb{N}},\left(u_{t}\right)_{t \in \mathbb{N}}\right) \in\left(\prod_{t \in \mathbb{N}} X_{t}\right) \times\left(\prod_{t \in \mathbb{N}} U_{t}\right)$ such that the series $\sum_{t=0}^{+\infty} \phi_{t}\left(x_{t}, u_{t}\right)$ is convergent in \mathbb{R}. We define the nonlinear functional $J: \operatorname{Dom}(J) \rightarrow \mathbb{R}$ by setting

$$
\begin{equation*}
J\left(\left(x_{t}\right)_{t \in \mathbb{N}},\left(u_{t}\right)_{t \in \mathbb{N}}\right):=\sum_{t=0}^{+\infty} \phi_{t}\left(x_{t}, u_{t}\right) \tag{1.2}
\end{equation*}
$$

Now we can give the list of the considered problems of Optimal Control.
$\left(\mathbf{P}_{1}(\sigma)\right):$ Find $\left(\left(\hat{x}_{t}\right)_{t \in \mathbb{N}},\left(\hat{u}_{t}\right)_{t \in \mathbb{N}}\right) \in \operatorname{Dom}(J) \cap A d m(\sigma)$ such that $J\left(\left(\hat{x}_{t}\right)_{t \in \mathbb{N}},\left(\hat{u}_{t}\right)_{t \in \mathbb{N}}\right) \geq$ $J\left(\left(x_{t}\right)_{t \in \mathbb{N}},\left(u_{t}\right)_{t \in \mathbb{N}}\right)$ for all $\left(\left(x_{t}\right)_{t \in \mathbb{N}},\left(u_{t}\right)_{t \in \mathbb{N}}\right) \in \operatorname{Dom}(J) \cap \operatorname{Adm}(\sigma)$.
$\left(\mathbf{P}_{2}(\sigma)\right)$: Find $\left(\left(\hat{x}_{t}\right)_{t \in \mathbb{N}},\left(\hat{u}_{t}\right)_{t \in \mathbb{N}}\right) \in \operatorname{Adm}(\sigma)$ such that
$\lim \sup _{h \rightarrow+\infty} \sum_{t=0}^{h}\left(\phi_{t}\left(\hat{x}_{t}, \hat{u}_{t}\right)-\phi\left(x_{t}, u_{t}\right)\right) \geq 0$ for all $\left(\left(x_{t}\right)_{t \in \mathbb{N}},\left(u_{t}\right)_{t \in \mathbb{N}}\right) \in \operatorname{Adm}(\sigma)$.

[^0]$\left(\mathbf{P}_{3}(\sigma)\right)$: Find $\left(\left(\hat{x}_{t}\right)_{t \in \mathbb{N}},\left(\hat{u}_{t}\right)_{t \in \mathbb{N}}\right) \in \operatorname{Amd}(\sigma)$ such that $\liminf _{h \rightarrow+\infty} \sum_{t=0}^{h}\left(\phi_{t}\left(\hat{x}_{t}, \hat{u}_{t}\right)-\phi\left(x_{t}, u_{t}\right)\right) \geq 0$ for all $\left(\left(x_{t}\right)_{t \in \mathbb{N}},\left(u_{t}\right)_{t \in \mathbb{N}}\right) \in \operatorname{Adm}(\sigma)$.

These problems are classical in mathematical macroeconomic theory; cf. [10, [6] [13], 11] and references therein, and also in sustainable development theory, [8].

We study the necessary optimality conditions for these problems in the form of Pontryagin principles. Among the different ways to treat such a question, we choose the method of the reduction to the finite horizon. This method comes from [5] in the discrete-time framework. Notice that this viewpoint was previously used by Halkin ([7], Theorem 2.3, p. 20) in the continuous-time framework.

There exist several works on this method when X and U are finite dimensional, cf. [6]. In the present paper we treat the case where X and U are infinite dimensional Banach spaces. With respect to two previous papers on this question, [2] and [3], the main novelty is to avoid the use of assumptions of finiteness of the codimension of certain vector subspaces. To realize this we introduce new recursive assumptions on the partial differentials of the f_{t} of (1.1). We speak of recursive assumptions since they contain two successive dates $t-1$ and t.

To make more easy the reading of the paper we describe the schedule of the proof of the main theorem (Theorem 2.1 below) .
First step: the method of the reduction to finite horizon associates to the considered problems in infinite horizon the same sequence of finite-horizon problems which is indexed by $h \in \mathbb{N}, h \geq 2$.
Second step: the providing of conditions to ensure that we can use Multiplier Rules (in Banach spaces) on the finite-horizon problems. Hence we obtain, for each $h \in \mathbb{N}$, $h \geq 2$, a nonzero list $\left(\lambda_{0}^{h}, p_{1}^{h}, \ldots, p_{h+1}^{h}\right) \in \mathbb{R} \times\left(X^{*}\right)^{h+1}$ where λ_{0}^{h} is a multiplier associated to the criterion and $\left(p_{1}^{h}, \ldots, p_{h+1}^{h}\right)$ are multipliers associated to the (truncated) dynamical system which is transformed into a list of constraints.
Third step: the building of an increasing function $\varphi: \mathbb{N} \rightarrow \mathbb{N}$ such that the subsequences $\left(\lambda_{0}^{\varphi(h)}\right)_{h}$ and $\left(p_{t+1}^{\varphi(h)}\right)_{h}$ respectively converge to λ_{0} and p_{t+1} for each $t \in \mathbb{N}_{*}$, with $\left(\lambda_{0},\left(p_{t+1}\right)_{t}\right)$ nonzero. The Banach-Alaoglu theorem permits us to obtain weakstar convergent subsequences of $\left(\lambda_{0}^{h}\right)_{h}$ and $\left(p_{t+1}^{h}\right)_{h}$ for each $t \in \mathbb{N}$, and a diagonal process of Cantor permits us to obtain the same function φ for all $t \in \mathbb{N}$. The main difficulty is to avoid that $\left(\lambda_{0},\left(p_{t+1}\right)_{t}\right)$ is equal to zero. Such a difficulty is due to the infinite dimension where the weak-star closure of a sphere centered at zero contains zero. To overcome this difficulty, using the Baire category theorem, we establish that a weak-star convergence implies a norm convergence on a well chosen Banach subspace of the dual space of the state space.

Now we describe the contents of the paper. In Section 2 we present our assumptions and we give the statement of the main theorem on the Pontryagin principle. In Section 3 we recall a characterization of the closedness of the image of a linear continuous operator, a consequence of the Baire category theorem on the weak-star convergence, and we provide a diagonal process of Cantor for the weak-star convergence. In Section 4 we describe the reduction to the finite horizon and we establish consequence of our recursive assumptions on the surjectivity and on the closedness of the range of the differentials of the constraints in the finite-horizon problems. In Section 5 we give the complete proof of our main theorem.

2. The main Result

First we present a list of hypotheses.
(H1): X and U are separable Banach spaces.
(H2): For all $t \in \mathbb{N}, X_{t}$ is a nonempty open subset of X and U_{t} is a nonempty convex subset of U.

When $\left(\left(\hat{x}_{t}\right)_{t \in \mathbb{N}},\left(\hat{u}_{t}\right)_{t \in \mathbb{N}}\right)$ is a given admissible process of one of the problems $\left(\left(\mathbf{P}_{i}(\sigma)\right)\right)$, $i \in\{1,2,3\}$, we consider the following conditions.
(H3): For all $t \in \mathbb{N}, \phi_{t}$ is Fréchet differentiable at $\left(\hat{x}_{t}, \hat{u}_{t}\right)$ and f_{t} is continuously Fréchet differentiable at $\left(\hat{x}_{t}, \hat{u}_{t}\right)$.
(H4): For all $t \in \mathbb{N}, t \geq 2$,
$D_{1} f_{t}\left(\hat{x}_{t}, \hat{u}_{t}\right) \circ D_{2} f_{t-1}\left(\hat{x}_{t-1}, \hat{u}_{t-1}\right)(U)+D_{2} f_{t}\left(\hat{x}_{t}, \hat{u}_{t}\right)\left(T_{U_{t}}\left(\hat{u}_{t}\right)\right)=X$.
(H5): $D_{1} f_{1}\left(\hat{x}_{1}, \hat{u}_{1}\right) \circ D_{2} f_{0}\left(\hat{x}_{0}, \hat{u}_{0}\right)\left(T_{U_{0}}\left(\hat{u}_{0}\right)\right)+D_{2} f_{1}\left(\hat{x}_{1}, \hat{u}_{1}\right)\left(T_{U_{1}}\left(\hat{u}_{1}\right)\right)=X$.
(H6): $\operatorname{ri}\left(T_{U_{0}}\left(\hat{u}_{0}\right)\right) \neq \emptyset$ and $\operatorname{ri}\left(T_{U_{1}}\left(\hat{u}_{1}\right)\right) \neq \emptyset$.
In (H3), since U_{t} is not necessarily a neighborhood of \hat{u}_{t}, the meaning of this condition is that there exists an open neighborhood V_{t} of $\left(\hat{x}_{t}, \hat{u}_{t}\right)$ in $X \times U$ and a Fréchet differentiable function (respectively continuously Fréchet differentiable mapping) $\tilde{\phi}_{t}: V_{t} \rightarrow \mathbb{R}$ (respectively $\left.\tilde{f}_{t}: V_{t} \rightarrow X\right)$ such that $\tilde{\phi}_{t}$ and ϕ_{t} (respectively \tilde{f}_{t} and $\left.f_{t}\right)$ coincide on $V_{t} \cap\left(X_{t} \times U_{t}\right)$. Moreover D_{1} and D_{2} denotes the partial Fréchet differentials with respect to the first (vector) variable and with respect to the second (vector) variable respectively. About (H4), (H5) and (H6), when A is a convex subset of $U, \hat{u} \in A$, the set $T_{A}(\hat{u})$ is the closure of $\mathbb{R}_{+}(A-\hat{u})$; it is called the tangent cone of A at \hat{u} as it is usually defined in Convex Analysis, 1 p. 166. About (H6), if aff $\left(T_{U_{t}}\left(\hat{u}_{t}\right)\right)$ denotes the affine hull of $T_{U_{t}}\left(\hat{u}_{t}\right)$, $\operatorname{ri}\left(T_{U_{t}}\left(\hat{u}_{t}\right)\right)$ denotes the (relative) interior of $T_{U_{t}}\left(\hat{u}_{t}\right)$ in $\operatorname{aff}\left(T_{U_{t}}\left(\hat{u}_{t}\right)\right)$. Such definition of the relative interior of a convex is given in [12, p. 14-15, where it is denoted by rint.

