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Abstract

This paper presents a model of firm localization in which the intrinsic advantages of
regions are disentangled from localized externalities, while this latter force is allowed to
have a quadratic shape. We verify through inferential analysis whether the quadratic
component of localized externalities is statistically different from zero. Such term can
reflect more-than-linear positive feedbacks as well as congestion effects, so that the sign of
the interdependencies stemming from localization is not assumed a priori to be positive.
Our main result is that the quadratic term is virtually never statistically different from
zero across Italian sectors observed at the scale of commuting zones, so that localized
externalities seem to be well approximated by a linear specification.
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1 Introduction
The uneven spatial distribution of some scarcely mobile factors of production may also drive
the firms that use such factors to mimic their spatial distribution. For example, extractive
industries may be clustered around mines, gushers, or gas fields, while being virtually absent
where these natural resources are unavailable. Many other industries, however, are also strongly
concentrated in space despite not being bound to immobile factors of production. In these
cases, clustering is generally explained through the self-reinforcing dynamics stemming from
different types of interdependencies in the localization choices of firms. In particular, these
interdependencies can be categorized according to the role that market mechanisms play in
their unfolding (see Scitovsky, 1954). When the choice of a firm enters the production problem
of other firms by affecting the prices thereby involved, then the interdependence among firms
is classified as a pecuniary externality. Otherwise, when the choice of a firm affects directly
and exclusively the factor inputs of other firms, then the interdependence is characterized
as technological externality. There is a strictly practical reason for why this taxonomy is
of interest especially when the interdependencies at stake are spatially bounded. Namely,
if such interdependencies stand at the root of the self-reinforcing dynamics that allow the
formation of spatial clusters, then policy-makers may well be interested in unleashing localized
externalities so as to promote regional development. Yet, the policies that may be thought
to govern pecuniary externalities differ from those that could target technological externalities
(see Martin and Sunley, 1996, Ottaviano, 2003).

Pecuniary externalities can lead to self-reinforcing dynamics and thus to spatial agglomer-
ation through a process of cumulative causation based on the accumulation of local demand
(see Myrdal, 1957). As an example, take two perfectly symmetrical regions. If one firm moves
from one region to the other, local wages decrease in the region of departure and increase in
the region of destination, thus leading workers to move in the same direction as the firm. In
turn, workers are also customers, so that consumer demand rises in the destination region. In
this sense, the localization choice of a single firm ends up affecting all other local firms through
market demand, thus constituting a pecuniary externality. This mechanism may keep on at-
tracting additional firms as long as the gain from an expansion in local demand outstrips the
loss associated with fiercer local competition. Hence, under suitable transportation costs, im-
perfectly competitive markets, and economies of scale, the initial relocation of one firm calls for
other firms to move in the same direction and gives rise to spatial concentration (see Krugman,
1991a). In this framework, the geography of production can be characterized in terms of core
and periphery. This is especially the case since the attractive pull of demand acts across sec-
tors, thus suggesting that the resulting agglomeration should look like a diversified city rather
than as a specialized cluster.

Yet, specialized clusters do exist in areas that are neither particularly populated nor espe-
cially well-connected to markets. Only a limited part of these agglomerations can be explained
through the dependence of one sector on some immobile factor inputs, as the contribution of
broadly-meant natural advantages to spatial concentration is empirically modest across sectors
(see Ellison and Glaeser, 1999). These specialized clusters could then stem from pecuniary
externalities that take place with the co-localization of firms belonging to vertically-integrated
industries, as discussed by Venables (1996). Also in this case, however, the empirical evidence
suggests that the co-agglomeration between industries with strong upstream-downstream ties is
limited (see Ellison and Glaeser, 1997). Therefore, something else is likely to be at play within
sectors.

