
HAL Id: hal-01423709
https://paris1.hal.science/hal-01423709

Submitted on 31 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic re-configuration of software product lines
towards an exploratory study on DSPLs

Danillo Sprovieri

To cite this version:
Danillo Sprovieri. Dynamic re-configuration of software product lines towards an exploratory study
on DSPLs. IEEE 10th International Conference on Research Challenges in Information Science, Jun
2016, Grenoble, France. pp.1 - 6, �10.1109/RCIS.2016.7549362�. �hal-01423709�

https://paris1.hal.science/hal-01423709
https://hal.archives-ouvertes.fr

Dynamic Re-Configuration of Software Product Lines
Towards an Exploratory Study on DSPLs

Danillo Sprovieri

Centre de Recherche en Informatique

Université Paris-Sorbonne

Paris, France

danillo.sprovieri@malix.univ-paris1.fr

Abstract—Context: Adaptations need to be considered at

design-time (adapting complex systems to new technologies,

reengineering due to new regulations etc.), but also during run-

time (e.g. new emerging functional and non-functional

requirement, context-specific decisions). Objective: I use SPLs as

a strategy for coping with uncertainty and adapting to change,

where conventionally change occurs in the requirements of the

software product lines’ market. Our idea is to design a variability

mechanism in the domain of dynamic software product lines

engineering in order to enable continuous evolution and

adaptation of the software product lines at run-time. Method: I

investigate dynamic change propagation of SPLs at run-time

through an explorative study. A literature review and semi-

structured personal interviews with relevant actors in the domain

of SPLs are the fundament of our research. This analysis enables

us to understand how SPLs are dynamically adapted and evolved

in practice. Conclusion: This study will give us an overview of the

domain of DSPLs and allows us to identify the research gap

regarding run-time adaptation and evolution of SPLs.

Keywords—Run-Time Adaptation; SPLs; DSPLs

I. INTRODUCTION

Due to market dynamics, changing business conditions and
new regulations [1], the success of an enterprise depends
increasingly on its ability to be flexible and react to
environmental changes in a quick and cost-effective way
[2]–[6]. Under these conditions, adaptations are unavoidable
and crucial in most application domains [4], [6]–[10]. These
adaptations need to be considered at design time (adapting
complex systems to new technologies, reengineering due to
new regulations, etc.) [11], [12], but also during run-time (e.g.
context-specific decisions) [13], [14]. For several decades, all
software was custom software. Every application was tailored
specifically to one customer’s requirements. Software reuse has
gained more and more attraction from the research community
to find a solution for developing complex systems. Reuse
software parts leads to improvements such as productivity,
quality and cost reduction [15]. The idea of software reuse was
already introduced by McIlroy [16], who proposed at that time
mass production of software components as the base for
software development. Later on, Parnas [17]–[19] created the
artefact of program family, which is the foundation until today
in engineering for reusable component and reuse-based
application development [20]. There are several advantages to
the product lines production strategy. According to the study

realized by Clements and Northrop [21] the product lines
production approach decreases not only the cost per product,
but also the time to market, the labor need and improves the
productivity, the quality of each derived product and increases
the portfolio size and therefore the possibility to gain new
markets. One of the most effective means to manage software
reuse in an industrial context is software product lines
engineering. In particular, product lines engineering allows
managing a family of applications that share a common
architecture. These applications are configured as a set of
components that provide core functions, but will exhibit
variability in the features they provide to users because each
family member will use a unique set of non-core components
bound to the architecture at variation points.

In parallel with advances in software engineering for SPLs,
a new generation of middleware and service-oriented
architectures has emerged that is capable to adapt its behaviour
according to changes in operation or environment conditions,
and/or user requirements. This may require a system to adapt
dynamically to environmental change in a way that is far more
radical than is possible using mere modes of operation
supported by parametric adaptation [22]. The emergence of
such re-configurable software machinery has profound
implications for software development. In particular, it permits:
Software to be developed that can tolerate a wide range of
environmental contexts without forcing the developer to
enumerate how the system will behave in each; Software to be
developed in the presence of uncertainty [23] about the
environmental contexts that may be encountered at run time.
Effectively, a re-configurable capability permits design
decisions to be deferred from design time to run time. This is
only possible if the system is able to monitor its environment at
run time, using the monitoring data and the system’s own
internal state to trigger adaptations as necessary. However,
such adaptations must be driven by the need to satisfy the
system’s requirements. However, there is currently a wide
conceptual gap between the capabilities of re-configurable
machinery, expressed in terms of components and services, and
requirements, expressed in terms of user or customer needs,
with only an emerging understanding of what changing
environmental context means. The latter characterizes the
extent to which a system can tolerate change in the
environment; from optimizing the way a fixed set of
requirements are satisfied, to adapting to satisfy new
requirements that emerge dynamically.