Now we state the main result of the paper.
Theorem 2.1. Let $\left(\left(\hat{x}_{t}\right)_{t \in \mathbb{N}},\left(\hat{u}_{t}\right)_{t \in \mathbb{N}}\right)$ be an optimal process for one of the problems $\left(\mathbf{P}_{i}(\sigma)\right)$, $i \in\{1,2,3\}$. Under $(H 1-H 6)$, there exist $\lambda_{0} \in \mathbb{R}$ and $\left(p_{t+1}\right)_{t \in \mathbb{N}} \in\left(X^{*}\right)^{\mathbb{N}}$ which satisfy the following conditions.
(1) $\left(\lambda_{0}, p_{1}, p_{2}\right) \neq(0,0,0)$.
(2) $\lambda_{0} \geq 0$.
(3) $p_{t}=p_{t+1} \circ D_{1} f_{t}\left(\hat{x}_{t}, \hat{u}_{t}\right)+\lambda_{0} D_{1} \phi_{t}\left(\hat{x}_{t}, \hat{u}_{t}\right)$, for all $t \in \mathbb{N}, t \geq 1$.
(4) $\left\langle\lambda_{0} D_{2} \phi_{t}\left(\hat{x}_{t}, \hat{u}_{t}\right)+p_{t+1} \circ D_{2} f_{t}\left(\hat{x}_{t}, \hat{u}_{t}\right), u_{t}-\hat{u}_{t}\right\rangle \leq 0$, for all $u_{t} \in U_{t}$, for all $t \in \mathbb{N}$.

In comparison with Theorem 2.2 in [3], in this theorem we have deleted the condition of finiteness of codimension which are present in assumptions (A5) and (A6) in [3. It is why this theorem is an improvment of the result of [3].

3. Functional analytic results

In this section, first we recall an characterization of the closedness of the image of a linear continuous operator. Secondly we state a result which is a consequence
of the Baire category theorem. After we give a version of the diagonal process of Cantor for the weak-star convergence.

Proposition 3.1. Let E and F be Banach spaces, and $L \in \mathfrak{L}(E, F)$ (the space of the linear continuous mappings). The two following assertions are equivalent.
(i) ImL is closed in F.
(ii) There exists $c \in(0,+\infty)$ s.t. for all $y \in I m L$, there exists $x_{y} \in E$ verifying $L x_{y}=y$ and $\|y\| \geq c\left\|x_{y}\right\|$.

This result is proven in 2] (Lemma 3.4) and in [4] (Lemma 2.1).
Proposition 3.2. Let Y be a real Banach space; Y^{*} is its topological dual space. Let $\left(\pi_{h}\right)_{h \in \mathbb{N}} \in\left(Y^{*}\right)^{\mathbb{N}}$ and $\left(\rho_{h}\right)_{h \in \mathbb{N}} \in\left(\mathbb{R}_{+}\right)^{\mathbb{N}}$. Let K be a nonempty closed convex subset of Y such that $r i(K) \neq \emptyset$. Let $a \in K$ and we set $S:=\overline{\operatorname{aff}}(K)-a$ which is a Banach subspace. We assume that the following conditions are fulfilled.
(1) $\rho_{h} \rightarrow 0$ when $h \rightarrow+\infty$.
(2) $\pi_{h} \xrightarrow{w^{*}} 0$ (weak-star convergence) when $h \rightarrow+\infty$.
(3) For all $y \in K$, there exists $c_{y} \in \mathbb{R}$ such that $\pi_{h}(y) \leq c_{y} \rho_{h}$ for all $h \in \mathbb{N}$.

Then we have $\left\|\pi_{\left.h\right|_{S}}\right\|_{S^{*}} \rightarrow 0$ when $h \rightarrow+\infty$.
This result is established in 3 (Proposition 3.5) where several consequences and generalizations are provided. In the following result, when $t \in \mathbb{N}$, we set $[t,+\infty)_{\mathbb{N}}:=[t,+\infty) \cap \mathbb{N}$ and $\mathbb{N}_{*}:=[1,+\infty)_{\mathbb{N}}$.

Proposition 3.3. Let Y be a real Banach space; Y^{*} is its topological dual space. For every $(t, h) \in \mathbb{N} \times \mathbb{N}_{*}$ such that $t \leq h$ we consider an element $\pi_{t+1}^{h} \in Y^{*}$. We assume that, for every $t \in \mathbb{N}$, the sequence $\left(\pi_{t+1}^{h}\right)_{h \in[t,+\infty)_{\mathbb{N}}}$ is bounded in Y^{*}. Then there exists an increasing function $\beta: \mathbb{N}_{*} \rightarrow \mathbb{N}_{*}$ such that, for all $t \in \mathbb{N}$, there exists $\bar{\pi}_{t+1} \in Y^{*}$ verifying $\pi_{t+1}^{\beta(h)} \xrightarrow{w^{*}} \bar{\pi}_{t+1}$ when $h \rightarrow+\infty$.

Proof. Using the Banach-Alaoglu theorem, since $\left(\pi_{1}^{h}\right)_{h \in[0,+\infty)_{\mathrm{N}}}$ is bounded in Y^{*}, there exists an increasing function $\alpha_{1}:[0,+\infty)_{\mathbb{N}} \rightarrow[0,+\infty)_{\mathbb{N}}$ and $\bar{\pi}_{1} \in Y^{*}$ such that $\pi_{1}^{\alpha_{1}(h)} \xrightarrow{w^{*}} \bar{\pi}_{1}$ when $h \rightarrow+\infty$. Using the same argument, since $\left(\pi_{2}^{\alpha_{1}(h)}\right)_{h \in[1,+\infty)_{\mathbb{N}}}$ is bounded, there exists an increasing function $\alpha_{2}:[1,+\infty)_{\mathbb{N}} \rightarrow[1,+\infty)_{\mathbb{N}}$ and $\bar{\pi}_{2} \in Y^{*}$ such that $\pi_{2}^{\alpha_{1} \circ \alpha_{2}(h)} \xrightarrow{w^{*}} \bar{\pi}_{2}$ when $h \rightarrow+\infty$. Iterating the reasoning, for every $t \in \mathbb{N}_{*}$, there exist an increasing function $\alpha_{t}:[t,+\infty)_{\mathbb{N}} \rightarrow[t,+\infty)_{\mathbb{N}}$ and $\bar{\pi}_{t+1} \in Y^{*}$ such that $\pi_{t+1}^{\alpha_{1} \circ \ldots \circ \alpha_{t}(h)} \xrightarrow{w^{*}} \bar{\pi}_{t+1}$ when $h \rightarrow+\infty$. We define the function $\beta:[0,+\infty)_{\mathbb{N}} \rightarrow[0,+\infty)_{\mathbb{N}}$ by setting $\beta(h):=\alpha_{1} \circ \ldots \circ \alpha_{h}(h)$. we arbitrarily fix $t \in \mathbb{N}_{*}$ and we define the function $\delta_{t}:[t,+\infty)_{\mathbb{N}} \rightarrow[t,+\infty)_{\mathbb{N}}$ by setting $\delta_{t}(t):=t$ and $\delta_{t}(h):=\alpha_{t+1} \circ \ldots \circ \alpha_{h}(h)$ when $h>t$. When $h=t$, we have $\delta_{t}(t+1)=\alpha_{t+1}(t+1) \geq$ $t+1>t=\delta_{t}(t)$. When $h \in[t+1,+\infty)_{\mathbb{N}}$, we have $\alpha_{t+1}(h+1) \geq h+1>h$ which implies

$$
\delta_{t}(h+1)=\left(\alpha_{t+1} \circ \ldots \circ \alpha_{h}\right)\left(\alpha_{t+1}(h+1)\right)>\left(\alpha_{t+1} \circ \ldots \circ \alpha_{h}\right)(h)=\delta_{t}(h)
$$

since $\left(\alpha_{t+1} \circ \ldots \circ \alpha_{h}\right)$ is increasing. Hence we have proven that δ_{t} is increasing. Since $\beta_{[t,+\infty)_{\mathrm{N}}}=\left(\alpha_{1} \circ \ldots \circ \alpha_{t}\right) \circ \delta_{t}$, we can say that $\left(\pi_{t+1}^{\beta(h)}\right)_{h \in[t,+\infty)_{\mathrm{N}}}$ is a subsequence of $\left(\pi_{t+1}^{\alpha_{1} \circ \ldots \circ \alpha_{t}(h)}\right)_{h \in[t,+\infty)_{\mathbb{N}}}$, we obtain $\pi_{t+1}^{\beta(h)} \xrightarrow{w^{*}} \bar{\pi}_{t+1}$ when $h \rightarrow+\infty$.