Sector-specific technological externalities represent an alternative source of self-reinforcing
dynamics that may contribute to explain the riddle of the spatial distribution of firms. A typical
example of how these untraded interdependencies may unfold locally is represented by the case
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of knowledge spillovers. That is, some of the private productive knowledge incorporated in firms
spills into a common knowledge pool whose availability is bounded in space, due to the fact that
knowledge is at least partly tacit and thus not perfectly transferable. In these circumstances,
firms have an incentive to localize where a larger share of other firms are already settled, so as
to benefit from the vaster knowledge pool that is available only locally (see Marshall, 1890, bk
IV, ch.X). What makes this mechanism sector-specific is that firms are interested in acquiring
knowledge that is related to their own production process, so that they will co-localize with
similar– rather than with generic – firms. In this sense, localized technological externalities
stemming from knowledge spillovers can make sense of specialized clusters.

On the previous special issue of this journal, Bottazzi and Gragnolati (2015) provide a
methodology to disentangle and measure the determinants of the spatial distribution of firms.
Their work focuses in particular on singling out and comparing the strength of localized ex-
ternalities acting within sectors against the pull of intrinsic regional characteristics. The idea
is that if a particular sector is very concentrated where other sectors are not, this may stem
either from particular local advantages or from sector-specific externalities. Once the former
are controlled for, the latter can then be properly measured. In particular, the intrinsic at-
tractiveness of locations is defined by a number of controls possibly acting across sectors, such
as local demand, industrial variety and infrastructural advantages; yet, the controls also in-
clude a sector-specific dummy indicating the presence of an industrial district. In this way, the
measurement of within-sector externalities is meant to be cleared from those pecuniary effects
that may act across sectors – such as consumer demand – and from those that may be at least
partly sector-specific – such as specialized labor market pooling. Hence, the type of effect that
remains to be captured on the side of localized externality lends itself to be interpreted as a
technological externality.

Bottazzi and Gragnolati (2015) base their analysis on Italian plant data for a variety of
manufacturing and service sectors as observed in year 2001 at the scale of commuting zones.
Their main result is that the pull of externalities and population size are by far the most
important determinants of firm localization, and these two drivers are comparable with each
other in terms of their magnitudes. In fact, externalities are found to have an even stronger
effect than population size across most sectors. If one interprets sector-specific externalities
as being mostly technological, such a result contrasts to some extent with the limited weight
that technological externalities have received, for instance, in the context of the earlier core-
periphery models (see Fujita et al., 2001). For example, Krugman (1991b, p.54 and pp-61–62)
states:

[W]hile I am sure that true technological spillovers play an important role in the localiza-
tion of some industries, one should not assume that this is the typical reason—even in the
high technology industries themselves [p.54].

[...] An accident led to the establishment of the industry in a particular location, and
thereafter cumulative processes took over. [...] What the historical record shows us are
two things. First, such cumulative processes are pervasive [...]. And second, Marshall’s
first two reasons for localizations, labor pooling and the supply of specialized inputs, play a
large role even when pure technological externalities seem unlikely [pp.61–62, italics added].

By contrast, the results discussed in Bottazzi and Gragnolati (2015) suggest that technological
externalities may hardly be considered as “unlikely”. In fact, they should be regarded as the
rule in the economy, rather than as an exotic exception concerning only high-tech sectors (see
Bottazzi and Dindo (2013) for a model investigating the role of technological externalities in
the context of New Economic Geography core-periphery framework).

There is, however, at least one reason to suspect that such a conclusion would overestimate
the strength of technological externalities in determining firm localization. Namely, Bottazzi
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and Gragnolati (2015) base their estimates on a linear specification of externalities. In their
framework, the individual advantage for a firm to choose a location increases proportionally to
the number of other firms in the sector that are already placed in the same location. Exter-
nalities, however, may well be non-linear. In its “weaker” declination, non-linearity would still
preserve monotonicity. In the case of localized knowledge spillovers, for instance, the advan-
tages from having an additional neighbor may increase up to a critical threshold and then keep
stable. In this case, externalities are non-decreasing and thus monotone, but they are non-
linear. In a “stronger” declination of non-linearity, instead, monotonicity is lost. For example,
the advantages of having an additional neighbor may increase up to a critical threshold and
decrease beyond it, for instance because firms may incur into growing search costs to select and
exploit the relevant pieces of productive knowledge. In this case, firm localization is subject to
congestion and externalities are non-monotone (see Fagiolo, 2005, for an interpretation based
on endogenous network formation).