In this paper I intend to study this aspect in the context of
adaptive middleware and service-oriented architectures. The
possible solutions will be empirically evaluated to improve a
selected solution that will be implemented into a tool be used
by software practitioners and other research laboratories around
the world.

A. Software Product Lines

In an SPL, “a set of software-intensive systems …. share a
common, managed set of features satisfying the specific needs
of a particular market segment or mission and that are
developed from a common set of core assets in a pre-scribed
way”1. Thus, a family of applications will share a common
architecture, configured as a set of components that provide
core functions, but will exhibit variability in the features they
provide to users because each family member will use a unique
set of non-core components bound to the architecture at
variation points.

II. CHALLENGES AND PROBLEMATIC SITUATION

It is not possible to anticipate all possible execution
contexts already at design-time (e.g. if the change is a user
interface that must be adapted to an as yet unknown UI
technology). At design-time, the software product lines must be
specified in a way that is able to sense and react to context
changes at run-time. So, the system is able to cope to a certain
degree with new emerging requirements. Andersson et al. [24]
characterize the scope of change as follows: (i) taken care of,
(ii) planned for or (iii) not planned for. Adapting dynamically
to satisfy new requirements is unplanned change and for fully
autonomous systems is currently possible only in the realm of
science fiction. Adaptive middleware and service-oriented
architectures are now able to support change, but dealing with
change that is planned for but not taken care of at design-time
is an open challenge that, when solved, will significantly
extend the types of problems for which resilient software
systems can be developed. However, even where adaptation
involves optimizing for a fixed set of requirements (as is the
case for (i) and (ii)), established techniques for reasoning about
requirements are insufficient, since not only must the system’s
behaviour be specified when the environment is in a steady
state, but the adaptive behaviour (i.e. under what circumstances
must the system adapt?) have to be specified also. Worse, if, as
is frequently the case, knowledge about the environment is
incomplete at design time, the system’s behaviour must be
specified not only for the environmental contexts that the
analyst believes the system will encounter, but also for those
the system will encounter if the analyst’s belief evidences to be
mistaken. Risks of evolution are mainly related on the one
hand to loss of consistency and accuracy in the components
and on the other hand the loss of the benefits associated with
the product lines technique. These risks are increasing directly
proportional to the number of components and the complexity
of the relations between them. Given the importance and the
need for solutions that avoid these risks [25], L. Yu and S.
Ramaswamy [26], Dhungana et al. [27], Borba [28], Neves
[29], have made several proposals to address these challenges.

1 www.sei.cmu.edu/productlines

However, the arguments and empirical evidences presented by
Dhungana et al. [27] and Neves [29] suggest that the few
existing proposals are far from representing a satisfactory
solution to the problems and challenges associated to the
evolution of PLs systems. The use of SPLs can be seen as a
strategy for coping with uncertainty and adapting to change,
where conventionally, change occurs in the requirements of the
software product lines’ market. In contrast to autonomous re-
configurable systems, the derivation of new SPLs variants
typically involves satisfying new goals rather than the ways in
which a fixed set of goals are realized. Moreover, these goals
could not be included when the SPLs was conceived. Thus,
SPLs deal with unplanned change. This is possible because
adaptation is done offline by human developers rather than
automatically at run-time. Nevertheless, the techniques used in
SPLs are exploitable. Thus, a re-configurable system can be
conceptualized as a dynamic SPLs (DSPLs) [30], [31]; a set of
variants within a product family, with each variant optimized to
a particular environmental context. The key difference between
an SPLs and a DSPLs is the time at which variants are bound;
at design or deployment time for SPLs or at run-time for
DPSLs.