4. REDUCTION TO THE FINITE HORIZON

When $\left(\left(\hat{x}_{t}\right)_{t \in \mathbb{N}},\left(\hat{u}_{t}\right)_{t \in \mathbb{N}}\right)$ is an optimal process for one of the problems $\left(\mathbf{P}_{i}(\sigma)\right)$, $i \in\{1,2,3\}$. The method of the rediction to finite horizon consists on considering of the sequence of the following finite-horizon problems.

$$
\left(\mathbf{F}_{h}(\sigma)\right)\left\{\begin{aligned}
\text { Maximize } & J_{h}\left(x_{1}, \ldots, x_{h}, u_{0}, \ldots, u_{h}\right):=\sum_{t=0}^{h} \phi_{t}\left(x_{t}, u_{t}\right) \\
\text { when } & \left(x_{t}\right)_{1 \leq t \leq h} \in \prod_{t=1}^{h} X_{t},\left(u_{t}\right)_{0 \leq t \leq h} \in \prod_{t=0}^{h} U_{t} \\
& \forall t \in\{0, \ldots, h\}, x_{t+1}=f_{t}\left(x_{t}, u_{t}\right) \\
& x_{0}=\sigma, x_{h+1}=\hat{x}_{t+1}
\end{aligned}\right.
$$

The proof of the following lemma is given in 5].
Lemma 4.1. When $\left(\left(\hat{x}_{t}\right)_{t \in \mathbb{N}},\left(\hat{u}_{t}\right)_{t \in \mathbb{N}}\right)$ is an optimal process for one of the problems $\left(\mathbf{P}_{i}(\sigma)\right), i \in\{1,2,3\}$, then, for all $h \in \mathbb{N}_{*},\left(\hat{x}_{1}, \ldots, \hat{x}_{h}, \hat{u}_{0}, \ldots, \hat{u}_{h}\right)$ is an optimal solution of $\left(\mathbf{F}_{h}(\sigma)\right)$.

Notice that this result does not need any special assumption. Now we introduce notation to work on these problems. We write $\mathbf{x}^{h}:=\left(x_{1}, \ldots, x_{h}\right) \in \prod_{t=1}^{h} X_{t}, \mathbf{u}^{h}:=$ $\left(u_{0}, \ldots, u_{h}\right) \in \prod_{t=0}^{h} U_{t}$. For all $h \in \mathbb{N}_{*}$ and for all $t \in \mathbb{N}$, we introduce the mapping $g_{t}^{h}:\left(\prod_{t=1}^{h} X_{t}\right) \times\left(\prod_{t=0}^{h} U_{t}\right) \rightarrow X_{t+1}$ by setting

$$
g_{t}^{h}\left(\mathbf{x}^{h}, \mathbf{u}^{h}\right):= \begin{cases}-x_{1}+f_{0}\left(\sigma, u_{0}\right) & \text { if } \quad t=0 \tag{4.1}\\ -x_{t+1}+f_{t}\left(x_{t}, u_{t}\right) & \text { if } \quad t \in\{1, \ldots, h-1\} \\ -\hat{x}_{h+1}+f_{h}\left(x_{h}, u_{h}\right) . & \end{cases}
$$

We introduce the mapping $g^{h}:\left(\prod_{t=1}^{h} X_{t}\right) \times\left(\prod_{t=0}^{h} U_{t}\right) \rightarrow X^{h+1}$ defined by

$$
\begin{equation*}
g^{h}\left(\mathbf{x}^{h}, \mathbf{u}^{h}\right):=\left(g_{0}^{h}\left(\mathbf{x}^{h}, \mathbf{u}^{h}\right), \ldots, g_{h}^{h}\left(\mathbf{x}^{h}, \mathbf{u}^{h}\right)\right) \tag{4.2}
\end{equation*}
$$

Under (H3), g^{h} is of class C^{1}. We introduce the following conditions on the differentials of the f_{t}.

$$
\begin{equation*}
\forall t \in \mathbb{N}, \operatorname{Im} D f_{t}\left(\hat{x}_{t}, \hat{u}_{t}\right) \text { is closed in } X \tag{4.3}
\end{equation*}
$$

$\forall t \in \mathbb{N}_{*}, \operatorname{Im}\left(D_{1} f_{t}\left(\hat{x}_{t}, \hat{u}_{t}\right) \circ D_{2} f_{t-1}\left(\hat{x}_{t-1}, \hat{u}_{t-1}\right)\right)+\operatorname{Im} D_{2} f_{t}\left(\hat{x}_{t}, \hat{u}_{t}\right)=\operatorname{Im} D f_{t}\left(\hat{x}_{t}, \hat{u}_{t}\right)$.

Lemma 4.2. We assume that (H3) is fulfilled.
(i) Under (4.3) and 4.4), $\operatorname{ImD}^{h}\left(\mathbf{x}^{h}, \mathbf{u}^{h}\right)$ is closed.
(ii) Under 4.5) and 4.6), $D g^{h}\left(\mathbf{x}^{h}, \mathbf{u}^{h}\right)$ is surjective.

Proof. (i) To abridge the writing we set $D \hat{f}_{t}:=D f_{t}\left(\hat{x}_{t}, \hat{u}_{t}\right)$ and $D_{i} \hat{f}_{t}:=D_{i} f_{t}\left(\hat{x}_{t}, \hat{u}_{t}\right)$ when $i \in\{1,2\}$. The condition (H3) implies that g^{h} is Fréchet differentiable at $\left(\mathbf{x}^{h}, \mathbf{u}^{h}\right)$.
We arbitrarily fix $\mathbf{z}^{h}=\left(z_{0}, \ldots, z_{h}\right) \in \operatorname{ImD} g^{h}\left(\mathbf{x}^{h}, \mathbf{u}^{h}\right)$. Therefore there exists $\mathbf{y}^{h, 0}=$ $\left(y_{1}^{0}, \ldots, y_{h}^{0}\right) \in X^{h}$ and $\mathbf{v}^{h, 0}=\left(v_{0}^{0}, \ldots, v_{h}^{0}\right) \in U^{h+1}$ such that $\mathbf{z}^{h}=D g^{T}\left(\mathbf{x}^{h}, \mathbf{u}^{h}\right)\left(\mathbf{y}^{h, 0}, \mathbf{v}^{h, 0}\right)$ which is equivalent to the set of the three following equations

$$
\begin{gather*}
-y_{1}^{0}+D_{2} f_{0}\left(\sigma, \hat{u}_{0}\right) v_{0}^{0}=z_{0} \tag{4.7}\\
\forall t \in\{1, \ldots, h-1\}, \quad-y_{t+1}^{0}+D_{1} \hat{f}_{t} y_{t}^{0}+D_{2} \hat{f}_{t} v_{t}^{0}=z_{t} \tag{4.8}\\
D_{1} \hat{f}_{h} y_{h}^{0}+D_{2} \hat{f}_{h} v_{h}^{0}=z_{h} . \tag{4.9}
\end{gather*}
$$

We introduce the linear continuous operator $L_{0} \in \mathfrak{L}(X \times U, X)$ by setting

$$
\begin{equation*}
L_{0}\left(y_{1}, v_{0}\right):=-y_{1}+D_{2} \hat{f}_{0} v_{0} \tag{4.10}
\end{equation*}
$$

Notice that L_{0} is surjective since $L_{0}(X \times\{0\})=X$; therefore $\operatorname{Im} L_{0}$ is closed in X. From (4.7) we have $z_{0} \in \operatorname{Im} L_{0}$. Using Proposition 3.1 on L_{0} we know that

$$
\left\{\begin{array}{l}
\exists a_{0} \in(0,+\infty), \forall z_{0} \in X, \exists y_{1}^{*} \in X, \exists v_{0}^{*} \in U \quad \text { s.t. } L_{0}\left(y_{1}^{*}, v_{0}^{*}\right)=z_{0} \\
\text { and } \max \left\{\left\|y_{1}^{*}\right\|,\left\|v_{0}^{*}\right\|\right\} \leq a_{0} \cdot\left\|z_{0}\right\|
\end{array}\right.
$$

i.e. we have proven

$$
\left.\begin{array}{l}
\exists a_{0} \in(0,+\infty), \exists y_{1}^{*} \in X, \exists v_{0}^{*} \in U \text { s.t. } \tag{4.11}\\
-y_{1}^{*}+D_{2} \hat{f}_{0} v_{0}^{*}=z_{0} \text { and } \max \left\{\left\|y_{1}^{*}\right\|,\left\|v_{0}^{*}\right\|\right\} \leq a_{0} \cdot\left\|z_{0}\right\|
\end{array}\right\}
$$

