
HAL Id: hal-01513011
https://paris1.hal.science/hal-01513011

Submitted on 24 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Capturing Ambiguity in Artifacts to Support
Requirements Engineering for Self-Adaptive Systems

Juan C Muñoz-Fernández, Alessia C Knauss, Lorena C Castañeda, Mahdi C
Derakhshanmanesh, Robert Heinrich, Matthias Becker, Nina C

Taherimakhsousi

To cite this version:
Juan C Muñoz-Fernández, Alessia C Knauss, Lorena C Castañeda, Mahdi C Derakhshanmanesh,
Robert Heinrich, et al.. Capturing Ambiguity in Artifacts to Support Requirements Engineering
for Self-Adaptive Systems. RESACS: 3rd International Workshop on Requirements Engineering for
Self-Adaptive & Cyber Physical System, Feb 2017, Essen, Germany. �hal-01513011�

https://paris1.hal.science/hal-01513011
https://hal.archives-ouvertes.fr


Capturing Ambiguity in Artifacts to Support
Requirements Engineering for Self-Adaptive

Systems

Juan C. Muñoz-Fernández12, Alessia Knauss3, Lorena Castañeda4, Mahdi
Derakhshanmanesh5, Robert Heinrich6, Matthias Becker7, and Nina

Taherimakhsousi4

1 Facultad de Ingenieŕıa, Universidad Icesi, Colombia, jcmunoz@icesi.edu.co,
2 CRI, Université Paris 1 Panthéon - Sorbonne, France.

3 Chalmers University of Technology, Sweden.alessia.knauss@chalmers.se
4 University of Victoria, Canada. {lcastane, ninata}@uvic.ca

5 MHP – A Porsche Company, Germany. mahdi.derakhshanmanesh@mhp.com
6 Karlsruhe Institute of Technology, Germany, heinrich@kit.edu

7 Software Engineering Group, Fraunhofer IEM, Germany.
matthias.becker@iem.fraunhofer.de

Abstract. Self-adaptive systems (SAS) automatically adjust their be-
havior at runtime in order to manage changes in their user requirements
and operating context. To achieve this goal, a SAS needs to carry knowl-
edge in artifacts (e.g., contextual goal models) at runtime. However,
identifying, representing, and refining requirements and their context
to create and maintain such artifacts at runtime is a challenging task,
especially if the runtime environment is not very well known. In this
short paper, we present an early concept to requirements engineering for
the implementation of SAS in the context of uncertainty. Especially the
wide variety of knowledge materialized in artifacts created during soft-
ware engineering activities at design time is considered. We propose to
start with a list of ambiguous requirements - or under-specified require-
ments -, leaving the ambiguity in the requirements, which will in the
later steps be resolved further as more information is known. In contrast
to conventional requirements engineering approaches, not all ambiguous
requirements will be resolved. Instead, ambiguities serve as key input
for self-adaptation. We present five steps for the resolution of the ambi-
guity. For each step, we describe its purpose, identified challenges, and
resolution ideas.

Keywords: runtime requirements; self-adaptive systems; artifacts

1 Introduction

Requirements engineering (RE) activities for self-adaptive systems (SAS) tres-
pass the limits of requirements analysis phases taking place also at design time
and runtime [11]. When developing a SAS, designers need to define structural



Capturing Ambiguity in Artifacts to Support RE for SAS

and behavioral adaptation points explicitly (where, when, what, how). In tradi-
tional RE approaches, a particular set of artifacts (e.g., requirements lists, goal
models, feature models, and statecharts) is created and managed by require-
ments engineers. To achieve adaptation, a SAS must be aware of this knowledge
gathered at design-time to be able to adapt itself and carry the knowledge, e.g.,
in the form of models at runtime [2]. Furthermore, based on this knowledge, a
SAS can decide about the best suitable adaptation at runtime. In related work,
adaptive requirements have been introduced to explicitly define variation points
in requirements to leave room for adaptation [10].

We propose to focus on the reuse of the knowledge contained by the set of
artifacts usually created and managed at design-time and to enable their facil-
itation at runtime systematically. We define an artifact as a machine-readable
document relevant to requirements and context. A draft of the artifacts are
created by requirements engineers at design time, and they will be updated at
runtime.

