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The aim of this paper is to establish Pontryagin's principles in a dicrete-time infinite-horizon setting when the state variables and the control variables belong to infinite dimensional Banach spaces. In comparison with previous results on this question, we delete conditions of finiteness of codimension of subspaces. To realize this aim, the main idea is the introduction of new recursive assumptions and useful consequences of the Baire category theorem and of the Banach isomorphism theorem.

Introduction

The considered infinite-horizon Optimal Control problems are governed by the following discrete-time controlled dynamical system.

x t+1 = f t (x t , u t ), t ∈ N (1.1) where x t ∈ X t ⊂ X, u t ∈ U t ⊂ U and f t : X t × U t → X t+1 . Here X and U are real Banach spaces; X t is a nonempty open subset of X and U t is a nonempty subset of U . As usual, the x t are called the state variables and the u t are called the control variables.

From an initial state σ ∈ X 0 , we denote by Adm(σ) the set of the processes ((x t ) t∈N , (u t ) t∈N ) ∈ ( t∈N X t ) × ( t∈N U t ) which satisfy (1.1) for all t ∈ N. The elements of Adm(σ) are called the admissible processes.

For all t ∈ N, we consider the function φ t : X t × U t → R to define the criteria.We denote by Dom(J) the set of the ((x t ) t∈N , (u t ) t∈N ) ∈ ( t∈N X t ) × ( t∈N U t ) such that the series +∞ t=0 φ t (x t , u t ) is convergent in R. We define the nonlinear functional J : Dom(J) → R by setting (P 3 (σ)): Find ((x t ) t∈N , (û t ) t∈N ) ∈ Amd(σ) such that lim inf h→+∞ h t=0 (φ t (x t , ût )φ(x t , u t )) ≥ 0 for all ((x t ) t∈N , (u t ) t∈N ) ∈ Adm(σ). These problems are classical in mathematical macroeconomic theory; cf. [START_REF] Michel | Some clarifications on the transversality condition[END_REF], [START_REF] Blot | Infinite-horizon optimal control in the discrete-time framework[END_REF], [START_REF] Zaslavski | Turnpike properties in the calculus of variations and optimal Control[END_REF], [START_REF] Stokey | Recursive methods in economic dynamics[END_REF] and references therein, and also in sustainable development theory, [START_REF] Clark | Mathematical bioeconomics; optimal management of renewable resources[END_REF].

We study the necessary optimality conditions for these problems in the form of Pontryagin principles. Among the different ways to treat such a question, we choose the method of the reduction to the finite horizon. This method comes from [START_REF] Blot | Discrete time Pontryagin principle in infinite horizon[END_REF] in the discrete-time framework. Notice that this viewpoint was previously used by Halkin ( [START_REF] Carlson | Infinite horizon optimal control; deterministic and stochastic systems[END_REF], Theorem 2.3, p. 20) in the continuous-time framework.

There exist several works on this method when X and U are finite dimensional, cf. [START_REF] Blot | Infinite-horizon optimal control in the discrete-time framework[END_REF]. In the present paper we treat the case where X and U are infinite dimensional Banach spaces. With respect to two previous papers on this question, [START_REF] Bachir | Blot Infinite Dimensional Infinite-horizon Pontryagin principles for discrete-time problems[END_REF] and [START_REF] Bachir | Blot dimensional multipliers and Pontryagin principles for discretetime problems[END_REF], the main novelty is to avoid the use of assumptions of finiteness of the codimension of certain vector subspaces. To realize this we introduce new recursive assumptions on the partial differentials of the f t of (1.1). We speak of recursive assumptions since they contain two successive dates t -1 and t.

To make more easy the reading of the paper we describe the schedule of the proof of the main theorem (Theorem 2.1 below) . First step: the method of the reduction to finite horizon associates to the considered problems in infinite horizon the same sequence of finite-horizon problems which is indexed by h ∈ N, h ≥ 2. Second step: the providing of conditions to ensure that we can use Multiplier Rules (in Banach spaces) on the finite-horizon problems. Hence we obtain, for each h ∈ N, h ≥ 2, a nonzero list (λ h 0 , p h 1 , ..., p h h+1 ) ∈ R×(X * ) h+1 where λ h 0 is a multiplier associated to the criterion and (p h 1 , ..., p h h+1 ) are multipliers associated to the (truncated) dynamical system which is transformed into a list of constraints. Third step: the building of an increasing function ϕ : N → N such that the subsequences (λ ϕ(h) 0