It is important to notice that a_{0} does not depend on z_{0}.
We introduce the linear continuous operator $L_{1} \in \mathfrak{L}(X \times U, X)$ by setting

$$
L_{1}\left(y_{2}, v_{1}\right):=-y_{2}+D_{2} \hat{f}_{1} v_{1} .
$$

Since $L_{1}(X \times\{0\})=X, L_{1}$ is surjective and hence $z_{1}-D_{1} \hat{f}_{1} y_{1}^{*} \in I m L_{1}$. Using Proposition 3.1 on L_{1}, we obtain

$$
\left\{\begin{array}{l}
\exists b_{1} \in(0,+\infty), \exists y_{2}^{*} \in X, \exists v_{1}^{*} \in U \text { s.t. } \\
L_{1}\left(y_{2}^{*}, v_{1}^{*}\right)=z_{1}-D_{1} \hat{f}_{1} y_{1}^{*} \text { and } \\
\max \left\{\left\|y_{2}^{*}\right\|,\left\|v_{1}^{*}\right\|\right\} \leq b_{1} \cdot\left\|z_{1}-D_{1} \hat{f}_{1} y_{1}^{*}\right\| .
\end{array}\right.
$$

Using (4.11) we deduce from the last inequality

$$
\begin{aligned}
& \max \left\{\left\|y_{2}^{*}\right\|,\left\|v_{1}^{*}\right\|\right\} \leq b_{1} \cdot\left(\left\|z_{1}\right\|+\left\|D_{1} \hat{f}_{1}\right\| \cdot\left\|y_{1}^{*}\right\|\right) \leq b_{1} \cdot\left(\left\|z_{1}\right\|+\left\|D_{1} \hat{f}_{1}\right\| \cdot a_{0} \cdot\left\|z_{0}\right\|\right) \\
& \leq b_{1} \cdot\left(1+a_{0} \cdot\left\|D_{1} \hat{f}_{1}\right\|\right) \cdot \max \left\{\left\|z_{0}\right\|,\left\|z_{1}\right\|\right\}
\end{aligned}
$$

We set $a_{1}:=\max \left\{a_{0}, b_{1} \cdot\left(1+a_{0} \cdot\left\|D_{1} \hat{f}_{1}\right\|\right)\right\}$, and then we have proven the following assertion.

$$
\left.\begin{array}{l}
\exists a_{1} \in(0,+\infty), \exists\left(y_{1}^{*}, y_{2}^{*}, v_{0}^{*}, v_{1}^{*}\right) \in X^{2} \times U^{2} \text { s.t. } \tag{4.12}\\
-y_{1}^{*}+D_{2} \hat{f}_{0} v_{0}^{*}=z_{0},-y_{2}^{*}+D_{1} \hat{f}_{1} y_{1}^{*}+D_{2} \hat{f}_{1} v_{1}^{*}=z_{1}, \\
\max \left\{\mid y_{1}^{*}\|,\| y_{2}^{*}\|,\| v_{0}^{*}\|,\| v_{1}^{*} \|\right\} \leq a_{1} \cdot \max \left\{\left\|z_{0}\right\|,\left\|z_{1}\right\|\right\} .
\end{array}\right\}
$$

It is important to notice that a_{1} does not depend on z_{0}, z_{1}. We iterate the reasoning until $h-2$ and we obtain

$$
\left.\begin{array}{l}
\exists a_{h-2} \in(0,+\infty), \exists\left(y_{t}^{*}\right)_{1 \leq t \leq h-1} \in X^{h-1}, \exists\left(v_{t}^{*}\right)_{0 \leq t \leq h-2} \in U^{h-1} \text { s.t. } \\
-y_{1}^{*}+D_{2} \hat{f}_{0} v_{0}^{*}=z_{0}, \forall t \in\{1, \ldots, h-2\},-t_{t+1}^{*}+D_{1} \hat{f}_{t} y_{t}^{*}+D_{2} \hat{f}_{t} v_{t}^{*}=z_{t} \\
\max \left\{\max _{1 \leq t \leq h-1}\left\|y_{t}^{*}\right\|, \max _{0 \leq t \leq h-2}\left\|v_{t}^{*}\right\|\right\} \leq a_{h-2} \max _{0 \leq t \leq h-2}\left\|z_{t}\right\| . \tag{4.13}
\end{array}\right\}
$$

From (4.9) we know that $z_{h} \in \operatorname{Im} D \hat{f}_{h}$. Moreover we have

$$
D_{1} \hat{f}_{h} z_{h-1} \subset \operatorname{Im} D \hat{f}_{h} \text { and } D_{1} \hat{f}_{h} \circ D_{1} \hat{f}_{h-1} y_{h-1}^{*} \in \operatorname{Im} D_{1} \hat{f}_{h} \subset \operatorname{Im} D \hat{f}_{h}
$$

and therefore we have

$$
\begin{equation*}
z_{h}+D_{1} \hat{f}_{h-1} z_{h-1}-D_{1} \hat{f}_{h} \circ D_{1} \hat{f}_{h-1} y_{h-1}^{*} \in \operatorname{Im} D \hat{f}_{h} \tag{4.14}
\end{equation*}
$$

Introduce the linear continuous operator $\Lambda \in \mathfrak{L}(U \times U, X)$ by setting

$$
\begin{equation*}
\Lambda(v, w):=D_{1} \hat{f}_{h} \circ D_{2} \hat{f}_{h-1} v+D_{2} \hat{f}_{h} w \tag{4.15}
\end{equation*}
$$

Under assumptions (4.4) and (4.5) we have $\operatorname{Im} \Lambda=\operatorname{Im} D \hat{f}_{h}$ and $\operatorname{Im} \Lambda$ is closed in X. After (4.14), using Proposition 3.1 on Λ we obtain

$$
\left.\begin{array}{l}
\exists c \in(0,+\infty), \exists\left(v_{h-1}^{*}, v_{h}^{*}\right) \in U \times U \text {, s.t. } \\
\Lambda\left(v_{h-1}^{*}, v_{h}^{*}\right)=z_{h}+D_{1} \hat{f}_{h} z_{h-1}-D_{1} \hat{f}_{h} \circ D_{1} \hat{f}_{h-1} y_{h-1}^{*} \\
\text { i.e. } \\
D_{1} \hat{f}_{h} \circ D_{2} \hat{f}_{h-1} v_{h-1}^{*}+D_{2} \hat{f}_{h} v_{h}^{*}= \tag{4.16}\\
z_{h}+D_{1} \hat{f}_{h} z_{h-1}-D_{1} \hat{f}_{h} \circ D_{1} \hat{f}_{h-1} y_{h-1}^{*} \text { and } \\
\max \left\{\left\|v_{h-1}^{*}\right\|,\left\|v_{h}^{*}\right\|\right\} \leq c \cdot\left\|z_{h}+D_{1} \hat{f}_{h} z_{h-1}-D_{1} \hat{f}_{h} \circ D_{1} \hat{f}_{h-1} y_{h-1}^{*}\right\| .
\end{array}\right\}
$$

From this last inequality, using (4.13), we obtain

$$
\begin{aligned}
& \max \left\{\left\|v_{h-1}^{*}\right\|,\left\|v_{h}^{*}\right\|\right\} \\
& \leq c \cdot\left(\left\|z_{h}\right\|+\left\|D_{1} \hat{f}_{h}\right\| \cdot\left\|z_{h-1}\right\|+\left\|D_{1} \hat{f}_{h} \circ D_{1} \hat{f}_{h-1}\right\| \cdot\left\|y_{h-1}^{*}\right\|\right) \\
& \leq c \cdot\left(\left\|z_{h}\right\|+\left\|D_{1} \hat{f}_{h}\right\| \cdot\left\|z_{h-1}\right\|+\left\|D_{1} \hat{f}_{h} \circ D_{1} \hat{f}_{T h 1}\right\| \cdot a_{h-2} \cdot \max _{1 \leq t \leq h-2}\left\|z_{t}\right\|\right) \\
& \leq c \cdot\left(1+\left\|D_{1} \hat{f}_{h}\right\|+a_{h-2} \cdot\left\|D_{1} \hat{f}_{h} \circ D_{1} \hat{f}_{h-1}\right\|\right) \cdot \max _{1 \leq t \leq h}\left\|z_{t}\right\| .
\end{aligned}
$$

We set $c_{1}:=c \cdot\left(1+\left\|D_{1} \hat{f}_{h}\right\|+a_{h-2} \cdot\left\|D_{1} \hat{f}_{h} \circ D_{1} \hat{f}_{h-1}\right\|\right) \in(0,+\infty)$. Then we have proven the following assertion.

$$
\begin{equation*}
\exists c_{1} \in(0,+\infty), \max \left\{\left\|v_{h-1}^{*}\right\|,\left\|v_{h}^{*}\right\|\right\} \leq c_{1} \cdot \max _{1 \leq t \leq h}\left\|z_{t}\right\| \tag{4.17}
\end{equation*}
$$

We set

$$
\begin{equation*}
y_{h}^{*}:=D_{2} \hat{f}_{h-1} v_{h-1}^{*}+D_{1} \hat{f}_{h-1} y_{h-1}^{*}-z_{h-1} . \tag{4.18}
\end{equation*}
$$