We start from a set of elicited requirements tolerating some degree of am-
biguity. We propose to keep on purpose the potentially contained ambiguity
captured in the requirements artifacts and to design and implement the soft-
ware without (entirely) resolving the ambiguity. We define the ambiguity as of
under-specification of requirements. Usually, resolving ambiguities is an essential
part of the traditional RE activities. In a SAS, however, we claim that embrac-
ing ambiguity throughout software design and implementation is a major step
towards defining and extending relevant context attributes for self-adaptation.
Nevertheless, only the ambiguity that leads to feasible variability points should
be maintained. For example, for autonomous vehicles, the requirements will be
refined after the vehicle is developed (e.g., using continuous experimentation). A
SAS shall resolve contextually relevant ambiguity itself or with human help at
runtime. Runtime testing will then serve to guarantee that the detailed require-
ments are implemented properly. This resolution requires an implementation
of the system without fully hard coding all choices, thereby leaving space for
runtime variability.

Two aspects enable a SAS to adapt to emerging situations at runtime within
safe and secure bounds. On the one hand, the combination of knowledge about
ambiguity in requirements and its context (problem space). On the other hand,
foreseen adaptation points in the software itself (solution space).

2 Guiding Artifact Centric RE Activities for SASs

To guide software engineers during requirements engineering and design of SAS,
we propose an iterative and incremental approach comprising five steps. Table
1 summarizes the steps and its associated artifacts. The steps are described in
the rest of this section.
Step 1: Capture Requirements

This first step starts with a traditional requirements elicitation activity at de-
sign time resulting in a set of requirements. Some of these requirements can be



Capturing Ambiguity in Artifacts to Support RE for SASs

Table 1. Guiding Activities and Excerpt of Related Artifact Types and Examples

Step Activity Artifact

1 Capture requirements Specification (e.g., early goal models)

2 (Iter.) Identify variability points Model (e.g., late goal models)

3 (Iter.) Identify context Context model (e.g., ontologies)

4 (Iter.) Identify situations Situations model (e.g., reasoning support)

5 (Iter.) Design variability (solution space) Architecture models (e.g., component models)

ambiguous. The assumption here is that such ambiguities will be either resolved
by the SAS or with human participation at runtime. Therefore, it is crucial that
the requirements elicited in this step be documented or mapped to a machine-
readable notation (e.g., goal models). In later steps when more information on
the context is available, goal models can be extended to contextual goal models
[12] and use cases can be extended to adapt cases [7].

Challenges: The consideration of leaving ambiguity in requirements: Some
types of ambiguity might need to be resolved, as they will not lead to any adap-
tation needs (e.g., logical inconsistencies, stakeholders’ interpretations) while
other types of ambiguity are necessary for the SAS variability at runtime.

Ideas: Define different categories of ambiguity and their effect on adaptation
capabilities of a SAS through empirical investigations.
Step 2: Identify Variability Points
The identification of ambiguities is an iterative process comprising three cases:
(1) If a requirement is ambiguous in our accepted sense, a new variation of the
requirement is produced for each interpretation and is evaluated again. (2) If a
requirement is not ambiguous, then its variabilities are identified, and all consid-
erable behaviors are defined as an alternative to the requirement. (3) If there is
no variability, then the requirement is considered as solid with only one expected
behavior. That behavior determines a system’s state, and it is marked as valid
or not. It is important to store the older versions of a requirement as well as in-
valid behaviors as system’s knowledge. The initially defined requirements can be
associated with a special type of requirements called architecturally significant
requirements (ASRs). ASRs should provide relevant information for designers
based on quality attributes, architecting family of related products and specific
technologies required, as proposed by Bass et al. [1]. The identification of ASRs
is important to satisfy all requirements adequately.

Existing work on variability in software engineering focuses on software prod-
uct lines (SPL) [14], in which variability is used to produce new versions of a
software product whereas goal-oriented modeling use variability to define behav-
iors of the system [4]. A Dynamic software product line (DSPL) target a single
system with multiple and dynamic bindings [3]. REFAS [8] includes support the
sub-specification with concern levels and aggregation relations. The specification
is centered on constraints that are applicable at design time and runtime.