The present work extends the localization model originally presented by Bottazzi et al.
(2007) by allowing for quadratic externalities. In carrying out such an extension, two key
characteristics of the original framework are entirely preserved. First, it remains possible to
disentangle localized externalities from the effect of other location-specific variables. Second,
the localization choices of firms converge in the long-run toward an ergodic invariant distri-
bution. In this sense, the model prescribes the same stochastic equilibrium regardless of the
initial distribution of firms across regions. On the other hand, the introduction of non-linear
externalities prevents us from deriving the equilibrium distribution in closed form. Hence, we
apply numerical simulations to derive the equilibrium distribution of firms across regions. Such
a theoretical distribution is then compared with the observed one through χ2 minimization,
so as to estimate its unknown the parameters. More specifically, the main objective of this
procedure is to test whether the quadratic externality coefficient is statistically different from
zero. If not, localized externalities would result that are sufficiently well-approximated by a
linear form; otherwise, they are better approximated by a quadratic shape. Notably, depend-
ing on the sign and magnitude of the estimated quadratic coefficient, the model allows one to
accommodate both monotone and non-monotone shapes of externalities. If the quadratic term
is estimated to be statistically different from zero and sufficiently negative, a region can reach
the point in which the addition of one extra firm decreases the probability for that same region
to attract others firms.

2 Model
The localization choices of firms depend on the intrinsic features of regions as well as on the
distribution of other firms across regions. A class of stochastic models which is naturally suited
to capture both dependencies is that of “generalized” Polya urn schemes. These models have
been applied, for instance, to the description of phenomena like technological adoption and
diffusion (see the early contributions in Arthur et al. (1987) and Dosi et al. (1994)). In those
applications, however, the “fixed effects” provided by the intrinsic features of the objects of
choice tend to progressively disappear, be it in time or space. They are as such less useful to
describe cases of persistent fluctuations. Moreover, they often present non-ergodic dynamics,
which imply a substantial impossibility to estimate their parameters from the data. For these
reasons, Bottazzi and Secchi (2007) and Bottazzi et al. (2008) modified the original urn scheme
framework toward a Markov process known in the physics literature as Ehrenfest-Brillouin
(E-B) model. The E-B model can be obtained under rather general conditions from discrete
utility theory, assuming a linear externality effect very similar to the one adopted by Brock and
Durlauf (2001a,b). The equilibrium distribution entailed by the E-B model is in fact equivalent
to a finite time Polya process; but, being ergodic, it can be directly estimated from the data.
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Notably, ergodicity allows one to overcome the concerns on identification presented by Blume
et al. (2011). The present paper introduces an extension of the E-B model to include quadratic
externalities while still allowing one to estimate them in high dimensional problems.

A population of N firms has to choose among L regions, and each generic firm i chooses
location l with probability

pl ∼ al + bnl + cn2
l , (1)

where nl is the number of firms already present in l, a = (a1, . . . , aL) is an L-dimensional vector
assumed with positive components and b ≥ 0 and c are scalars. The probabilistic outcome of
the choice is meant to capture the heterogeneity of firms and the consequently idiosyncratic
nature of their preferences. One has to think of these probabilities as an average across all
different firms composing the economy. Expression (1) has two distinct components: on the
one hand, terms such qs al capture the intrinsic attractiveness of the different locations; and,
on the other, the term nl establishes an interdependence between the choice of firm i and those
made by other firms, thus capturing externalities.

When c = 0, the probability in (1) is linear in nl and the invariant distribution of the model
is the multivariate Polya distribution (see Bottazzi and Secchi, 2007). In this case, the existence
of a stochastic equilibrium can be demonstrated either by proving the attainment of a detailed
balance condition or by studying the convergence of sequential choices (see Scalas et al., 2006).
But when c 6= 0, (1) is not linear and one cannot analytically exploit the detailed balance
condition to obtain the explicit expression for the invariant distribution. Therefore, the second
approach is used instead by assuming a sequence of choices and then studying numerically their
convergence properties.