This equality implies

$$
\begin{equation*}
-y_{h}^{*}+D_{1} \hat{f}_{h-1} y_{h-1}^{*}+D_{2} \hat{f}_{h-1} v_{h-1}^{*}=z_{h-1} \tag{4.19}
\end{equation*}
$$

which is the penultimate wanted equation.
Notice that we have $\left\|y_{h}^{*}\right\| \leq\left\|D_{2} \hat{f}_{h-1}\right\| \cdot\left\|v_{h-1}^{*}\right\|+\left\|D_{1} \hat{f}_{h-1}\right\| \cdot\left\|y_{h-1}^{*}\right\|+\left\|z_{h-1}\right\|$, and using (4.17) and (4.18) we obtain

$$
\begin{aligned}
\left\|y_{h}^{*}\right\| \leq & \left\|D_{2} \hat{f}_{h-1}\right\| \cdot c_{1} \cdot \max _{1 \leq t \leq h}\left\|z_{t}\right\| \\
& +\left\|D_{1} \hat{f}_{h-1}\right\| \cdot a_{h-2} \cdot \max _{1 \leq t \leq h-2}\left\|z_{t}\right\|+\left\|z_{h-1}\right\| \\
\leq & \left(c_{1} \cdot\left\|D_{2} \hat{f}_{h-1}\right\|+a_{h-2} \cdot\left\|D_{1} \hat{f}_{h-1}\right\|+1\right) \cdot \max _{1 \leq t \leq h}\left\|z_{t}\right\| .
\end{aligned}
$$

We set $c_{2}:=c_{1} \cdot\left\|D_{2} \hat{f}_{h-1}\right\|+a_{h-2} \cdot\left\|D_{1} \hat{f}_{h-1}\right\|+1$, and so we have proven

$$
\begin{equation*}
\exists c_{2} \in(0,+\infty),\left\|y_{h}^{*}\right\| \leq c_{2} \cdot \max _{1 \leq t \leq h}\left\|z_{t}\right\| \tag{4.20}
\end{equation*}
$$

We set $a_{h}:=\max \left\{a_{h-3}, c_{1}, c_{2}\right\}$, and from (4.13), (4.17) and (4.20) we have proven

$$
\begin{equation*}
\exists a_{h} \in(0,+\infty), \max \left\{\max _{1 \leq t \leq h}\left\|y_{t}^{*}\right\|, \max _{0 \leq t \leq h}\left\|v_{t}^{*}\right\|\right\} \leq a_{h} \cdot \max _{1 \leq t \leq h}\left\|z_{t}\right\| \tag{4.21}
\end{equation*}
$$

Now we show that the last equation is satisfied by y_{h}^{*} and v_{h}^{*}. Using (4.18) and (4.16), we obtain

$$
\begin{aligned}
& D_{1} \hat{f} h y_{h}^{*}+D_{2} \hat{f}_{h} v_{h}^{*} \\
& =D_{1} \hat{f}_{T}\left(D_{2} \hat{f}_{h-1} v_{h-1}^{*}+D_{1} \hat{f}_{h-1} y_{h-1}^{*}-z_{h-1}\right)+D_{2} \hat{f}_{h} v_{h}^{*} \\
& =\left(D_{1} \hat{f}_{h} \circ\left(D_{2} \hat{f}_{h-1} v_{h-1}^{*}+D_{2} \hat{f}_{h} v_{h}^{*}\right)+D_{1} \hat{f}_{h} \circ D_{1} \hat{f}_{h-1} y_{h-1}^{*}-D_{1} \hat{f}_{h} z_{h-1}\right. \\
& =\left(z_{h}+D_{1} \hat{f}_{h} z_{h-1}-D_{1} \hat{f}_{h} \circ D_{1} \hat{f}_{h-1} y_{h-1}^{*}\right)+D_{1} \hat{f}_{h} \circ D_{1} \hat{f}_{h-1} y_{h-1}^{*}-D_{1} \hat{f}_{h} z_{h-1} \\
& =z_{h}
\end{aligned}
$$

We have proven that

$$
\begin{equation*}
D_{1} \hat{f}_{h} y_{h}^{*}+D_{2} \hat{f}_{h} v_{h}^{*}=z_{h} . \tag{4.22}
\end{equation*}
$$

From (4.13), (4.19), (4.21) and (4.22) we have proven the following assertion

$$
\left\{\begin{array}{l}
\exists a_{h} \in(0,+\infty), \forall\left(z_{t}\right)_{0 \leq t \leq h} \in \operatorname{ImD} g_{h}\left(\hat{\mathbf{x}}^{h}, \hat{\mathbf{u}}^{h}\right) \\
\exists\left(y_{t}^{*}\right)_{1 \leq t \leq h} \in X^{h}, \exists\left(v_{t}^{*}\right)_{0 \leq t \leq h} \in U^{h+1}, \text { s.t. } \\
-y_{1}^{*}+D_{2} \hat{f}_{0} v_{0}^{*}=z_{0}, \forall t \in\{1, \ldots, h-1\}, \quad-y_{t+1}+D_{1} \hat{f}_{t} y_{t}^{*}+D_{2} \hat{f}_{t} v_{t}^{*}=z_{t} \\
D_{1}, \\
\max \left\{\max _{1 \leq t \leq h} y_{2}^{*}+D_{2}\left\|y_{t}^{*}\right\|, \max _{0 \leq t \leq h}^{*}\left\|v_{t}^{*}\right\|\right\} \leq a_{h} \cdot \max _{1 \leq t \leq h}\left\|z_{t}\right\|
\end{array}\right.
$$

This last assertion is equivalent to the following one

$$
\left\{\begin{array}{l}
\exists a_{h} \in(0,+\infty), \forall \mathbf{z}^{h}=\left(z_{t}\right)_{0 \leq t \leq h} \in \operatorname{Im} D g^{h}\left(\hat{\mathbf{x}}^{h}, \hat{\mathbf{u}}^{h}\right), \\
\exists \mathbf{y}^{h, *}=\left(y_{t}^{*}\right)_{1 \leq t \leq h \in} \in X^{h}, \exists \mathbf{v}^{h, *}=\left(v_{t}^{*}\right)_{0 \leq t \leq h} \in U^{h+1}, \text { s.t. } \\
D g^{h}\left(\hat{\mathbf{x}}^{h}, \hat{\mathbf{u}}^{h}\right)\left(\mathbf{y}^{h} \mathbf{v}^{h, *}\right)=\mathbf{z}^{h} \text { and }\left\|\left(\mathbf{y}^{h, *}, \mathbf{v}^{h, *}\right)\right\| \leq a_{h} \cdot\left\|\mathbf{z}^{h}\right\| .
\end{array}\right.
$$

Now using Proposition 3.1] on the operator $D g^{h}\left(\hat{\mathbf{x}}^{h}, \hat{\mathbf{u}}^{h}\right)$, the previous assertion permits us to assert that $\operatorname{Im} D g^{h}\left(\hat{\mathbf{x}}^{h}, \hat{\mathbf{u}}^{h}\right)$ is closed in X^{h+1}, and the proof of (i) is complete.
(ii) We arbitrarily fix $\mathbf{z}^{h}=\left(z_{1}, \ldots, z_{h}\right) \in X^{h}$. Since $D \hat{f}_{h}$ is surjective, there exists $y_{h}^{\#} \in X$ and $v_{h}^{\#} \in U$ such that $D \hat{f}_{h}\left(y_{h}^{\#}, v_{h}^{\#}\right)=z_{h}$. Since $D \hat{f}_{h-1}$ is surjective, there exists $y_{h-1}^{\#} \in X$ and $v_{h-1}^{\#} \in U$ such that $D \hat{f}_{h-1}\left(y_{h-1}^{\#}, v_{h-1}^{\#}\right)=z_{h-1}+y_{h}^{\#}$. We iterate this bachward reasoning until $t=2$ to obtain

$$
\left.\begin{array}{l}
\forall t \in\{2, \ldots, h\}, \exists\left(y_{t}^{\#}, v_{t}^{\#}\right) \in X \times U \text { s.t. } D \hat{f}_{h}\left(y_{h}^{\#}, v_{h}^{\#}\right)=z_{h} \tag{4.23}\\
\text { and } \forall t \in 2, \ldots, h-1,-y_{t}^{\#}+D \hat{f}_{t}\left(y_{t}^{\#}, v_{t}^{\#}\right)=z_{t}
\end{array}\right\}
$$

Now we introduce the linear continuous operator $M \in \mathfrak{L}(U \times U, X)$ by setting $M\left(v_{0},, v_{1}\right) ;=D_{1} \hat{f}_{1} \circ D_{2} \hat{f}_{0} v_{0}+D_{2} \hat{f}_{1} v_{1}$. From (4.6) we have $\operatorname{Im} M=X$ i.e. M is surjective. Therefore we obtain

$$
\begin{equation*}
\exists\left(v_{0}^{\#}, v_{1}^{\#}\right) \in U \times U \text { s.t. } D_{1} \hat{f}_{1} \circ D_{2} \hat{f}_{0} v_{0}^{\#}+D_{2} \hat{f}_{1} v_{1}^{\#}=z_{1}+y_{2}^{\#}+D_{1} \hat{f}_{1} z_{0} \tag{4.24}
\end{equation*}
$$

We set $y_{1}^{\#}:=D_{2} \hat{f}_{0} v_{0}^{\#}-z_{0}$. Hence we obtain

$$
\begin{equation*}
-y_{1}^{\#}+D_{2} \hat{f}_{0} v_{0}^{\#}=z_{0} \tag{4.25}
\end{equation*}
$$