III. RELATED WORK

Lapouchnian [32] defines Awareness Requirements (or
AwReqs) as requirements that talk about the success or failure
of other requirements. AwReqs can refer to goals, tasks, quality
constrains and domain assumptions. However, while I plan to
use in-memory representation and a limited form of
manipulation of goal models, Lapouchnian does not deal with
the runtime representation of the requirements, i.e. not explicit
runtime representation of AwReq is provided. Instead, they
focus on the mapping from requirement models to feedback
loops using the requirements monitoring framework proposed
by Robinson [33] to monitor AwReq. Lapouchnian [32] does
reasoning about partial satisfaction of requirements. They offer
high-level monitoring capabilities that can be used to determine
satisfaction levels for AwReqs. In our case, the DSPL itself
verifies if an assumption is true. If the assumption is falsified,
the system automatically re-evaluates the trade-off among the
softgoals, triggering an adaptation to rebalancing the softgoals
if necessary. Kirsch-Pinheiro et al. [34] explored the re-
adaptation of context-oriented systems proposing a roadmap to
context management and a requirements elicitation process.
DeLoach & Miller [35] explore how to maintain a runtime
representation of goals. However, they do not deal with the
runtime representation of softgoals or goal realization
strategies. As far as I am able to understand, in their research
the running system interacts with the runtime goal model to
trigger an update of the runtime goal model (a goal can be
triggered to go from active to achieved, failed, obviated, or
removed). Its main utility has been for understanding what the
system is doing in terms of goals. No reasoning about partial
satisfaction is done. This contrasts with Letier & Van
Lamsweerde [36], which formalizes a mean for representing
partial goal satisfaction based on KAOS. A contrasting
approach to partial goal satisfaction is covered by RELAX
proposed by Whittle et al. [37]. Although RELAX is not goal-
based per se, Cheng et al. [38] illustrates the use of RELAX,
with KAOS goal models, using obstacle analysis to identify

when to RELAX a goal. Baresi & Pasquale [39] propose
adaptive goals that are aware of their own degree of
satisfaction during runtime and a means to trigger adaptation.

Raúl Mazo et al. [40] presented a Java-based tool
(VariaMos) for defining variability modeling languages,
(dynamic) product lines and re-configurable systems. In
addition to that, the tool enables automated verification,
analysis, configuration and simulation. Models designed with
VariaMos refer to the specification of variability of dynamic
product lines. So, it enables at a certain degree to modify the
modeling languages at run-time. In the same place, at the same
time, Muñoz-Fernández et al. [41] investigated in more detail
the requirements specification for re-configurable systems.
They presented a multi-view framework. This framework
fosters to manage uncertainty and is sufficiently expressive for
re-configurable systems.

IV. RESEARCH DESIGN

In this Section, I outline how I conduct research and the
reasoning about the applied concepts.

A. Research Goal

I investigate, how the idea of dynamic software product
lines could help to deal with the challenges of developing
efficient re-configurable software. I also offer insight into the
different approaches that use dynamic software product lines
engineering for developing re-configurable systems focusing
on practical approaches

B. Research Questions

The research goal, combined with the problems and
approaches mentioned in Section 1 lead to the following
research questions:

RQ1. What elements are common in evolutionary and re-
configurable SPLs? Why is it not possible to anticipate at
design-time all re-configurations and what are the requirements
to adapt and evolve at run-time? The answer should help to
establish a conceptual architecture to facilitate reasoning about
conceptual adaption. Literature review and analysis of real
interviews are fundamental to identify relevant information
about how to re-configure and evolve SPLs at run-time.

RQ2. How can I support run-time re-configuration and
evolution of SPLs? Is the context required to evolve from
dynamic adaptation to dynamic re-configuration? The answers
to these question refers to the main goal of this project. The
information is required to suggest and develop a solution that
can be applied to derive a solution of which configurations are
appropriate to a given context at run-time. Dynamic software
product lines engineering is a mean to flexibly handle context
changes at run-time. Techniques in this area are used to
develop an architecture that support run-time re-configuration
of re-configurable systems.