Challenges: Techniques and methods are required to provide (1) runtime
variability assurance (i.e., reaction to a variability at runtime), (2) unexpected



Capturing Ambiguity in Artifacts to Support RE for SAS

variability and ambiguities management (i.e., not being prepared for certain
variability), and (3) alternatives to model the sub-specification of variability
and adaptation requirements, including the horizontal and hierarchical relations
to be evaluated only at runtime.

Ideas: (1) The development of an evaluation framework with techniques and
metrics to assess the variability of the requirements. This framework should
consider the restrictions of a runtime environment such as response time, perfor-
mance, and availability. (2) The development of runtime techniques to validate
the variabilities of the requirements according to the states of the running sys-
tem. (3) The development of runtime management infrastructures to sense, ana-
lyze and act upon unforeseen variabilities (i.e., discard or accept) and ambiguities
(i.e., generate its variabilities) on the requirements such as the DYNAMICO ref-
erence model. [15]. (4) The runtime consideration for the definition of relevant
relations that constraint the adaptation (e.g., constraints to adapt between two
scenarios).
Step 3: Identify Context which Influences System Behavior
After having identified variation points, the requirements engineer has to under-
stand the influence factors for variation points. We propose to represent these
factors through context-attributes [6], which means that ambiguous parts of re-
quirements can be refined further through context attributes (i.e., relevant infor-
mation for the system that can be sensed and monitored). The context data can
be obtained from the system and information about the external environment.

Challenges: (1) the identification of context attributes that are relevant to
the variation points – this is partially done by the system and requires techniques
to support this process – and (2) how to reduce invalid or not desired adaptation
possibilities from an initial situation.

Ideas: Modeling constraints between variables for particular values and eval-
uate them at runtime. With the results of this evaluation, the system can reduce
the adaptation possibilities of the model.
Step 4: Identify Context Situations and Variabilities
During this step, context is analyzed with the purpose of identifying the situa-
tions that are relevant to runtime events. For this purpose, the context already
identified is traced to each requirement while specifying the meaning for each of
them. Changes in the context have different reactions and implications for re-
quirements depending on the interpretation of the situations and requirements.

Existing work on context situations in software engineering include tech-
niques to manage context information, such as context models [16, 13] and using
machine learning techniques to keep context information up-to-date [5].

Challenges: (1) Information on the scenario that might not be sensed by the
system is not available. (2) Situations (or scenarios) can be subjective. (3) The
generation of all possible situations poses a risk to the system’s performance.
(4) The influence of values from context variables is oversimplified. They are
directly linked to some of the requirements.

Ideas: (1) The implementation of runtime models to represent situations, as
well as required infrastructures to support the evolution of such representations.



Capturing Ambiguity in Artifacts to Support RE for SASs

(2) Strategies to guarantee the system’s performance while generating diverse
situations, including mechanisms and metrics to stop the system before an ex-
plosion of scenarios and computing possible scenarios offline or when the system
is idle. (3) The definition of influence from context variables mediated by sce-
narios or other runtime context conditions to support more complex situations.
Thus, the semi-automatic or automatic derivation of possible situations only
from those influence factors. (4) The support of complex expressions to relate
the context with the requirements closer to the real system configuration.
Step 5: Design Variation Points in the Solution Space
The intention of this step is to provide a software solution that (i) can satisfy the
goals according to a given variability definition and (ii) is extendable when new
goals emerge. The realization must especially support adaptation at runtime.

Existing work includes external and internal approaches [9]. External ap-
proaches use explicit feature models linked to artifact elements using (1) hard
links/references or (2) an expression language where elements in artifacts are
annotated using Boolean expressions over features. Internal approaches present
the expressiveness of an artifacts language used to express variability (e.g., dy-
namic binding in Java, preprocessor in C and conditional ”tags” in XML). Other
techniques for dealing with variability include tailoring of artifacts (e.g., scripts
in ANT or MAKE) and model transformation languages (e.g., ATL or QVT).

Challenges: Knowledge about variability is not fully (re)used at runtime.
DSPL approaches support this reuse, but the relation between design-time and
runtime variability is not well established.

Ideas: To have different views on the variability data: some for design-time
(suited for requirements engineers) and some for runtime (suited for software:
adaptation manager components). These views imply a language that requires
the integration of knowledge (meta-data) from both – design time and runtime,
i.e., make explicit why a variation at a certain variation point is an alternative.
Such knowledge can also facilitate automated decision-making at runtime.