) h and (p ϕ(h) t+1 ) h respectively converge to λ 0 and p t+1 for each t ∈ N * , with (λ 0 , (p t+1 ) t ) nonzero. The Banach-Alaoglu theorem permits us to obtain weakstar convergent subsequences of (λ h 0 ) h and (p h t+1 ) h for each t ∈ N, and a diagonal process of Cantor permits us to obtain the same function ϕ for all t ∈ N. The main difficulty is to avoid that (λ 0 , (p t+1 ) t ) is equal to zero. Such a difficulty is due to the infinite dimension where the weak-star closure of a sphere centered at zero contains zero. To overcome this difficulty, using the Baire category theorem, we establish that a weak-star convergence implies a norm convergence on a well chosen Banach subspace of the dual space of the state space. Now we describe the contents of the paper. In Section 2 we present our assumptions and we give the statement of the main theorem on the Pontryagin principle. In Section 3 we recall a characterization of the closedness of the image of a linear continuous operator, a consequence of the Baire category theorem on the weak-star convergence, and we provide a diagonal process of Cantor for the weak-star convergence. In Section 4 we describe the reduction to the finite horizon and we establish consequence of our recursive assumptions on the surjectivity and on the closedness of the range of the differentials of the constraints in the finite-horizon problems. In Section 5 we give the complete proof of our main theorem.

The main result

First we present a list of hypotheses.

(H1): X and U are separable Banach spaces.

(H2): For all t ∈ N, X t is a nonempty open subset of X and U t is a nonempty convex subset of U .

When ((x t ) t∈N , (û t ) t∈N ) is a given admissible process of one of the problems ((P i (σ))), i ∈ {1, 2, 3}, we consider the following conditions.

(H3): For all t ∈ N, φ t is Fréchet differentiable at (x t , ût ) and f t is continuously Fréchet differentiable at (x t , ût ).

(H4): For all t ∈ N, t ≥ 2, D 1 f t (x t , ût ) • D 2 f t-1 (x t-1 , ût-1 )(U ) + D 2 f t (x t , ût )(T Ut (û t )) = X. (H5): D 1 f 1 (x 1 , û1 ) • D 2 f 0 (x 0 , û0 )(T U0 (û 0 )) + D 2 f 1 (x 1 , û1 )(T U1 (û 1 )) = X. (H6): ri(T U0 (û 0 )) = ∅ and ri(T U1 (û 1 )) = ∅.
In (H3), since U t is not necessarily a neighborhood of ût , the meaning of this condition is that there exists an open neighborhood V t of (x t , ût ) in X × U and a Fréchet differentiable function (respectively continuously Fréchet differentiable mapping) φt : V t → R (respectively ft : V t → X) such that φt and φ t (respectively ft and f t ) coincide on V t ∩ (X t × U t ). Moreover D 1 and D 2 denotes the partial Fréchet differentials with respect to the first (vector) variable and with respect to the second (vector) variable respectively. About (H4), (H5) and (H6), when A is a convex subset of U , û ∈ A, the set T A (û) is the closure of R + (Aû); it is called the tangent cone of A at û as it is usually defined in Convex Analysis, [START_REF] Aubin | Applied nonlinear analysis[END_REF] p. 166. About (H6), if aff(T Ut (û t )) denotes the affine hull of T Ut (û t ), ri(T Ut (û t )) denotes the (relative) interior of T Ut (û t ) in aff(T Ut (û t )). Such definition of the relative interior of a convex is given in [START_REF] Zȃlinescu | Convex analysis in general vector spaves[END_REF], p. 14-15, where it is denoted by rint. Now we state the main result of the paper.

Theorem 2.1. Let ((x t ) t∈N , (û t ) t∈N ) be an optimal process for one of the problems (P i (σ)), i ∈ {1, 2, 3}. Under (H1-H6), there exist λ 0 ∈ R and (p t+1 ) t∈N ∈ (X * ) N which satisfy the following conditions.

(

) (λ 0 , p 1 , p 2 ) = (0, 0, 0). ( 1 
) λ 0 ≥ 0. ( 2 
) p t = p t+1 • D 1 f t (x t , ût ) + λ 0 D 1 φ t (x t , ût ), for all t ∈ N, t ≥ 1. ( 3 
) λ 0 D 2 φ t (x t , ût ) + p t+1 • D 2 f t (x t , ût ), u t -ût ≤ 0, for all u t ∈ U t , for all t ∈ N. 4 
In comparison with Theorem 2.2 in [START_REF] Bachir | Blot dimensional multipliers and Pontryagin principles for discretetime problems[END_REF], in this theorem we have deleted the condition of finiteness of codimension which are present in assumptions (A5) and (A6) in [START_REF] Bachir | Blot dimensional multipliers and Pontryagin principles for discretetime problems[END_REF]. It is why this theorem is an improvment of the result of [START_REF] Bachir | Blot dimensional multipliers and Pontryagin principles for discretetime problems[END_REF].

Functional analytic results

In this section, first we recall an characterization of the closedness of the image of a linear continuous operator. Secondly we state a result which is a consequence of the Baire category theorem. After we give a version of the diagonal process of Cantor for the weak-star convergence. Proposition 3.1. Let E and F be Banach spaces, and L ∈ L(E, F ) (the space of the linear continuous mappings). The two following assertions are equivalent.

(i) ImL is closed in F . (ii) There exists c ∈ (0, +∞) s.t. for all y ∈ ImL, there exists x y ∈ E verifying Lx y = y and y ≥ c x y .