RQ3. How can the conceptual architecture be validated?
This should establish a validation framework.

C. Research Strategy

Based on the problem description, I chose Design Science
Research (DSR), proposed by Hevner et al. [42] and V.
Vaishnavi and B. Kuechler [43], as a research strategy, as my
goal is to derive an artefact, which is able to provide empirical
evidence for filling the research gap. Also, because DSR
determines iteratively the reality and literature foundation that
emerge from research efforts. DSR as research strategy
provides both the methodology of design science research by
Vaishnavi et al. [43], [44] and the information system research
framework by Hevner and Chatterjee [45]. The methodology
describes the process steps and the circulation of knowledge
within these steps. The framework considers previous scientific
work (rigor cycle) and a real environment (relevance cycle),
during the artefact development and evaluation in the field of
information systems.

To apply the research strategy, the approach is based on the
methodology of design science research by Vaishnavi et al.
[43] and further developed the framework of information
system research by Hevner and Chatterjee [45]. Interviews
with domain experts serve as our environment and the
literature provide evidence for flexible adaption of re-
configurable systems at run-time is a real issue to solve and
therefore has the need for a framework to support re-
configurable adaptions. The research methodology is illustrated
and structured in five phases. In the subsequent Section, I
elaborate in more detail how these phases are executed. The
knowledge base in the right column refers to the literature. I
take existing re-configurations methods into account. The
framework considers both applicable knowledge (rigor cycle)
and business needs (relevance cycle) during the artefact
development and evaluation in the field of information
systems. The rigor cycle refers primarily to the literature
review in order to define the research problem. The literature is
also referred in the suggestion and development of the artefact.
I choose appropriate techniques and improve or adapt what is
already available. The relevance cycle serves to integrate the
problem domain into the research by deriving the needs from
the interview sections and applying them to the artefact. It thus
supports the alignment of the solution with the environment.
The rigor and relevance cycles are applied iteratively during
the execution of the five phases.

In the Section research methodology, I describe how the
methodology of Vaishnavi and Kuechler [43] is applied on this
research. Specifically, I outline how the phases of the
methodology are related to the research questions and thus the
research goal. Next, I explain how the problem domain affects
the research approach. An inductive approach is conducted in
order to develop a new artefact for supporting run-time
adaptation and evolution of SPLs.

D. Research Methodology

In this Section, I outline the applied research methodology
of Vaishnavi and Kuechler [43]. The research methodology
structures, defines and justifies the research procedure applied,
how I conducted research, and how results are achieved. The
methodology is divided into five phases: awareness of the
problem, suggestion, development, and evaluation. The

following section describes the main characteristics of the five
phases of the methodology.

1) Awareness of the Problem
In the first phase awareness of the problem, I gain an in

depth understanding of the problems that should be solved with
the developed artefact. In order to do so, I identify the
requirements of run-time evolution and adaptation of SPLs.
More precisely, I identify relevant information about why it is
not possible to predict all re-configurations at design-time and
what are the requirements to evolve at run-time by analyzing
the process and arising problems found in the literature. It
represents the problem where change can be planned at design-
time. Doing so, the needs are properly reflected and are sound
to build a solution upon. In order to gain a broader overview of
the different facets of the problem, I conduct a literature review
of concepts for similar solutions. To strengthen the relevance
cycle, I investigate if the process contains the same issues
found as during the literature review, which led to the problem
description (RQ1).

2) Suggestion
In the second phase, based on the insight of the previous

phase, I present a concept for a possible solution. First, I
analyze the previously found requirements to find a solution
for the investigated scenario. This information is needed to
suggest a solution that supports run-time re-configuration and
evolution of SPLs. As a next iteration in the rigor cycle, the
derived requirements are validated against the problem
description. This proofs that the proposed solution is valid
according to the problem domain. Furthermore, the suggestion
is ground while comparing it to similar solutions found in the
literature review. This phase describes how to develop the
desired artefact in order to solve the identified problem (RQ2).