Using (4.24) and (4.25), we calculate

$$
\begin{aligned}
& -y_{2}^{\#}+D_{1} \hat{f}_{1} y_{1}^{\#}+D_{2} \hat{f}_{1} v_{1}^{\#}=-y_{2}^{\#}+D_{1} \hat{f}_{1}\left(D_{2} \hat{f}_{0} v_{0}^{\#}-z_{0}\right)+D_{2} \hat{f}_{1} v_{1}^{\#} \\
& =-y_{2}^{\#}+\left(D_{1} \hat{f}_{1} \circ D_{2} \hat{f}_{0} v_{0}^{\#}+D_{2} \hat{f}_{1} v_{1}^{\#}\right)-D_{1} \hat{f}_{1} z_{0} \\
& =-y_{2}^{\#}+\left(z_{1}+y_{2}^{\#}+D_{1} \hat{f}_{1} z_{0}\right)-D_{1} \hat{f}_{1} z_{0}=z_{1}
\end{aligned}
$$

We have proven

$$
\begin{equation*}
-y_{2}^{\#}+D_{1} \hat{f}_{1} y_{1}^{\#}+D_{2} \hat{f}_{1} v_{1}^{\#}=z_{1} \tag{4.26}
\end{equation*}
$$

From (4.23), (4.25) and (4.26) we have proven

$$
\left.\begin{array}{l}
\forall\left(z_{t}\right)_{0 \leq t \leq h} \in X^{h+1}, \exists\left(y_{t}^{\#}\right)_{1 \leq t \leq h} \in X^{h}, \exists\left(v_{t}^{\#}\right)_{0 \leq t \leq h} \in U^{h+1} \text { s.t. } \tag{4.27}\\
-y_{1}^{\#}+D_{2} \hat{f}_{0} v_{0}^{\#}=z_{0}, \forall t \in\{1, \ldots, h-1\}-y_{t+1}^{\#}+D \hat{f}\left(y_{t}^{\#}, v_{t}^{\#}\right)=z_{t} \\
\text { and } D \hat{f}_{h}\left(y_{h}^{\#}, v_{h}^{\#}\right)=z_{h} .
\end{array}\right\}
$$

This assertion is equivalent to

$$
\forall \mathbf{z}^{h} \in X^{h+1}, \exists \mathbf{y}^{h, \#} \in X^{h}, \exists \mathbf{v}^{h, \#} \in U^{h+1} \text { s.t. } D g^{h}\left(\mathbf{x}^{h}, \mathbf{u}^{h}() \mathbf{y}^{h, \#}, \mathbf{v}^{h, \#}\right)=\mathbf{z}^{h}
$$

which means that $D g^{h}\left(\mathbf{x}^{h}, \mathbf{u}^{h}\right)$ is surjective.

Lemma 4.3. Let $\left.\left(\hat{x}_{t}\right)_{t \in \mathbb{N}},\left(\hat{u}_{t}\right)_{t \in \mathbb{N}}\right)$ be an optimal solution of one of the problems $\left(\mathbf{P}_{i}(\sigma)\right), i \in\{1,2,3\}$. Under (H1), (H2), (H3), 4.3) and 4.4), for all $h \in \mathbb{N}_{*}$, there exists $\lambda_{0}^{h} \in \mathbb{R}$ and $\left(p_{t+1}^{h}\right)_{0 \leq t \leq h} \in\left(X^{*}\right)^{h+1}$ such that the following assertions hold.
(a) λ_{0}^{h} and $\left(p_{t+1}^{h}\right)_{0 \leq t \leq h}$ are not simultaneously equal to zero.
(b) $\lambda_{0}^{h} \geq 0$.
(c) $p_{t}^{h}=p_{t+1}^{h} \circ D_{1} f_{t}\left(\hat{x}_{t}, \hat{u}_{t}\right)+\lambda_{0}^{h} D_{1} \phi_{t}\left(\hat{x}_{t}, \hat{u}_{t}\right)$ for all $t \in \mathbb{N}_{*}$.
(d) $\left\langle\lambda_{0}^{h} D_{2} \phi_{t}\left(\hat{x}_{t}, \hat{u}_{t}\right)+p_{t+1}^{h} \circ D_{2} f_{t}\left(\hat{x}_{t}, \hat{u}_{t}\right), u_{t}-\hat{u}_{t}\right\rangle \leq 0 \quad$ for all $t \in\{0, \ldots, h\}$, for all $u_{t} \in U_{t}$.
Moreover, for all $h \geq 2$, if in addition we assume (H4), (H5) and (H6) fulfilled, the following assertions hold.
(e) For all $t \in\{1, \ldots, h+1\}$, there exists $a_{t}, b_{t} \in \mathbb{R}_{+}$such that, for all $s \in$ $\{1, \ldots, h\},\left\|p_{t}^{h}\right\| \leq a_{t} \lambda_{0}^{h}+b_{t}\left\|p_{s}^{h}\right\|$.
(f) For all $t \in\{1, \ldots, h\},\left(\lambda_{0}^{h}, p_{t}^{h}\right) \neq(0,0)$.
(g) For all $t \in\{1, \ldots, h\}$, for all $z \in A_{t}:=D_{2} f_{t-1}\left(\hat{x}_{t-1}, \hat{u}_{t-1}\right)\left(T_{U_{t-1}}\left(\hat{u}_{t-1}\right)\right)$, there exists $c_{z} \in \mathbb{R}$ such that $p_{t}^{h}(z) \leq c_{z} \lambda_{0}^{h}$ for all $h \geq t$.

Proof. Let $h \in \mathbb{N}_{*}$. Using Lemma 4.1 (4.1) and (4.2), we know that ($\hat{\mathbf{x}}^{h}, \hat{\mathbf{u}}^{h}$) (where $\hat{\mathbf{x}}^{h}=\left(x_{1}^{h}, \ldots, x_{h}^{h}\right)$ and $\left.\hat{\mathbf{u}}^{h}=\left(u_{0}^{h}, \ldots, u_{h}^{h}\right)\right)$, is an optimal solution of the following maximization problem,

$$
\left\{\begin{array}{cl}
\text { Maximize } & J_{h}\left(\mathbf{x}^{h}, \mathbf{u}^{h}\right) \\
\text { when } & \left(\mathbf{x}^{h}, \mathbf{u}^{h}\right) \in\left(\prod_{t=1}^{h} X_{t}\right) \times\left(\prod_{t=0}^{h} U_{t}\right) \\
& g^{h}\left(\mathbf{x}^{h}, \mathbf{u}^{h}\right)=0
\end{array}\right.
$$

From (H3) we know that J_{h} is Fréchet differentiable at $\left(\hat{\mathbf{x}}^{h}, \hat{\mathbf{u}}^{h}\right)$ and g^{h} is Fréchet continuously differentiable at $\left(\hat{\mathbf{x}}^{h}, \hat{\mathbf{u}}^{h}\right)$. From (4.3), (4.4) and Lemma 4.2 we know that $\operatorname{ImD} g^{h}\left(\hat{\mathbf{x}}^{h}, \hat{\mathbf{u}}^{h}\right)$ is closed in X^{h+1}. Now using the multiplier rule which is given in [9] (Theorem 3.5 p. 106-111 and Theorem 5.6 p .118) and explicitely written in [3] (Theorem 4.4), and proceeding as in the proof of Lemma 4.5 of [3], we obtain the assertions (a), (b), (c), (d).

The proof of assertions (e), (f), (g) is given by Lemma 4.7 of [3]. The proof of this Lemma 4.7 uses the condition $0 \in \operatorname{Int}\left[D f\left(\hat{x}_{t}, \hat{u}_{t}\right)\left(X \times T_{U_{t}}\left(\hat{u}_{t}\right)\right) \cap B_{X \times U}\right]$ where $B_{X \times U}$ is the closed unit ball of $X \times U$. It suffices to notice that our assumption (H4) implies this condition.

Remark 4.4. In Lemma 4.5 of [3] the finiteness of the codimension of $\operatorname{ImD} D_{2} f\left(\hat{x}_{t}, \hat{u}_{t}\right)$ is useful to ensure the closedness of $\operatorname{ImD} g^{h}\left(\hat{\mathbf{x}}^{h}, \hat{\mathbf{u}}^{h}\right)$. Here we can avoid this assumption of finiteness thanks the recursive assumptions.

The following proposition is used in the proof of the main result.
Proposition 4.5. Let $\left.\left(\hat{x}_{t}\right)_{t \in \mathbb{N}},\left(\hat{u}_{t}\right)_{t \in \mathbb{N}}\right)$ be an optimal solution of one of the problems $\left(\mathbf{P}_{i}(\sigma)\right), i \in\{1,2,3\}$. Under (H1-H6) we introduce

$$
Z_{0}:=D_{2} f_{0}\left(\sigma, \hat{u}_{0}\right)\left(T_{U_{0}}\left(\hat{u}_{0}\right)\right) \quad \text { and } \quad Z_{1}:=D_{2} f_{1}\left(\hat{x}_{1}, \hat{u}_{1}\right)\left(T_{U_{1}}\left(\hat{u}_{1}\right)\right)
$$