This result is proven in [START_REF] Bachir | Blot Infinite Dimensional Infinite-horizon Pontryagin principles for discrete-time problems[END_REF] (Lemma 3.4) and in [START_REF] Blot | Completness of sums of subspaces of bounded functions and applications[END_REF] (Lemma 2.1).

Proposition 3.2. Let Y be a real Banach space; Y * is its topological dual space. Let (π h ) h∈N ∈ (Y * ) N and (ρ h ) h∈N ∈ (R + ) N . Let K be a nonempty closed convex subset of Y such that ri(K) = ∅.
Let a ∈ K and we set S := aff(K)a which is a Banach subspace. We assume that the following conditions are fulfilled.

(1) ρ h → 0 when h → +∞.

(2) π h w * → 0 (weak-star convergence) when h → +∞. (3) For all y ∈ K, there exists c y ∈ R such that π h (y) ≤ c y ρ h for all h ∈ N.

Then we have π h| S S * → 0 when h → +∞. This result is established in [START_REF] Bachir | Blot dimensional multipliers and Pontryagin principles for discretetime problems[END_REF] (Proposition 3.5) where several consequences and generalizations are provided. In the following result, when t ∈ N, we set [t, +∞) N := [t, +∞) ∩ N and N * := [1, +∞) N . Proposition 3.3. Let Y be a real Banach space; Y * is its topological dual space. For every (t, h) ∈ N × N * such that t ≤ h we consider an element π h t+1 ∈ Y * . We assume that, for every t ∈ N, the sequence (π h t+1 ) h∈[t,+∞) N is bounded in Y * . Then there exists an increasing function β : N * → N * such that, for all t ∈ N, there exists

π t+1 ∈ Y * verifying π β(h) t+1 w * → π t+1 when h → +∞.
Proof. Using the Banach-Alaoglu theorem, since (π h 1 ) h∈[0,+∞) N is bounded in Y * , there exists an increasing function α

1 : [0, +∞) N → [0, +∞) N and π 1 ∈ Y * such that π α1(h) 1 w * → π 1 when h → +∞. Using the same argument, since (π α1(h) 2 ) h∈[1,+∞) N is bounded, there exists an increasing function α 2 : [1, +∞) N → [1, +∞) N and π 2 ∈ Y * such that π α1•α2(h) 2 w * → π 2 when h → +∞.
Iterating the reasoning, for every t ∈ N * , there exist an increasing function α

t : [t, +∞) N → [t, +∞) N and π t+1 ∈ Y * such that π α1•...•αt(h) t+1 w * → π t+1 when h → +∞. We define the function β : [0, +∞) N → [0, +∞) N by setting β(h) := α 1 • ... • α h (h). we arbitrarily fix t ∈ N * and we define the function δ t : [t, +∞) N → [t, +∞) N by setting δ t (t) := t and δ t (h) := α t+1 • ...• α h (h) when h > t. When h = t, we have δ t (t+ 1) = α t+1 (t+ 1) ≥ t + 1 > t = δ t (t). When h ∈ [t + 1, +∞) N , we have α t+1 (h + 1) ≥ h + 1 > h which implies δ t (h + 1) = (α t+1 • ... • α h )(α t+1 (h + 1)) > (α t+1 • ... • α h )(h) = δ t (h) since (α t+1 • ...• α h ) is increasing. Hence we have proven that δ t is increasing. Since β | [t,+∞) N = (α 1 • ... • α t ) • δ t , we can say that (π β(h) t+1 ) h∈[t,+∞) N is a subsequence of (π α1•...•αt(h) t+1
) h∈[t,+∞) N , we obtain π

β(h) t+1 w * → π t+1 when h → +∞.

reduction to the finite horizon

When ((x t ) t∈N , (û t ) t∈N ) is an optimal process for one of the problems (P i (σ)), i ∈ {1, 2, 3}. The method of the rediction to finite horizon consists on considering of the sequence of the following finite-horizon problems.

(F h (σ))        Maximize J h (x 1 , ..., x h , u 0 , ..., u h ) := h t=0 φ t (x t , u t ) when (x t ) 1≤t≤h ∈ h t=1 X t , (u t ) 0≤t≤h ∈ h t=0 U t ∀t ∈ {0, ..., h}, x t+1 = f t (x t , u t ) x 0 = σ, x h+1 = xt+1
The proof of the following lemma is given in [START_REF] Blot | Discrete time Pontryagin principle in infinite horizon[END_REF].

Lemma 4.1. When ((x t ) t∈N , (û t ) t∈N ) is an optimal process for one of the problems (P i (σ)), i ∈ {1, 2, 3}, then, for all h ∈ N * , (x 1 , ..., xh , û0 , ..., ûh ) is an optimal solution of (F h (σ)).