3) Development
In the third phase, I elaborate the suggested solutions

according to the results of the requirements analysis (relevance
cycle iteration). To develop the artefact, I use dynamic product
lines engineering techniques and design architecture, which
support run-time re-configuration and evolution of SPLs. The
run-time adaptation and evolution is demonstrated on the basis
of real practices. The overall goal of this phase is to design an
architecture, which supports run-time adaptation and evolution
of SPLs (RQ2).

4) Evaluation
In the fourth phase (evaluation), I perform a validation of

my results. It provides empirical evidence that the needs are
reflected properly by using real instances to test the
functionality of the architecture. The results of the evaluation
provide answer to the question, if it is possible to evolve and
re-configure SPLs at run-time (RQ3).

5) Conclusion
Finally, in the fifth phase (conclusion), the results are

critically discussed.

In addition, I conduct in each phase of the research
methodology personal interviews with relevant actors in the
domain of SPLs. This approach strengthens the relevance cycle
and increases the quality of research. The research presented
has a qualitative approach and the aim of an exploratory nature.

V. ACTION PLAN

The main aim of the action plan is to conduct a study on re-
configurable and evolutionary SPLs involving literature and
prominent actors in the software engineering communities and
technology industries. All participants are experienced software
engineers. The results of the action plan will be reported as an
empirical study conducted with software engineers from
different domains (e.g. technology industries) and will be
useful for further research in the software engineering
community. In addition, the study will be empirically
validated.

The goal of the action plan is to elicit the requirements of
re-configurable and evolutionary SPLs. To achieve the goal,
the action plan has been organized into several process steps:

A. Identification and Formalization of the Problem Domain

The first process step is conceived as the very first
interaction point of the action plan where I define and elicit the
need and the vision for run-time re-configuration and evolution
of SPLs. Specifically, I discuss the requirements from research,
methodology, technical, architectural and user-perspectives.
Indications about constraints and standards will also be defined
supporting the final architecture. This phase explicitly
represents the rationale about the study and determines the
research gap identified during the literature review. So, new
novel theory and hypotheses can be generated.

B. Objective and Preparation

To execute the reviewing activities, we use the general
process of reviewing protocols proposed by Kitchenham and
Charters [46]. We refer to the reviewing process that has been
conceived with a particular emphasis on reviews conducted
within the domain of software engineering [46]. To
systematically retrieve research works in the domain of DSPLs,
I perform a search using carefully a planned search query on
scientific electronic databases that were accessible online (e.g.
IEEExplorer, ACM Digital Library, Citeseerx Library,
ScienceDirect, SpringerLink). The query will be designed
based on keywords derived from the research questions (RQ1
– RQ3). This systematic literature review intends to provide an
objective summary of the existing knowledge in the area of
DSPLs. At the same time, I want to highlight open issues in
order to suggest the areas that are in need of further
contributions. Based on the gained knowledge, I will create
together with domain experts a protocol for the interview
sections. Important is the fact that there must be no limitation
to new ideas occurring during the interview sections. So, for
example questions can be added or modified during run-time.
Each interview should start with general questions about the
participants and their experiences. Next, I ask them which
challenges they face during engineering re-configurable and
evolvable SPLs. Then, possible research initiatives, which
could be helpful in their current organization, are discussed.
The objective is refined into three questions, which will be
answered through the data collection and analysis:

 How do they deal with unplanned changes?

 Have they experienced a problem with unplanned
changes?

 And if there is a problem: What do they expect from a
solution?

An important element of the preparation is the
implementation of a pilot test. The first interview will be
conducted in our own laboratory and will support to improve
the quality of the study. Possible weaknesses can be uncovered
and eliminated.

C. Interview Design

I will conduct semi-structured interviews, which allow to
consider new arising ideas during the interview sections. In
general, open-ended questions are primarily. We specify a
protocol that defines at design-time the general topics of
interest. This relieves the collection of similar information from
all participants. The protocol contains a list of questions and
topics that need to be covered during run-time. The protocol
can be modified depending on the appropriateness during the
conversation. Since the data will be collected from human
beings, it is very important to carefully select participants for
the interview sections. This fosters a more reliable and valid
study.