The sequence of individual choices is structured so that, at each time step, one firm is
selected at random to revise its choice. In general, alternative non-random rules could be
adopted to select who is called on to operate a revision, thus affecting the dynamics of the
model. In the present case, however, the aim is to keep the structure of selection as agnostic
as possible precisely by attributing to all firms an equal probability to be selected for choice
revision. Under this premise, the evolution of the system from configuration n at time t to
configuration n′ at t + 1 with n′m = nm − 1 , n′l = nl + 1 and n′k = nk for any k 6= l,m is
defined in terms of the transition probability P{n′t+1|nt}. Such probability corresponds to the
intersection between the event “Firm revises its previous choice of region m” (event B) and the
event “Firm chooses region l” (event A). That is, the conditional probability reads

P{n′t+1|nt} =Pr{Firm revises its choice m}·
·Pr{Firm chooses region l | Firm revise its choice m} .

Since the firm that is called on to revise its current choice m is selected at random, it follows
that Pr{B} = nm/N . This probability must be then multiplied by the probability pl to select
region l, as given in (1), conditional to the fact that the firm is no longer among those opting
for m, that is without considering self-interaction

P{n′|n} = nm
N

al + b(nl − δl,m) + c(nl − δl,m)2∑L
i=1 {ai + b(ni − δi,m) + c(ni − δi,m)2}

, (2)

where the Kronecker term δl,m is 1 if l = m and 0 otherwise. The term δl,m is what makes
the above expression a conditional probability. With the previous assumptions one has the
following:

Proposition 2.1. Assume that al, b and c are such that for any occupancy vector n the
probability of choosing any location is positive, that is pl(n) > 0, ∀l. Then, the Markov chain
is irreducible.
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Proof. For any system configuration n, let m be a region such that nm > 0 and consider
the configuration n′ = n + δl − δm obtained by adding one firm among those who chose l
while removing one firm from those who chose m. Then, the one-step probability P{n′|n}
to move from configuration n to configuration n′ is given by equation 2. Since by hypothesis
P{n′|n} > 0, any configuration can be reached from any other configuration in a finite number
of steps. The statement follows.

Since the Markov chain associated with the non-linear model is irreducible, it is also ergodic.
Namely, there exists a unique distribution π(n;a, b, c) which depends on the set of parame-
ters (a, b, c), such that for any realization {nt} of the process and irrespectively of the initial
configuration n0 it is:

lim
T→∞

1

T

T∑
t=0

δnt,n = π(n,a, b, c) , (3)

where the Kronecker term δnt,n is 1 if nt = n and 0 otherwise. Equation 3 is precisely the
method adopted here to compute the distribution π(n;a, b, c).1

Notably, Proposition 2.1 implies a careful investigation of the region of the parameter space
in which the positivity condition of the transition probability is fulfilled. This is indeed the
only region in which it is guaranteed that numerical time averages converge asymptotically to
the invariant distribution of the process. In this respect, it is important to clarify why the
parameter b can be safely assumed to be non-negative in the context of the present analysis.
In fact, the model will be used here to test the presence of quadratic externalities in firm
localization. Such externalities, however, have already been estimated to be strongly positive
under a linear specification. In particular, Bottazzi and Gragnolati (2015) have done so using
exactly the same data that will be used below in Section 4. Crucially, their analysis compares
two alternative nested models which differ from each other only for the presence of the linear
externality term. In their procedure of model selection, the model with linear externalities
outperform systematically the model without externalities, even after penalizing parametric
numerosity. For this reason, it is safe to assume that b ≥ 0 in the specific context of the present
work. Conversely, more attention needs to be placed on the behavior of the model for varying
values of c.

To this purpose, Figure 1 shows the behavior of pl as a function of nl for varying values of c.
Notwithstanding the constraints imposed on c to guarantee pl ≥ 0, a wide range of behaviors can
still be observed. When c = 0 as in Figure 1a, the probability pl grows linearly in nl according
to equation (1), thus delineating the standard EhrenfestâĂŞBrillouin model. Conversely, as c
moves away from 0, as in Figures 1b–1e, the probability pl becomes a non-linear function of
nl. At least two further aspects of Figure 1 are worth pointing out. First, having c < 0 is not
a sufficient condition for pl(nl) to be non-monotone. In fact, there exist negative values of c
for which pl is increasing in nl, as shown in Figures 1d-1e. Second, the magnitude and sign
of the derivative ∂pl/∂nl will depend on nl. These two aspects imply that it is not trivial to
determine whether individual choices are affected by a congestion effect. Defining congestion as
∂pl/∂nl < 0, such condition occurs only for sufficiently negative values of c and for sufficiently
high values of nl, as shown in Figure 1f. In this sense, if occurring at all, congestion is not a
general condition affecting all regions, but rather a condition that would be specific to some
regions according to their actual occupancy.