Notice that this result does not need any special assumption. Now we introduce notation to work on these problems. We write

x h := (x 1 , ..., x h ) ∈ h t=1 X t , u h := (u 0 , ..., u h ) ∈ h t=0 U t .
For all h ∈ N * and for all t ∈ N, we introduce the mapping

g h t : ( h t=1 X t ) × ( h t=0 U t ) → X t+1 by setting g h t (x h , u h ) :=    -x 1 + f 0 (σ, u 0 ) if t = 0 -x t+1 + f t (x t , u t ) if t ∈ {1, ..., h -1} -x h+1 + f h (x h , u h ). (4.1)
We introduce the mapping g h : (

h t=1 X t ) × ( h t=0 U t ) → X h+1 defined by g h (x h , u h ) := (g h 0 (x h , u h ), ..., g h h (x h , u h )). (4.2)
Under (H3), g h is of class C 1 . We introduce the following conditions on the differentials of the f t . ∀t ∈ N, ImDf t (x t , ût ) is closed in X.

(4.3) ∀t ∈ N * , Im(D 1 f t (x t , ût ) • D 2 f t-1 (x t-1 , ût-1 )) + ImD 2 f t (x t , ût ) = ImDf t (x t , ût ). (4.4) ∀t ∈ N, t ≥ 2, ImDf t (x t , ût ) = X.
(4.5) 

Im(D 1 f 1 (x 1 , û1 ) • D 2 f 0 (σ, û0 )) + ImD 2 f 1 (x 1 , û1 ) = X. ( 4 

Proof. (i)

To abridge the writing we set D ft := Df t (x t , ût ) and D i ft := D i f t (x t , ût ) when i ∈ {1, 2}. The condition (H3) implies that g h is Fréchet differentiable at (x h , u h ).

We arbitrarily fix z h = (z 0 , ..., z h ) ∈ ImDg h (x h , u h ). Therefore there exists y h,0 = (y 0 1 , ..., y 0 h ) ∈ X h and v h,0 = (v 0 0 , ..., v 0 h ) ∈ U h+1 such that z h = Dg T (x h , u h )(y h,0 , v h,0 ) which is equivalent to the set of the three following equations

-y 0 1 + D 2 f 0 (σ, û0 )v 0 0 = z 0 (4.7) ∀t ∈ {1, ..., h -1}, -y 0 t+1 + D 1 ft y 0 t + D 2 ft v 0 t = z t (4.8) D 1 fh y 0 h + D 2 fh v 0 h = z h . (4.9)
We introduce the linear continuous operator L 0 ∈ L(X × U, X) by setting

L 0 (y 1 , v 0 ) := -y 1 + D 2 f0 v 0 . (4.10)
Notice that L 0 is surjective since L 0 (X × {0}) = X; therefore ImL 0 is closed in X. From (4.7) we have z 0 ∈ ImL 0 . Using Proposition 3.1 on L 0 we know that

∃a 0 ∈ (0, +∞), ∀z 0 ∈ X, ∃y * 1 ∈ X, ∃v * 0 ∈ U s.t. L 0 (y * 1 , v * 0 ) = z 0 and max{ y * 1 , v * 0 } ≤ a 0 • z 0 i.e. we have proven ∃a 0 ∈ (0, +∞), ∃y * 1 ∈ X, ∃v * 0 ∈ U s.t. -y * 1 + D 2 f0 v * 0 = z 0 and max{ y * 1 , v * 0 } ≤ a 0 • z 0 (4.11)
It is important to notice that a 0 does not depend on z 0 .

We introduce the linear continuous operator L 1 ∈ L(X × U, X) by setting

L 1 (y 2 , v 1 ) := -y 2 + D 2 f1 v 1 . Since L 1 (X × {0}) = X, L 1 is surjective and hence z 1 -D 1 f1 y * 1 ∈ ImL 1 . Using Proposition 3.1 on L 1 , we obtain    ∃b 1 ∈ (0, +∞), ∃y * 2 ∈ X, ∃v * 1 ∈ U s.t. L 1 (y * 2 , v * 1 ) = z 1 -D 1 f1 y * 1 and max{ y * 2 , v * 1 } ≤ b 1 • z 1 -D 1 f1 y * 1 . Using (4.11) we deduce from the last inequality max{ y * 2 , v * 1 } ≤ b 1 • ( z 1 + D 1 f1 • y * 1 ) ≤ b 1 • ( z 1 + D 1 f1 • a 0 • z 0 ) ≤ b 1 • (1 + a 0 • D 1 f1 ) • max{ z 0 , z 1 }.
We set a 1 := max{a 0 , b 1 • (1 + a 0 • D 1 f1 )}, and then we have proven the following assertion.