D. Collection, Analysis, and Formalization of Results

This process step involves collection and analysis of
quantitative and qualitative data. Furthermore, it supports the
formalization of the results of both research and development.
This takes place in strict cooperation with domain experts. I
will use multiple sources of data to create the study database.
The collection of data will be stored in a semi-structured way
for processing, analysis and dissemination. Resulting from this
phase, criteria for interpreting the collected data should be
identified and it should be also identified, which data element
referrer to which research question.

E. Validation

We plan to apply an observational method (e.g. case study)
to validate our architecture. This allows us to monitor and
collect data over the whole study with a relatively minimal
addition to cost. Valuable information can be obtained
characterizing the development of the artefact. The main goal
of the validation is to demonstrate a causal relationship
between outcome and intervention. Furthermore, it must be
analyzed in more detail, if the findings can be further
generalized and applied to different domains.

F. Dissemination of Results

The last step deals with supporting activities including
dissemination, exploitation, and standardization are undertaken
throughout the whole action plan. Specific documentation,
presentations, press releases and other materials will be
prepared and disseminated to encourage further research and
ongoing development of the middleware and its related
technologies also after action plan completion.

VI. CONCLUSION

In this paper, I present the scientific rationale of the
exploratory study. The results of this study will be useful to
software engineering professionals and researchers worldwide
by revealing fundamental concepts of re-configurable and
evolving SPLs. The study could raise new research directions:
(i) what are the challenging experiences, (ii) research
initiatives, (iii) best practices.

A. Future Work

I will use the results of the interview sections and combine
them with the findings of the literature (e.g. DSPLs techniques)
in order to define a middleware that supports dynamic
adaptation and evolution of SPLs. The aim is to develop an
architecture of the middleware. The architecture will permit to
the technical and research work to establish their
interconnections. We provide feedback on the architecture of
the middleware with respect to the elicited requirements. The
assessment will be done to constantly check that research is
done correctly with respect to the expectations. In addition,
gathering empirical evidence is already included in our
working agenda. Nonetheless, some further work is also
required to perform run-time reasoning.

ACKNOWLEDGMENT

This Ph.D. study is part of research work funded by the
Ministère de l’Enseignement supérieur et de la Recherche
(MESR). The research project is supervised by Prof. Carine
Souveyet (carine.souveyet@univ-paris1.fr), Université Paris-
Sorbonne, France.

REFERENCES

[1] D. Goodhue, D. Che, M. C. Boudreau, and A. R. Davis, “Addressing
business agility challenges with enterprise systems,” MIS Q. Exec., vol.
2, no. 8, pp. 73–88, 2009.

[2] C. Li, M. Reichert, and A. Wombacher, “Mining business process
variants: Challenges, scenarios, algorithms,” Data Knowl. Eng., vol. 70,
no. 5, pp. 409–434, 2011.

[3] B. Mutschler, M. Reichert, and J. Bumiller, “Unleashing the
Effectiveness of Process-Oriented Information Systems: Problem
Analysis, Critical Success Factors, and Implications,” IEEE Trans. Syst.
Man, Cybern. Part C (Applications Rev., vol. 38, no. 3, pp. 280–291,
2008.

[4] R. Lenz and M. Reichert, “IT support for healthcare processes -
premises, challenges, perspectives,” Data Knowl. Eng., vol. 61, no. 1,
pp. 39–58, 2007.

[5] T. H. Davenport, “Mission Critical: Realizing the Promise of Enterprise
Systems,” Feb. 2000.

[6] P. Dadam, M. Reichert, and S. Rinderle-Ma,
“Prozessmanagementsysteme,” Informatik-Spektrum, vol. 34, pp. 364–
376, 2011.

[7] W. M. P. Van Der Aalst, “A decade of business process management
conferences: Personal reflections on a developing discipline,” Lect.
Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect.
Notes Bioinformatics), vol. 7481 LNCS, pp. 1–16, 2012.

[8] F. Casati, S. Ceri, B. Pernici, and G. Pozzi, “Workflow evolution,” Data
Knowl. Eng., vol. 24, no. 3, pp. 211–238, 1998.

[9] S. Rinderle, M. Reichert, and P. Dadam, “Correctness criteria for
dynamic changes in workflow systems - A survey,” Data Knowl. Eng.,
vol. 50, no. 1, pp. 9–34, 2004.