Before moving on to the inferential analysis, it is worth making a remark on the applicability
of the present model to empirical data. A time tick in the model corresponds to a localization
choice rather than to a unit of real time; hence, the equilibrium distribution π(n;a, b, c) de-
scribes the state of the system after the occupancy vector has been revised a sufficiently large

1Differently from the analytical solution of the model, the numerical approach does not require that the
Markov chain is reversible and does not exploit the detailed balance condition.
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(a) c = 0 (b) c = |2 · cmin| (c) c = |2 · cmin| · 101

(d) c = −| cmin
2 | (e) c = −|0.98 · cmin| (f) c = cmin = −5 · 10−3

Figure 1: The probability pl as a function of nl for varying values of c.

Note: The common parameters of these examples are L = 2, N = 100, a1 = 1, a2 = 2, and b = 0.5.

number of times. Practically, this occurs both when incumbents move their establishments
and in the case of genuine entry and exit. Considering that the gross yearly turnover rate in
any sector is typically between 15% and 20% in OECD countries (see Bartelsman et al., 2005,
p.378), the real time needed to reach the invariant distribution may well be relatively short.

3 Inferential analysis
Under the assumption that the model described above represents the true data-generating pro-
cess, its estimation consists in selecting the set of parameters (a, b, c) that generate the invariant
distribution for the occupancy vector n(a, b, c) which is most statistically “compatible” with
the observed occupancy vector no. Specifically, the parameters are estimated by minimizing
the chi-square statistic of the implied invariant distribution of occupancy vectors π(a, b, c) with
respect to the observed occupancy. The “categorization” required by the chi-square statistics is
obtained by binning the locations according to their occupancy to obtain a binned occupancy
distribution. More precisely, this is how the procedure works.2

Let f(n) denote the number of regions chosen by n firms. This can be either the number
observed in the data or the expected number implied by the invariant distribution of the process.
Thus, f(0) is the number of regions chosen by zero firms, f(1) is the number of regions selected
exactly by one firm, and so on. The sum of these quantities is equal to the number of available
regions, that is

∑N
n=0 f(n) = L. Given a finite partition of the integers, that is a set of increasing

integer numbers C = {y1, y2, . . . , yJ}, let hj with j = 0, 1, . . . , J denote the number of regions
2The use of maximum likelihood might appear as more appropriate. However, it poses enormous numerical

difficulties as the simulation length necessary to assign reliable probabilities to all system configurations soon
becomes soon unfeasible with the increase of the number of locations and firms. This problem is efficiently
overcome by considering a binned statistics and reverting to chi-square minimization. Dubious readers are
reminded that chi-square minimization in general possesses an efficient asymptotic behavior and, in any case,
it is not more severely affected by small sample biases than maximum likelihood.
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with occupancy in the class (or bin) [yj, yj−1), that is:

hj =

yj+1−1∑
n=yj

f(n)

with y0 = 0 and yJ+1 = +∞. The set {h0, h1, . . . , hJ} defines the binned occupancy distribution
of the regions with respect to their occupancy. Notice that

∑J
j=0 hj = L. Keeping fixed the

partitions C, one can compute the observed occupancy distribution ho using the observed
distribution of firms across regions and also the theoretical occupancy hπ(a, b, c) implied by the
invariant distribution of the occupancy vector π(a, b, c). Then the parameters can be estimated
solving the problem

(â, b̂, ĉ) = argmin
a,b,c

{
χ2(hπ(a, b, c), ho) =

J∑
j=0

(hπj (a, b, c)− h0j)2

hπj (a, b, c)

}
. (4)

To improve the efficiency of the method, we define the partition C in such a way that the
different bins contain a roughly constant number of regions when the observed occupancy is
considered. This implies that the histogram of the observed binned occupancy distribution is
roughly flat (see Figure 2b).