∃a 1 ∈ (0, +∞), ∃(y * 1 , y * 2 , v * 0 , v * 1 ) ∈ X 2 × U 2 s.t. -y * 1 + D 2 f0 v * 0 = z 0 , -y * 2 + D 1 f1 y * 1 + D 2 f1 v * 1 = z 1 , max{|y * 1 , y * 2 , v * 0 , v * 1 } ≤ a 1 • max{ z 0 , z 1 }.    (4.12)
It is important to notice that a 1 does not depend on z 0 , z 1 . We iterate the reasoning until h -2 and we obtain

∃a h-2 ∈ (0, +∞), ∃(y * t ) 1≤t≤h-1 ∈ X h-1 , ∃(v * t ) 0≤t≤h-2 ∈ U h-1 s.t. -y * 1 + D 2 f0 v * 0 = z 0 , ∀t ∈ {1, ..., h -2}, -t * t+1 + D 1 ft y * t + D 2 ft v * t = z t max{max 1≤t≤h-1 y * t , max 0≤t≤h-2 v * t } ≤ a h-2 max 0≤t≤h-2 z t .
   (4.13) From (4.9) we know that z h ∈ ImD fh . Moreover we have

D 1 fh z h-1 ⊂ ImD fh and D 1 fh • D 1 fh-1 y * h-1 ∈ ImD 1 fh
⊂ ImD fh and therefore we have 

z h + D 1 fh-1 z h-1 -D 1 fh • D 1 fh-1 y * h-1 ∈ ImD fh . ( 4 
∃c ∈ (0, +∞), ∃(v * h-1 , v * h ) ∈ U × U, s.t. Λ(v * h-1 , v * h ) = z h + D 1 fh z h-1 -D 1 fh • D 1 fh-1 y * h-1 i.e. D 1 fh • D 2 fh-1 v * h-1 + D 2 fh v * h = z h + D 1 fh z h-1 -D 1 fh • D 1 fh-1 y * h-1 and max{ v * h-1 , v * h } ≤ c • z h + D 1 fh z h-1 -D 1 fh • D 1 fh-1 y * h-1 .                  (4.16) 
From this last inequality, using (4.13), we obtain

max{ v * h-1 , v * h } ≤ c • ( z h + D 1 fh • z h-1 + D 1 fh • D 1 fh-1 • y * h-1 ) ≤ c • ( z h + D 1 fh • z h-1 + D 1 fh • D 1 fT h1 • a h-2 • max 1≤t≤h-2 z t ) ≤ c • (1 + D 1 fh + a h-2 • D 1 fh • D 1 fh-1 ) • max 1≤t≤h z t . We set c 1 := c • (1 + D 1 fh + a h-2 • D 1 fh • D 1 fh-1 ) ∈ (0, +∞).
Then we have proven the following assertion.

∃c 1 ∈ (0, +∞), max{ v * h-1 , v * h } ≤ c 1 • max 1≤t≤h z t . (4.17) 
We set

y * h := D 2 fh-1 v * h-1 + D 1 fh-1 y * h-1 -z h-1 . (4.18) 
This equality implies

-y * h + D 1 fh-1 y * h-1 + D 2 fh-1 v * h-1 = z h-1 (4.19)
which is the penultimate wanted equation.

Notice that we have y

* h ≤ D 2 fh-1 • v * h-1 + D 1 fh-1 • y * h-1 + z h-1
, and using (4.17) and (4.18) we obtain

y * h ≤ D 2 fh-1 • c 1 • max 1≤t≤h z t + D 1 fh-1 • a h-2 • max 1≤t≤h-2 z t + z h-1 ≤ (c 1 • D 2 fh-1 + a h-2 • D 1 fh-1 + 1) • max 1≤t≤h z t . We set c 2 := c 1 • D 2 fh-1 + a h-2 • D 1 fh-1 + 1
, and so we have proven

∃c 2 ∈ (0, +∞), y * h ≤ c 2 • max 1≤t≤h z t . (4.20) 
We set a h := max{a h-3 , c 1 , c 2 }, and from (4.13), (4.17) and (4.20) we have proven

∃a h ∈ (0, +∞), max{ max 1≤t≤h y * t , max 0≤t≤h v * t } ≤ a h • max 1≤t≤h z t . (4.21) 
Now we show that the last equation is satisfied by y * h and v * h . Using (4.18) and (4.16), we obtain

D 1 f hy * h + D 2 fh v * h = D 1 fT (D 2 fh-1 v * h-1 + D 1 fh-1 y * h-1 -z h-1 ) + D 2 fh v * h = (D 1 fh • (D 2 fh-1 v * h-1 + D 2 fh v * h ) + D 1 fh • D 1 fh-1 y * h-1 -D 1 fh z h-1 = (z h + D 1 fh z h-1 -D 1 fh • D 1 fh-1 y * h-1 ) + D 1 fh • D 1 fh-1 y * h-1 -D 1 fh z h-1 = z h .
We have proven that

D 1 fh y * h + D 2 fh v * h = z h . (4.22) 
From (4.13), (4.19), (4.21) and (4.22) we have proven the following assertion