Then, for all $h \in \mathbb{N}, h \geq 2$, there exist $\lambda_{0}^{h} \in \mathbb{R}$ and $\left(p_{t+1}^{h}\right)_{0 \leq t \leq h} \in\left(X^{*}\right)^{h+1}$ such that the following assertions hold.
(1) $\lambda_{0}^{h} \geq 0$.
(2) $p_{t}^{h}=p_{t+1}^{h} \circ D_{1} f_{t}\left(\hat{x}_{t}, \hat{u}_{t}\right)+\lambda_{0}^{h} D_{1} \phi_{t}\left(\hat{x}_{t}, \hat{u}_{t}\right)$ for all $t \in \mathbb{N}_{*}$.
(3) $\left\langle\lambda_{0}^{h} D_{2} \phi_{t}\left(\hat{x}_{t}, \hat{u}_{t}\right)+p_{t+1}^{h} \circ D_{2} f_{t}\left(\hat{x}_{t}, \hat{u}_{t}\right), u_{t}-\hat{u}_{t}\right\rangle \leq 0 \quad$ for all $t \in\{0, \ldots, h\}$, for all $u_{t} \in U_{t}$.
(4) For all $t \in\{1, \ldots, h+1\}$, there exists $a_{t}, b_{t} \in \mathbb{R}_{+}$such that, for all $s \in$ $\{1, \ldots, h\},\left\|p_{t}^{h}\right\| \leq a_{t} \lambda_{0}^{h}+b_{t}\left\|p_{s}^{h}\right\|$.
(5) $\left(\lambda_{0}^{h}, p_{1 \mid Z_{0}}^{h}, p_{2 \mid Z_{1}}^{h}\right) \neq(0,0,0)$.
(6) For all $z_{0} \in Z_{0}$, for all $z_{1} \in Z_{1}$, there exists $c_{z_{0}, z_{1}} \in \mathbb{R}$ such that, for all $h \geq 2, p_{1}^{h}\left(z_{0}\right)+p_{2}^{h}\left(z_{1}\right) \leq c_{z_{0}, z_{1}} \lambda_{0}^{h}$.
(7) For all $v \in X$ there exists $\left(z_{0}, z_{1}\right) \in Z_{0} \times Z_{1}$ such that

$$
p_{2}^{h}(v)=p_{1}^{h}\left(z_{0}\right)+p_{2}^{h}\left(z_{1}\right)-\lambda_{0}^{h} D_{1} \phi_{1}\left(\hat{x}_{1}, \hat{u}_{1}\right)\left(z_{0}\right) \text { for all } h \geq 2
$$

Proof. Proof of (1-4) Note that conditions (4.3) and (4.4) are consequences of (H4). We use λ_{0}^{h} and $\left(p_{t+1}^{h}\right)_{0 \leq t \leq h}$ which are provided by Lemma 4.3. Hence conclusions (1), (2) and (3) are given by Lemma 4.3. The conclusion (4) is the conclusion (e) of Lemma 4.3 .
Proof of (5) From the conclusion (f) of Lemma4.3, we know that $\left(\lambda_{0}^{h}, p_{1}^{h}\right) \neq(0,0)$.
We want to prove that $\left[\left(\lambda_{0}^{h}, p_{1}^{h}\right) \neq(0,0)\right]$ implies (5). To do that we proceed by contraposition; we assume that $\left[\lambda_{0}^{h}=0, p_{1 \mid Z_{0}}^{h}=0, p_{2 \mid Z_{1}}^{h}=0\right]$ and we want to prove that $\left[\lambda_{0}^{h}=0, p_{1}^{h}=0\right]$. Since $\lambda_{0}^{h}=0$, using the conclusion (2) we obtain $p_{1}^{h}=p_{2}^{h} \circ D_{1} f_{1}\left(\hat{x}_{1}, \hat{u}_{1}\right)$ which implies

$$
p_{1}^{h} \circ D_{2} f_{0}\left(\sigma, \hat{u}_{0}\right)\left(T_{U_{0}}\left(\hat{u}_{0}\right)\right)=p_{2}^{h} \circ D_{1} f_{1}\left(\hat{x}_{1}, \hat{u}_{1}\right) \circ D_{2} f_{0}\left(\sigma, \hat{u}_{0}\right)\left(T_{U_{0}}\left(\hat{u}_{0}\right)\right),
$$

and since $p_{1 \mid Z_{0}}^{h}=0$, we obtain $p_{2}^{h} \circ D_{1} f_{1}\left(\hat{x}_{1}, \hat{u}_{1}\right) \circ D_{2} f_{0}\left(\sigma, \hat{u}_{0}\right)\left(T_{U_{0}}\left(\hat{u}_{0}\right)\right)=0$, and since $p_{2 \mid Z_{1}}^{h}=0$, using (H5), we obtain $p_{2}^{h}=0$ (on X all over). Hence $p_{1}^{h}=$ $p_{2}^{h} \circ D_{1} f_{1}\left(\hat{x}_{1}, \hat{u}_{1}\right)=0$. The proof of (5) is complete.
Proof of (6) Let $z_{0} \in Z_{0}, z_{1} \in Z_{1}$. Using conclusion (g) of Lemma 4.3 we obtain that there exists $c_{z_{0}}^{0} \in \mathbb{R}$ such that $p_{1}^{h}\left(z_{0}\right) \leq c_{z_{0}}^{0} \lambda_{0}^{h}$ for all $h \geq 1$, and that there exists $c_{z_{1}}^{1} \in \mathbb{R}$ such that $p_{2}^{h}\left(z_{1}\right) \leq c_{z_{1}}^{1} \lambda_{0}^{h}$ for all $h \geq 2$. Setting $c_{z_{0}, z_{1}}:=c_{z_{0}}^{0}+c_{z_{1}}^{1}$ we obtain the announced conclusion.
Proof of (7) From (H5), for all $v \in X$, there exists $\zeta_{0} \in T_{U_{0}}\left(\hat{u}_{0}\right)$ and $\zeta_{1} \in T_{U_{1}}\left(\hat{u}_{1}\right)$ such that

$$
v=D_{1} f_{1}\left(\hat{x}_{1}, \hat{u}_{1}\right) \circ D_{2} f_{0}\left(\sigma, \hat{u}_{0}\right)\left(\zeta_{0}\right)+D_{2} f_{1}\left(\hat{x}_{1}, \hat{u}_{1}\right)\left(\zeta_{1}\right) .
$$

We set $z_{0}:=D_{2} f_{0}\left(\sigma, \hat{u}_{0}\right)\left(\zeta_{0}\right) \in Z_{0}$ and $z_{1}:=D_{2} f_{1}\left(\hat{x}_{1}, \hat{u}_{1}\right)\left(\zeta_{1}\right) \in Z_{1}$, hence we have

$$
\begin{equation*}
v=D_{1} f_{1}\left(\hat{x}_{1}, \hat{u}_{1}\right)\left(z_{0}\right)+z_{1} . \tag{4.28}
\end{equation*}
$$

From conclusion (2) we deduce
$p_{1}^{h} \circ D_{2} f_{0}\left(\sigma, \hat{u}_{0}\right)=p_{2}^{h} \circ D_{1} f_{1}\left(\hat{x}_{1}, \hat{u}_{1}\right) \circ D_{2} f_{0}\left(\sigma, \hat{u}_{0}\right)+\lambda_{0}^{h} D_{1} \phi_{1}\left(\hat{x}_{1}, \hat{u}_{1}\right) \circ D_{2} f_{0}\left(\sigma, \hat{u}_{0}\right)$.
Applying this last equation to ζ_{0} we obtain

$$
p_{1}^{h}\left(z_{0}\right)=p_{2}^{h} \circ D_{1} f_{1}\left(\hat{x}_{1}, \hat{u}_{1}\right)\left(z_{0}\right)+\lambda_{0}^{h} D_{1} \phi_{1}\left(\hat{x}_{1}, \hat{u}_{1}\right)\left(z_{0}\right)
$$

Adding $p_{2}^{h}\left(z_{1}\right)$ to this equality we obtain

$$
p_{1}^{h}\left(z_{0}\right)+p_{2}^{h}\left(z_{1}\right)=p_{2}^{h} \circ D_{1} f_{1}\left(\hat{x}_{1}, \hat{u}_{1}\right)\left(z_{0}\right)+p_{2}^{h}\left(z_{1}\right)+\lambda_{0}^{h} D_{1} \phi_{1}\left(\hat{x}_{1}, \hat{u}_{1}\right)\left(z_{0}\right)
$$

Using (4.28) we have $p_{1}^{h}\left(z_{0}\right)+p_{2}^{h}\left(z_{1}\right)=p_{2}^{h}(v)+\lambda_{0}^{h} D_{1} \phi_{1}\left(\hat{x}_{1}, \hat{u}_{1}\right)\left(z_{0}\right)$ which implies the announced equality.