3 Concluding Remarks

SAS are expected to deal with uncertainty from their requirements and operating
context, resulting in situations that require adaptations of the system. Some of
these situations already occur at requirements level.

In this short paper, we sketched an artifact-centric approach for RE in the
domain of SAS comprising five guiding, incremental, and iterative steps. For each
step, we described its purpose, estimated associated challenges and potential
ideas on how to resolve these challenges. The overall goal of the presented concept
is to bridge design-time and run-time RE activities to manage ambiguities better.

Future work has to investigate the presented challenges and corresponding
evaluation of results. As for the methodology, our proposal is to use empirical
research methods, but combining quantitative and qualitative experiments with
selected project cases from industry.



Capturing Ambiguity in Artifacts to Support RE for SAS

4 Acknowledgments

We thank T. Vogel, M. Tichy, and A. Gorla, organizers GI-Dagstuhl Seminar
14433 in which this paper was conceived. This work was supported by Vinnova
grant 2014-06229.

References

1. L. Bass, J. Bergey, P. Clements, P. Merson, I. Ozkaya, and R. Sangwan. A Com-
parison of Requirements Specification Methods from a Software Architecture Per-
spective. Technical report.

2. N. Bencomo, J. Whittle, P. Sawyer, A. Finkelstein, and E. Letier. Requirements
Reflection: Requirements as Runtime Entities. In ICSE’10, pages 199–202, 2010.

3. R. Capilla, J. Bosch, P. Trinidad, A. Ruiz Cortés, and M. Hinchey. An overview
of dynamic software product line architectures and techniques: Observations from
research and industry. Journal of Systems and Software, 91:3–23, 2014.

4. B. Gonzales-Baixauli, J.C.S. Prado Leite, and J. Mylopoulos. Visual Variability
Analysis for Goal Models. In RE’04, pages 198–207, Sept 2004.

5. A. Knauss, D. Damian, X. Franch, A. Rook, H. A Müller, and A. Thomo. ACon:
A learning-based approach to deal with uncertainty in contextual requirements at
runtime. Information and Software Technology, 70:85–99, 2016.

6. A. Knauss, D. Damian, and K. Schneider. Eliciting Contextual Requirements at
Design Time: A Case Study. In EmpiRE’14, pages 56–63. IEEE, 2014.

7. M. Luckey, B. Nagel, C. Gerth, and G. Engels. Adapt Cases: Extending Use Cases
for Adaptive Systems. In SEAMS’11, pages 30–39. ACM, 2011.

8. J.C. Muñoz-Fernández, G. Tamura, R. Mazo, and C. Salinesi. Towards a Require-
ments Specification Multi-View Framework for Self-Adaptive Systems. CLEIej,
18(2), 2015.

9. K. Pohl, G Böckle, and F.J. van der Linden. Software Product Line Engineering:
Foundations, Principles and Techniques. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2005.

10. N.A. Qureshi and A. Perini. Engineering Adaptive Requirements. In SEAMS’09,
pages 126–131. IEEE, 2009.

11. N.A. Qureshi, A. Perini, F. Bruno, K. Irst, N.A. Ernst, and J. Mylopoulos. Towards
a Continuous Requirements Engineering Framework for Self-Adaptive Systems. In
RE@RunTime, pages 9–16, 2010.

12. A. Raian. Modeling and Reasoning about Contextual Requirements: Goal-Based
Framework. PhD thesis, University of Trento, Italy, 2010.

13. Q.Z. Sheng and B. Benatallah. Contextuml: a uml-based modeling language for
model-driven development of context-aware web services. In In: The 4th Int. Conf.
on Mobile Business, pages 206–212, 2005.

14. R. Tawhid and D.C. Petriu. Product Model Derivation by Model Transformation
in Software Product Lines. In ISORCW’11, pages 72–79, 2011.

15. N. M. Villegas, G. Tamura, H. A. Müller, L. Duchien, and R. Casallas. DYNAM-
ICO: A reference model for governing control objectives and context relevance in
self-adaptive software systems. In Self-Adaptive Software Systems, volume 7475 of
LNCS, pages 265–293. Springer, 2013.

16. N.M. Villegas. Context Management and Self-Adaptivity For Situation-Aware
Smart Software Systems. Phd Thesis, Univ. Of Victoria, 2013.