When c = 0, the estimation procedure can be carried out more easily because the theoretical
occupancy distribution can be directly obtained from the analytic expression of the invariant
distribution π (Bottazzi and Gragnolati, 2015). In the general case, however, the invariant
distribution is not known and one has to revert to numerical methods, specifically Monte Carlo
techniques, to obtain an estimate of the theoretical occupancy distribution.3 Since the main
interest here is to test whether or not the null hypothesis H0 : c = 0 can be statistically rejected,
the following exposition we will make explicit reference only to the parameter c while assuming
that a and b are known, so as to simplify the notation. Hence, the invariant distribution
predicted by the model will be labeled as π(c) and hπ(c) is the implied occupancy distribution.
In fact, the values of a and b are initialized according to the estimates obtained under c = 0
and are successively re-estimated if the null hypothesis H0 : c = 0 is rejected (see below).

As usual in inferential analysis, the estimation of the unknown parameter c rests on two
steps. First, one searches for the particular value ĉ that generates the occupancy distribution
which is closest, on average, to the observed occupancy ho according to the chi-square statistics.
The search takes place within a predetermined set [cmin, cmax], which contains 0.4 Second, the
null hypothesis H0 : c = 0 undergoes statistical testing against the alternative H1 : c 6= 0. This
means one has to evaluate whether the null hypothesis c = 0 can be rejected, at a given level
of statistical significance, based on the observation no. To understand better the estimation
procedure, it is convenient to go through its illustration in Figure 3.

The first step consists in deriving the point estimate ĉ as illustrated in the upper-left panel
of Figure 3(a). Starting from the observed configuration no, the model is simulated with K
different values of c ∈ [cmin, cmax]. For each value of c, the model is run for an initial number
of steps tmin to eliminate transient effects (see Section 4 below for further discussion on tmin).

3The Monte Carlo techniques adopted here are characterized by very poor performances when a maximum
likelihood approach is adopted. The problem arises every time the attractiveness of two locations is similar.
In this case any redistribution of firms across locations generates a variation in the likelihood function which
is, however, spurious. Washing away this spurious effect requires a computation time which is unfeasible for
practical applications. For more details, see Bottazzi and Vanni (2014).

4To guarantee the convergence of the algorithm and improve its speed, the initial search interval should be
tuned on the initial values of the parameters a and b. Essentially, one has to avoid that the search algorithm
probes the objective function outside its domain of definition. For more details, see Bottazzi and Vanni (2014).
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(a) (b) (c)

Figure 2: Binning procedure

Note: The figure illustrates the binning procedure as operated on simulated data obtained via the Polya random
generator with the following parameters: N = 10000, L = 700, b = 1, c = 0, a1 = a2 = . . . = aL = 1. The
total number of bins is J = 5. The cumulative distribution in (a) serves to determine a set of bins such that
the corresponding occupancy classes are of equal size. The resulting histogram shown in (b) has therefore
bins of variable width. By comparing the different histograms as in (c) one gathers a first hindsight on the
compatibility of two distributions. The sub-figure (c) compares in particular the Polya distribution obtained
with the parameters values listed above against the distribution that is obtained by changing c = 0 to c = 1·10−3

and letting the system evolve for an additional ∆t = 1 · 105 time periods.

Then, each configuration is further evolved for a sufficiently large number of steps T . Hence,
K independent trajectories {n(tmin; ck),n(tmin + 1; ck), . . . ,n(T ; ck)} are obtained for each
c ∈ {c1, . . . , cK}. Along each trajectory the average occupancy distribution is computed:

hj(ck) =
1

T

tmin+T∑
t=tmin

ht,j(ck) , (5)

where ht,j(ck) is the occupancy distribution obtained from the occupancy vector n(tmin+1; ck).
If tmin and T are large enough, this provide a good numerical approximation of the theoretical
distribution hπ(ck). Finally, the value of ĉ is chosen solving:

ĉ(no, tmin, T ) = argmin
c∈(c1,...,cK)