5. Proof of the main theorem

Proposition 4.5 provides sequences $\left(\lambda_{0}^{h}\right)_{h \geq 2},\left(p_{t}^{h}\right)_{h \geq t}$ for all $t \in \mathbb{N}_{*}$. We set $q_{1}^{h}:=p_{1}^{h} \circ D_{2} f_{0}\left(\sigma, \hat{u}_{0}\right) \in U^{*}$ and $q_{2}^{h}:=p_{2}^{h} \circ D_{2} f_{1}\left(\hat{x}_{1}, \hat{u}_{1}\right) \in U^{*}$ for all $h \geq 2$. From conclusion (5) of Proposition 4.5 we obtain

$$
\left(\lambda_{0}^{h}, q_{1 \mid T_{U_{0}}\left(\hat{u}_{0}\right)}^{h}, q_{2 \mid T_{U_{1}}\left(\hat{u}_{1}\right)}^{h}\right) \neq(0,0,0) .
$$

We introduce $\Sigma:=\overline{\operatorname{aff}}\left(T_{U_{0}}\left(\hat{u}_{0}\right) \times T_{U_{1}}\left(\hat{u}_{1}\right)\right)$ the closed affine hull of $T_{U_{0}}\left(\hat{u}_{0}\right) \times T_{U_{1}}\left(\hat{u}_{1}\right)$ which is a closed vector subspace since the tangent cones contain the origine. From the previous relation we can assert that $\left(\lambda_{0}^{h},\left(q_{1}^{h}, q_{2}^{h}\right)_{\mid \Sigma}\right) \neq(0,(0,0))$. We introduce the number

$$
\theta^{h}:=\lambda_{0}^{h}+\left\|\left(q_{1}^{h}, q_{2}^{h}\right)_{\mid \Sigma}\right\|_{\Sigma^{*}}>0
$$

Since the list of the multipliers of the problem in finite horizon is a cone, we can replace λ_{0}^{h} by $\frac{1}{\theta^{h}} \lambda_{0}^{h}$ and the p_{t}^{h} by $\frac{1}{\theta^{h}} p_{t}^{h}$ (without to change the writting), and so we can assume that the following property holds.

$$
\begin{equation*}
\forall h \geq 2, \quad \lambda_{0}^{h}+\left\|\left(q_{1}^{h}, q_{2}^{h}\right)_{\left.\right|_{\Sigma}}\right\|_{\Sigma^{*}}=1 \tag{5.1}
\end{equation*}
$$

Using the Banach-Alaoglu theorem, we can assert that there exist an increasing mapping $\varphi_{1}:[2,+\infty)_{\mathbb{N}} \rightarrow[2,+\infty)_{\mathbb{N}}, \lambda_{0} \in \mathbb{R},\left(q_{1}, q_{2}\right) \in \Sigma^{*}$ such

$$
\left(\lambda_{0}^{\varphi_{1}(h)},\left(q_{1}^{\varphi_{1}(h)}, q_{2}^{\varphi_{1}(h)}\right)_{\mid \Sigma}\right) \xrightarrow{w^{*}}\left(\lambda_{0},\left(q_{1}, q_{2}\right)\right) \text { when } h \rightarrow+\infty .
$$

Now we want to establish that

$$
\begin{equation*}
\left(\lambda_{0},\left(q_{1}, q_{2}\right)\right) \neq(0,(0,0)) \tag{5.2}
\end{equation*}
$$

To do that we proceed by contradiction; we assume that $\lambda_{0}=0$ and $\left(q_{1}, q_{2}\right)=(0,0)$. From conclusion (6) of Proposition 4.5 we deduce that, for all $\zeta_{0} \in T_{U_{0}}\left(\hat{u}_{0}\right)$ and for all $\zeta_{1} \in T_{U_{1}}\left(\hat{u}_{1}\right)$, there exixts $c_{\zeta_{0}, \zeta_{1}} \in \mathbb{R}$ such that $q_{1}^{\varphi_{1}(h)}\left(\zeta_{0}\right)+q_{2}^{\varphi_{1}(h)}\left(\zeta_{1}\right) \leq$ $c_{\zeta_{0}, \zeta_{1}} \lambda_{0}^{\varphi_{1}(h)}$ for all $h \geq 2$. Hence we can use Proposition 3.2 with $Y=\Sigma, K=$ $T_{U_{0}}\left(\hat{u}_{0}\right) \times T_{U_{1}}\left(\hat{u}_{1}\right), S=\Sigma, \rho_{h}=\lambda_{0}^{\varphi_{1}(h)}$, and $\pi_{h}=\left(q_{1}^{\varphi_{1}(h)}, q_{2}^{\varphi_{1}(h)}\right)_{\mid \Sigma}$. Consequently we obtain that $\lim _{h \rightarrow+\infty}\left\|\left(q_{1}^{\varphi_{1}(h)}, q_{2}^{\varphi_{1}(h)}\right)_{\mid \Sigma}\right\|_{\Sigma^{*}}=0$. Since we also have $\lim _{h \rightarrow+\infty} \lambda_{0}^{\varphi_{1}(h)}=0$, we obtain a contradiction with (5.1). Hence (5.2) is proven. From conclusion (7) of Proposition 4.5 we have, for all $x \in X$, there exists $\left(\zeta_{0}, \zeta_{1}\right) \in$ Σ such that, for all $h \geq 2$,

$$
p_{2}^{\varphi_{1}(h)}(x)=\left(q_{1}^{\varphi_{1}(h)}, q_{2}^{\varphi_{1}(h)}\right)_{\mid \Sigma}\left(\zeta_{0}, \zeta_{1}\right)-\lambda_{0}^{\varphi_{1}(h)} D_{1} \phi_{1}\left(\hat{x}_{1}, \hat{u}_{1}\right) \circ D_{2} f_{0}\left(\sigma, \hat{u}_{0}\right)\left(\zeta_{0}\right)
$$

which permits to say that there exists $p_{2} \in X^{*}$ such that $p_{2}^{\varphi_{1}(h)} \xrightarrow{w^{*}} p_{2}$ when $h \rightarrow$ $+\infty$.

From conclusion (2) of Proposition 4.5 at $t=1$, we obtain that there exists $p_{1} \in X^{*}$ such that $p_{1}^{\varphi_{1}(h)} \xrightarrow{w^{*}} p_{1}$ when $h \rightarrow+\infty$, and from (5.2) we obtain

$$
\begin{equation*}
\left(\lambda_{0},\left(p_{1}, p_{2}\right)\right) \neq(0,(0,0)) \tag{5.3}
\end{equation*}
$$

Since $\left(p_{1}^{\varphi_{1}(h)}\right)_{h \geq 2}$ is weak-star convergent on X, using the Banach-Steinhaus theorem we can assert that the sequence $\left(\left\|p_{1}^{\varphi_{1}(h)}\right\|_{X^{*}}\right)_{h \geq 2}$ is bounded. Since $\left(\lambda_{0}^{\varphi_{1}(h)}\right)_{h \geq 2}$ is convergent in \mathbb{R}, it is bounded, and from conclusion (4) of Proposition 4.5, we deduce that the sequence $\left(p_{t}^{\varphi_{1}(h)}\right)_{h \in[t,+\infty)_{\mathbb{N}}}$ is bounded for each $t \in \mathbb{N}_{*}$. Then we can use Proposition 3.3 to ensure the existence of an increasing function φ_{2} :
$[2,+\infty)_{\mathbb{N}} \rightarrow[2,+\infty)_{\mathbb{N}}$ and a sequence $\left(p_{t}\right)_{t \in N_{*}} \in\left(X^{*}\right)^{\mathbb{N}_{*}}$ such that $p_{t}^{\varphi_{1} \circ \varphi_{2}(h)} \xrightarrow{w^{*}} p_{t}$ when $h \rightarrow+\infty$ for all $t \in \mathbb{N}_{*}$, and we have also $\lambda_{0}^{\varphi_{1} \circ \varphi_{2}(h)} \rightarrow \lambda_{0}$ when $h \rightarrow+\infty$. Hence we have built all the multipliers. The properties of these multipliers are obtained by taking limits from the properties of the λ_{0}^{h} and the p_{t}^{h}. Their non triviality is proven by (5.3). Hence the proof of the main result is complete.

References

1. J.-P. Aubin and I. Ekeland, Applied nonlinear analysis, John Wiley \& Sons, New York, 1984.
2. M. Bachir and J. Blot Infinite Dimensional Infinite-horizon Pontryagin principles for discrete-time problems, Set-Valued Var. Anal. 23 (2015) 43-54.
3. M. Bachir and J. Blot Infinite dimensional multipliers and Pontryagin principles for discretetime problems, Pure and Applied Functional Analysis, to appear.
4. J. Blot and P. Cieutat, Completness of sums of subspaces of bounded functions and applications, Commun. Math. Anal. 19(2) (2018), 43-61.
5. J. Blot and H. Chebbi, Discrete time Pontryagin principle in infinite horizon, J. Math. Anal. Appl. 246 (2000), 265-279.
6. J. Blot and N. Hayek, Infinite-horizon optimal control in the discrete-time framework, Springer, New York, 2014.
7. D.A. Carlson, A.B. Haurie and A. Leizarowitz, Infinite horizon optimal control; deterministic and stochastic systems, Second revised edition, Springer, Berlin, 1991.
8. W.C. Clark, Mathematical bioeconomics; optimal management of renewable resources, second edition, John Wiley and Sons, Inc;, Hoboken, New Jersey, 2005.
9. J. Jahn, Introduction to the theory of nonlinear optimization, Third edition, Springer-Verlag, Berlin, 2007.
10. P. Michel, Some clarifications on the transversality condition, Econometrica 58 (1990), 705728.
11. N. L. Stokey, R.E. Lucas and E.C. Prescott, Recursive methods in economic dynamics, Harvard University Press, Cambridge, MA, 1989.
12. C. Zălinescu, Convex analysis in general vector spaves, World Scientific Publishing Co., Pte, Ltd, Singapore, 2002.
13. A.J. Zaslavski, Turnpike properties in the calculus of variations and optimal Control, Springer Science+Business Media, New york, N.Y., 2006.

Mohammmed Bachir: Laboratoire SAMM EA4543,
Université Paris 1 Panthéon-Sorbonne, centre P.M.F.,
90 rue de Tolbiac, 75634 Paris cedex 13, France.
E-mail address: Mohammed.Bachir@univ-paris1.fr
Joël Blot: Laboratoire SAMM EA4543,
Université Paris 1 Panthéon-Sorbonne, centre P.M.F.,
90 rue de Tolbiac, 75634 Paris cedex 13, France.
E-mail address: blot@univ-paris1.fr

[^0]: Date: May 15th 2017.