           ∃a h ∈ (0, +∞), ∀(z t ) 0≤t≤h ∈ ImDg h (x h , ûh ), ∃(y * t ) 1≤t≤h ∈ X h , ∃(v * t ) 0≤t≤h ∈ U h+1 , s.t. -y * 1 + D 2 f0 v * 0 = z 0 , ∀t ∈ {1, ..., h -1}, -y t+1 + D 1 ft y * t + D 2 ft v * t = z t , D 1 fh y * h + D 2 fh v * h = z h , and max{max 1≤t≤h y * t , max 0≤t≤h v * t } ≤ a h • max 1≤t≤h z t .
This last assertion is equivalent to the following one

   ∃a h ∈ (0, +∞), ∀z h = (z t ) 0≤t≤h ∈ ImDg h (x h , ûh ), ∃y h, * = (y * t ) 1≤t≤h ∈ X h , ∃v h, * = (v * t ) 0≤t≤h ∈ U h+1 , s.t. Dg h (x h , ûh )(y h v h, * ) = z h and (y h, * , v h, * ) ≤ a h • z h .
Now using Proposition 3.1 on the operator Dg h (x h , ûh ), the previous assertion permits us to assert that ImDg h (x h , ûh ) is closed in X h+1 , and the proof of (i) is complete.

(ii) We arbitrarily fix z h = (z 1 , ..., z h ) ∈ X h . Since D fh is surjective, there exists 

y # h ∈ X and v # h ∈ U such that D fh (y # h , v # h ) = z h . Since D fh-1 is surjective, there exists y # h-1 ∈ X and v # h-1 ∈ U such that D fh-1 (y # h-1 , v # h-1 ) = z h-1 + y # h . We iterate this bachward reasoning until t = 2 to obtain ∀t ∈ {2, ..., h}, ∃(y # t , v # t ) ∈ X × U s.t. D fh (y # h , v # h ) = z h and ∀t ∈ 2, ..., h -1, -y # t + D ft (y # t , v # t ) = z t .
∃(v # 0 , v # 1 ) ∈ U × U s.t. D 1 f1 • D 2 f0 v # 0 + D 2 f1 v # 1 = z 1 + y # 2 + D 1 f1 z 0 . (4.24) We set y # 1 := D 2 f0 v # 0 -z 0 . Hence we obtain -y # 1 + D 2 f0 v # 0 = z 0 . (4.25) 
Using (4.24) and (4.25), we calculate 

-y # 2 + D 1 f1 y # 1 + D 2 f1 v # 1 = -y # 2 + D 1 f1 (D 2 f0 v # 0 -z 0 ) + D 2 f1 v # 1 = -y # 2 + (D 1 f1 • D 2 f0 v # 0 + D 2 f1 v # 1 ) -D 1 f1 z 0 = -y # 2 + (z 1 + y # 2 + D 1 f1 z 0 ) -D 1 f1 z 0 = z 1 . We have proven -y # 2 + D 1 f1 y # 1 + D 2 f1 v # 1 = z 1 . ( 4 
∀(z t ) 0≤t≤h ∈ X h+1 , ∃(y # t ) 1≤t≤h ∈ X h , ∃(v # t ) 0≤t≤h ∈ U h+1 s.t. -y # 1 + D 2 f0 v # 0 = z 0 , ∀t ∈ {1, ..., h -1} -y # t+1 + D f (y # t , v # t ) = z t and D fh (y # h , v # h ) = z h .    (4.27)
This assertion is equivalent to

∀z h ∈ X h+1 , ∃y h,# ∈ X h , ∃v h,# ∈ U h+1 s.t. Dg h (x h , u h ()y h,# , v h,# ) = z h
which means that Dg h (x h , u h ) is surjective.

Lemma 4.3. Let (x t ) t∈N , (û t ) t∈N ) be an optimal solution of one of the problems (P i (σ)), i ∈ {1, 2, 3}. Under (H1), (H2), (H3), (4.3) and (4.4), for all h ∈ N * , there exists λ h 0 ∈ R and (p h t+1 ) 0≤t≤h ∈ (X * ) h+1 such that the following assertions hold.

(a) λ h 0 and (p h t+1 ) 0≤t≤h are not simultaneously equal to zero. 

(b) λ h 0 ≥ 0. (c) p h t = p h t+1 • D 1 f t (x t , ût ) + λ h 0 D 1 φ t (x t , ût ) for all t ∈ N * . (d) λ h 0 D 2 φ t (x t , ût ) + p h t+1 • D 2 f t (x t ,
:= D 2 f t-1 (x t-1 , ût-1 )(T Ut-1 (û t-1 )),
there exists c z ∈ R such that p h t (z) ≤ c z λ h 0 for all h ≥ t. Proof. Let h ∈ N * . Using Lemma 4.1, (4.1) and (4.2), we know that (x h , ûh ) (where xh = (x h 1 , ..., x h h ) and ûh = (u h 0 , ..., u h h )), is an optimal solution of the following maximization problem,

   Maximize J h (x h , u h ) when (x h , u h ) ∈ ( h t=1 X t ) × ( h t=0 U t ), g h (x h , u h ) = 0.
From (H3) we know that J h is Fréchet differentiable at (x h , ûh ) and g h is Fréchet continuously differentiable at (x h , ûh ). From (4.3), (4.4) and Lemma 4.2 we know that ImDg h (x h , ûh ) is closed in X h+1 . Now using the multiplier rule which is given in [START_REF] Jahn | Introduction to the theory of nonlinear optimization[END_REF] (Theorem 3.5 p. 106-111 and Theorem 5.6 p. 118) and explicitely written in [START_REF] Bachir | Blot dimensional multipliers and Pontryagin principles for discretetime problems[END_REF] (Theorem 4.4), and proceeding as in the proof of Lemma 4.5 of [START_REF] Bachir | Blot dimensional multipliers and Pontryagin principles for discretetime problems[END_REF], we obtain the assertions (a), (b), (c), (d).