{
χ2(h(c), ho)

}
. (6)

By successive refinements of the grid one can achieve the desired precision.5
The second step consists in a statistical test of the null hypothesis H0 : c = 0 as illustrated

in the right panels of Figure 3(b-c). Initially, the model is evolved with c = 0 for s ∈ (1, . . . , S)
different realizations, thus obtaining the set of replicas {n1, . . . ,nS}. Then, the same search
procedure described above is performed by considering each replica as the initial observed
occupancy. In this way a set of independent estimates {c̃1, . . . , c̃S} is obtained. From these
estimates, we build the empirical distribution function F̂0(c). This is an approximation of the
theoretical distribution of estimated parameters under the null c = 0, so that the two-sided
p-value of ĉ is given by F̂0(−|ĉ|) + 1− F̂0(|ĉ|).

If focusing on the estimate of a single parameter might have eased the exposition thus far,
the present estimation method can indeed rely on a multistage procedure to estimate multiple
parameters (for the details on the coordinate descend method, see Bertsekas, 1999, sect. 1.2.1).
Basically, such a procedure consists in estimating each unknown parameter conditional on an
initial value of the other parameter(s), thus producing an iterative cycle that stops as soon as

5The precision is however limited by the finite computation time. As a robustness check, a minimization
algorithm based on successive parabolic interpolations was also employed, obtaining consistent results.
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observation

no

n(tmin; c1) . . . n(tmin; ck) . . . n(tmin; cK)

n(tmin + T ; c1) . . . n(tmin + T ; ck) . . . n(tmin + T ; cK)

ĉ(no) = argmin
c∈(c1,...,cK)

{χ2(h(c), ho)}

ĉ

model

n1 . . . ns . . . nS

. . . . . .

. . .

. . .. . .

. . . . . .

. . .. . .

. . . . . .

. . .. . .

. . .

c̃(n1) c̃(ns) c̃(nS)

(c = 0)

c1 ck cK

χ2 χ2 χ2

Hypothesis testing

0 ĉ c̃

F̂

(a) (b)

(c)

Figure 3: Estimation approach (grid method).

convergence is reached. As an example, imagine that the vector of intrinsic advantages a were
known, while the two externality parameters (b, c) were unknown. Starting with initial values
(b0, c0), a first estimate ĉ1 is obtained keeping the value of b fixed. If ĉ1 is significantly different
from c0, one estimates a new value b̂1 keeping c = ĉ1 fixed. If b̂1 is significantly different from
b0, one re-estimates c with b = b̂1 and so on until the procedure convergences to a couple of
values (b̂, ĉ).

4 Application
This section shows how the model described and the related estimation method detailed above
can be applied to detect the presence of a quadratic component in the localized externalities
that drive the spatial distribution of firms. More precisely, the aim is to test whether or not
the null hypothesis H0 : c = 0 is to be rejected in the different sectors.

This inferential exercise is carried out at the sectoral level using Italian census data for year
2001 (see ISTAT, 2006). To make the present results directly comparable with those of Bottazzi
and Gragnolati (2015), the number of plants by commuting zone is used to measure nl and
their same 2-3 digit NACE sectoral disaggregation is adopted. If the null hypothesis H0 : c = 0
is not rejected, then the model presented in Section 2 reduces to the Polya model with linear
externalities estimated by Bottazzi and Gragnolati (2015). In this case, their estimates will hold
as being sufficiently accurate and quadratic externalities would turn out to be redundant to
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explain the observed spatial distribution of plants. Otherwise, if the null hypothesis H0 : c = 0
is rejected, the results obtained under linearity would need to be revised.

According to the model in Section 2, the observed distribution of plants across commuting
zones is interpreted as the equilibrium outcome of discrete localization choices on the side
of firms. Consequently, the effect of non-linear externalities in shaping the observed spatial
distribution of plants is detected by estimating the unknown parameter c. The analysis operates
at the sectoral level, so that each economic sector taken into account is characterized by a
varying number N of plants (reported in the second column of Table 1) located across the
L = 686 commuting zones that compose Italy. In this sense, two of the parameters of the
model in Section 2, namely N and L, are given directly by the data. Other parameters,
instead, need to be tuned.