[10] H. a. Reijers, S. Van Wijk, B. Mutschler, and M. Leurs, “BPM in
practice: Who is doing what?,” Lect. Notes Comput. Sci. (including
Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 6336
LNCS, pp. 45–60, 2010.

[11] A. Hallerbach, T. Bauer, and M. Reichert, “Managing process variants
in the process life cycle,” in ICEIS 2008 - Proceedings of the 10th
International Conference on Enterprise Information Systems, 2008, vol.
2 ISAS, pp. 154–161.

[12] M. Rosemann and W. M. P. Van Der Aalst, “A Configurable Reference
Modeling Language,” Inf. Syst., vol. 32, no. 1, pp. 1–23, 2007.

[13] B. Weber, M. Reichert, and S. Rinderle-Ma, “Change patterns and
change support features - Enhancing flexibility in process-aware
information systems,” Data Knowl. Eng., vol. 66, no. 3, pp. 438–466,
2008.

[14] M. Reichert and P. Dadam, “ADEPTflex - supporting dynamic changes
of workflows without losing control,” J. Intell. Inf. Syst., vol. 10, no. 2,
pp. 93–129, 1998.

[15] K. Pohl, G. Böckle, and F. J. van der Linden, Software Product Line
Engineering: Foundations, Principles and Techniques. Secaucus, NJ,
USA: Springer-Verlag New York, Inc., 2005.

[16] M. D. McIlroy, “Mass Produced Software Components,” Nato Sci.
Committe Softw. Eng., 1969.

[17] D. L. Parnas, “On the criteria to be used in decomposing systems into
modules,” Commun. ACM, vol. 15, no. 12, pp. 1053–1058, 1972.

[18] D. L. Parnas, “On the Design and Development of Program Families,”
IEEE Trans. Softw. Eng., vol. SE-2, no. 1, pp. 1–9, 1976.

[19] D. L. Parnas, “Designing Software for Ease of Extension and
Contraction,” IEEE Trans. Softw. Eng., vol. SE-5, no. 2, pp. 128–138,
1979.

[20] K. C. Kang, V. Sugumaran, and S. Park, Applied Software Product Line
Engineering, 1st ed. Boston, MA, USA: Auerbach Publications, 2009.

[21] P. C. Clements and L. Northrop, “Software Product Lines: Practices and
Patterns,” SEI Ser. Softw. Eng. Addison-Wesley Prof., 2001.

[22] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and B. H. C. Cheng,
“Composing adaptive software,” IEEE Comput., vol. 37, no. 7, pp. 56–
64, 2004.

[23] K. Welsh and P. Sawyer, “Understanding the scope of uncertainty in
dynamically adaptive systems,” in Proc. Sixteenth International Working
Conference on Requirements Engineering: Foundations of Software
Quality (REFSQ’10), 2010, vol. 6182 LNCS, pp. 2–16.

[24] J. Andersson, R. de Lemos, S. Malek, and D. Weyns, “Modeling
Dimensions of Self-Adaptive Software Systems,” in Software
Engineering for Self-Adaptive Systems SE - 2, vol. 5525, B. C. Cheng,
R. de Lemos, H. Giese, P. Inverardi, and J. Magee, Eds. Springer Berlin
Heidelberg, 2009, pp. 27–47.

[25] J. D. McGregor, “The Evolution of Product Line Assets,” IEEE
Multimed., vol. 10, no. June, pp. 4–8, 2003.

[26] L. Yu and S. Ramaswamy, “A Configuration Management Model for
Software Product Line,” INFOCOMP J. Comput. Sci., vol. 5, no. 4, pp.
1–8, 2006.

[27] D. Dhungana, T. Neumayer, P. Gruenbacher, and R. Rabiser,
“Supporting the Evolution of Product Line Architectures with
Variability Model Fragments,” Seventh Work. IEEE/IFIP Conf. Softw.
Archit. (WICSA 2008), pp. 327–330, 2008.

[28] P. Borba, L. Teixeira, and R. Gheyi, “A theory of software product line
refinement,” Theor. Comput. Sci., vol. 455, pp. 2–30, 2012.