The proof of assertions (e), (f), (g) is given by Lemma 4.7 of [START_REF] Bachir | Blot dimensional multipliers and Pontryagin principles for discretetime problems[END_REF]. The proof of this Lemma 4.7 uses the condition 0 ∈ Int[Df (x t , ût )(X × T Ut (û t )) ∩ B X×U ] where B X×U is the closed unit ball of X × U . It suffices to notice that our assumption (H4) implies this condition. Remark 4.4. In Lemma 4.5 of [START_REF] Bachir | Blot dimensional multipliers and Pontryagin principles for discretetime problems[END_REF] the finiteness of the codimension of ImD 2 f (x t , ût ) is useful to ensure the closedness of ImDg h (x h , ûh ). Here we can avoid this assumption of finiteness thanks the recursive assumptions.

The following proposition is used in the proof of the main result. Proposition 4.5. Let (x t ) t∈N , (û t ) t∈N ) be an optimal solution of one of the problems (P i (σ)), i ∈ {1, 2, 3}. Under (H1-H6) we introduce Z 0 := D 2 f 0 (σ, û0 )(T U0 (û 0 )) and Z 1 := D 2 f 1 (x 1 , û1 )(T U1 (û 1 )).

Then, for all h ∈ N, h ≥ 2, there exist λ h 0 ∈ R and (p h t+1 ) 0≤t≤h ∈ (X * ) h+1 such that the following assertions hold.

(1) λ h 0 ≥ 0. (2) p h t = p h t+1 • D 1 f t (x t , ût ) + λ h 0 D 1 φ t (x t , ût ) for all t ∈ N * .

[2, +∞) N → [2, +∞) N and a sequence (p t ) t∈N * ∈ (X * ) N * such that p ϕ1•ϕ2(h) t w * → p t when h → +∞ for all t ∈ N * , and we have also λ ϕ1•ϕ2(h) 0 → λ 0 when h → +∞. Hence we have built all the multipliers. The properties of these multipliers are obtained by taking limits from the properties of the λ h 0 and the p h t . Their non triviality is proven by (5.3). Hence the proof of the main result is complete.

  .14) Introduce the linear continuous operator Λ ∈ L(U × U, X) by setting Λ(v, w) := D 1 fh • D 2 fh-1 v + D 2 fh w. (4.15) Under assumptions (4.4) and (4.5) we have ImΛ = ImD fh and ImΛ is closed in X. After (4.14), using Proposition 3.1 on Λ we obtain

( 4 .

 4 23)Now we introduce the linear continuous operator M ∈ L(U × U, X) by setting M (v 0 , , v 1 ); = D 1 f1 • D 2 f0 v 0 + D 2 f1 v 1 . From (4.6) we have ImM = X i.e. M is surjective. Therefore we obtain

  ût ), u tût ≤ 0 for all t ∈ {0, ..., h}, for all u t ∈ U t . Moreover, for all h ≥ 2, if in addition we assume (H4), (H5) and (H6) fulfilled, the following assertions hold.(e) For all t ∈ {1, ..., h + 1}, there exists a t , b t ∈ R + such that, for all s ∈ {1, ..., h}, p h t ≤ a t λ h 0 + b t p h s . (f) For all t ∈ {1, ..., h}, (λ h For all t ∈ {1, ..., h}, for all z ∈ A t

	0 , p h t ) = (0, 0).
	(g)

(3) λ h 0 D 2 φ t (x t , ût ) + p h t+1 • D 2 f t (x t , ût ), u tût ≤ 0 for all t ∈ {0, ..., h}, for all u t ∈ U t . (4) For all t ∈ {1, ..., h + 1}, there exists a t , b t ∈ R + such that, for all s ∈ {1, ..., h}, p h t ≤ a t λ h 0 + b t p h s . (5) (λ h 0 , p h 1 |Z0 , p h 2 |Z1 ) = (0, 0, 0). ( 6) For all z 0 ∈ Z 0 , for all z 1 ∈ Z 1 , there exists c z0,z1 ∈ R such that, for all h ≥ 2, p h 1 (z 0 ) + p h 2 (z 1 ) ≤ c z0,z1 λ h 0 . (7) For all v ∈ X there exists (z 0 , z 1 )

Proof. Proof of (1-4) Note that conditions (4.3) and (4.4) are consequences of (H4).

We use λ h 0 and (p h t+1 ) 0≤t≤h which are provided by Lemma 4.3. Hence conclusions (1), ( 2) and (3) are given by Lemma 4.3. The conclusion (4) is the conclusion (e) of Lemma 4.3. Proof of (5) From the conclusion (f) of Lemma 4.3, we know that (λ h 0 , p h 1 ) = (0, 0). We want to prove that [(λ h 0 , p h 1 ) = (0, 0)] implies [START_REF] Blot | Discrete time Pontryagin principle in infinite horizon[END_REF]. To do that we proceed by contraposition; we assume that [λ h 0 = 0, p h 1 |Z0 = 0, p h 2 |Z1 = 0] and we want to prove that [λ h 0 = 0, p h 1 = 0]. Since λ h 0 = 0, using the conclusion (2) we obtain

and since p h

and since p h

2 |Z1 = 0, using (H5), we obtain p h 2 = 0 (on X all over). Hence

Using conclusion (g) of Lemma 4.3, we obtain that there exists c 0 z0 ∈ R such that p h 1 (z 0 ) ≤ c 0 z0 λ h 0 for all h ≥ 1, and that there exists c 1 z1 ∈ R such that p h 2 (z 1 ) ≤ c 1 z1 λ h 0 for all h ≥ 2. Setting c z0,z1 := c 0 z0 + c 1 z1 we obtain the announced conclusion. Proof of ( 7) From (H5), for all v ∈ X, there exists ζ 0 ∈ T U0 (û 0 ) and

(4.28)

From conclusion (2) we deduce

Applying this last equation to ζ 0 we obtain

Adding p h 2 (z 1 ) to this equality we obtain

Using (4.28) we have p h

) which implies the announced equality.

Proof of the main theorem

Proposition 4.5 provides sequences (λ h 0 ) h≥2 , (p h t ) h≥t for all t ∈ N * . We set

From conclusion (5) of Proposition 4.5 we obtain (λ h 0 , q h 1 |TU 0 (û0) , q h 2 |TU 1 (û1) ) = (0, 0, 0).

We introduce Σ := aff(T U0 (û 0 )×T U1 (û 1 )) the closed affine hull of T U0 (û 0 )×T U1 (û 1 ) which is a closed vector subspace since the tangent cones contain the origine. From the previous relation we can assert that (λ h 0 , (q h 1 , q h 2 ) |Σ ) = (0, (0, 0)). We introduce the number

Since the list of the multipliers of the problem in finite horizon is a cone, we can replace λ h 0 by 1 θ h λ h 0 and the p h t by 1 θ h p h t (without to change the writting), and so we can assume that the following property holds.

Using the Banach-Alaoglu theorem, we can assert that there exist an increasing mapping

-→ (λ 0 , (q 1 , q 2 )) when h → Now we want to establish that (λ 0 , (q 1 , q 2 )) = (0, (

To do that we proceed by contradiction; we assume that λ 0 = 0 and (q 1 , q 2 ) = (0, 0). From conclusion (6) of Proposition 4.5 we deduce that, for all ζ 0 ∈ T U0 (û 0 ) and for all ζ 1 ∈ T U1 (û 1 ), there exixts c ζ0,ζ1 ∈ R such that q ϕ1(h) 1

for all h ≥ 2. Hence we can use Proposition 3.2 with Y = Σ, K = T U0 (û 0 ) × T U1 (û 1 ), S = Σ, ρ h = λ ϕ1(h) 0 , and π h = (q ϕ1(h) 1 , q ϕ1(h) 2

) |Σ . Consequently we obtain that lim h→+∞ (q

) |Σ Σ * = 0. Since we also have lim h→+∞ λ ϕ1(h) 0 = 0, we obtain a contradiction with (5.1). Hence (5.2) is proven.

From conclusion [START_REF] Carlson | Infinite horizon optimal control; deterministic and stochastic systems[END_REF] of Proposition 4.5 we have, for all x ∈ X, there exists (ζ 0 , ζ 1 ) ∈ Σ such that, for all h ≥ 2,

which permits to say that there exists p 2 ∈ X * such that p

From conclusion (2) of Proposition 4.5 at t = 1, we obtain that there exists p 1 ∈ X * such that p ϕ1(h) 1 w * → p 1 when h → +∞, and from (5.2) we obtain (λ 0 , (p 1 , p 2 )) = (0, (0, 0)).

(5.3)

Since (p ϕ1(h) 1

) h≥2 is weak-star convergent on X, using the Banach-Steinhaus theorem we can assert that the sequence ( p ϕ1(h) 1 X * ) h≥2 is bounded. Since (λ ϕ1(h) 0 ) h≥2 is convergent in R, it is bounded, and from conclusion (4) of Proposition 4.5, we deduce that the sequence (p ϕ1(h) t

) h∈[t,+∞) N is bounded for each t ∈ N * . Then we can use Proposition 3.3 to ensure the existence of an increasing function ϕ 2 :