[29] L. Neves, L. Teixeira, D. Sena, and P. Borba, “Investigating the Safe
Evolution of Software Product Lines,” in 10th International Conference
on Generative Programming and Component Engineering (GPCE 2011),
2011, no. Section 4, pp. 33–42.

[30] S. Hallsteinsen, M. Hinchey, S. Park, and K. Schmid, “Dynamic
Software Product Lines,” in Systems and Software Variability
Management SE - 16, R. Capilla, J. Bosch, and K.-C. Kang, Eds.
Springer Berlin Heidelberg, 2013, pp. 253–260.

[31] P. Sawyer, R. Mazo, D. Diaz, C. Salinesi, and D. Hughes, “Constraint
Programming as a Means to Manage Configurations in Self-Adaptive
Systems,” Spec. Issue IEEE Comput. J. “Dynamic Softw. Prod. Lines,”
vol. 45, no. October 2015, pp. 56–63, 2012.

[32] A. Lapouchnian, “Exploiting Requirements Variability for Software
Customization and Adaptation,” in Foundations of Software Quality
(REFSQ’10), 2011.

[33] N. Robinson, “A Requirements Monitoring Framework for Enterprise
Systems,” Requir. Eng., vol. 11, no. 1, pp. 17–41, 2005.

[34] M. Kirsch-pinheiro, R. Mazo, C. Souveyet, and D. Sprovieri,
“Requirements Analysis for Context-oriented Systems,” 7th Int. Conf.
Ambient Syst. Networks Technol. (ANT 2016), pp. 1–8, 2016.

[35] S. A. DeLoach and M. Miller, “A goal model for adaptive complex
systems,” Int. J. Comput. Intell. Theory Pract., vol. 5, no. 2, 2010.

[36] E. Letier and A. Van Lamsweerde, “Reasoning about partial goal
satisfaction for requirements and design engineering,” in Proc. of
Twelfth ACM SIGSOFT International Symposium on Foundations of
Software Engineering, 2004.

[37] J. Whittle, P. Sawyer, N. Bencomo, B. H. C. Cheng, and J.-M. M. Bruel,
“RELAX: a language to address uncertainty in self-adaptive systems
requirement,” Requir. Eng., vol. 15, no. 2, pp. 177–196, 2010.

[38] B. H. C. Cheng, P. Sawyer, N. Bencomo, and J. Whittle, “A goal-based
modeling approach to develop requirements of an adaptive system with
environmental uncertainty,” in in ACM/IEEE Twelfth Int. Conference
On Model Driven Engineering Languages And Systems (MODELS 09),
2009, vol. 5795 LNCS, pp. 468–483.

[39] L. Baresi, L. Pasquale, and P. Spoletini, “Fuzzy Goals for Requirements-
Driven Adaptation,” in 18th IEEE International Requirements
Engineering Conference, 2010, pp. 125–134.

[40] J. C. Muñoz-fernández, C. Salinesi, R. Mazo, J. C. Muñoz-fernández, L.
Rincón, C. Salinesi, and G. Tamura, “VariaMos : an Extensible Tool for
Engineering (dynamic) Product Lines VariaMos : an extensible tool for
engineering (dynamic) product lines,” no. September, 2015.

[41] J. C. Muñoz-Fernández, G. Tamura, M. Raúl, and C. Salinesi, “Towards
a Requirements Specification Multi- View Framework for Self-Adaptive
Systems,” in Computing Conference (CLEI), 2014 XL Latin American,
2014, pp. 1–12.

[42] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design Science in
Information Systems Research,” MIS Q., vol. 28, no. 1, pp. 75–105,
Mar. 2004.

[43] V. Vaishnavi and B. Kuechler, “Design Science Research in Information
Systems,” Ais, p. 45, 2004.

[44] V. K. Vaishnavi and W. Kuechler Jr., Design Science Research Methods
and Patterns: Innovating Information and Communication Technology,
1st ed. Boston, MA, USA: Auerbach Publications, 2007.

[45] A. Hevner and S. Chatterjee, Design Research in Information Systems:
Theory and Practice. 2010.

[46] B. Kitchenham and S. Charters, “Guidelines for performing Systematic
Literature Reviews in Software Engineering,” Engineering, vol. 2, p.
1051, 2007.