On the one hand, S is a precision parameter. To recall, S defines the number of stochastic
realizations that determine the distribution of c̃. Hence, higher values of T and S will ensure
greater precision, but with an increasing computational cost. For the purpose of the present
application, the authors set S = 1000, which ensures a level of precision in the estimate of
p-values in the order of 10−2.

On the other hand, tmin and T are tuned in relation to the size of N . To recall, tmin
defines the minimum number of time steps needed to guarantee the convergence of numerical
simulations to the invariant equilibrium distribution π = (a, b, c), whereas T defines the number
of time periods over which equilibrium time averages are computed in problem (6). Therefore,
tmin can be interpreted as indicating how many times, on average, the N firms have to revise
their individual choices in order to reach the equilibrium. As shown by Garibaldi and Scalas
(2010), the rate of approach to equilibrium as a function of N is

r =
A/b

N(A+N − 1)
. (7)

Since the time to reach the equilibrium is of the order of 1/r, one can accordingly set tmin = 1/r
time steps. In parallel, the number of time periods on which to compute time averages is set
to T = 2/r, which guarantees the use of the ergodic property of the process.

For estimation to be feasible, it is also necessary to know the vector of intrinsic features
a = (a1, . . . , aL). Otherwise, according to equation (1), the model would have L+ 2 unknown
parameters, thus making estimation unfeasible. To escape this problem, al can be characterized
as a function of H � L variables that are meant to describe the regions at stake along some
relevant dimensions. As a consequence, the number of unknown parameters reduces to H+2�
L. To make the results fully comparable with those of Bottazzi and Gragnolati (2015), their
same Cobb-Douglas form is assumed:

a(β,xl) = exp

(
H∑
h=1

βh log(xh,l) + β0

)
=

H∏
h=1

xβhh,le
β0 . (8)

When substituting the specification for a in (8) into the expression of pl in (1), one obtains
the probability for commuting zone l to be chosen at given time step, which serves to evolve
the system as described in Section 2 and obtain the simulated trajectories that are necessary
for the numerical optimization described in Section 3. In the present application, rather than
to estimate fully each parameter of the model, our primary objective is to test whether the
addition of a quadratic externality term is statistically meaningful as compared with the linear
case. Hence, one looks particularly at c. To this purpose, one introduces a useful normalization:
by dividing numerator and denominator by b the expression for the probability pl of selecting
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(a) Population. (b) Sector 45-Construction. (c) Sector 19-Leather.

Figure 4: Maps of the data (year 2001).

commuting zone l becomes

pl =
a(β,xl)

b
+ nl +

c
b
n2
l∑L

l=1
a(β,xl)

b
+ nl +

c
b
n2
l

, (9)

where (β, c) are the H + 1 unknown parameters to be estimated and b = 1 is set without loss
of generality.

Given the focus on non-linearity, one can then initialize the stochastic process using the es-
timates (â1/b̂, . . . , âL/b̂) obtained under the linear Polya model to check whether the numerical
search converges elsewhere relative from where it started. Hence, the first step of the multi-
stage estimation procedure estimates c conditional on the initialization values (â1/b̂, . . . , âL/b̂)
obtained under the linear Polya and b = 1. Only if the null hypothesis H0 : c = 0 is rejected
will the multistage estimation procedure be triggered.

In general, there are multiple intrinsic features of a commuting zone that may be relevant
to firm localization, thus entering among the H regressors that shape a(β,xl). Factors such
as the local size of final goods and labor markets, infrastructural endowments, the extent of
local productive variety, as well as the presence of especially conducive local institutions may
all play a role in the localization choices of firms. Indeed, all these different factors were taken
into account in the original analysis of Bottazzi and Gragnolati (2015), so that the present
study will use exactly the same controls in order to guarantee comparability. Namely, this
paper considers population, spatial extension, the presence of transportation infrastructures,
aggregate consumption and average labor productivity of the location, an index of production
variety plus two dummies for the presence of industrial districts and metropolitan areas (see
Bottazzi and Gragnolati (2015) for further details). Nonetheless, it is worth recalling that
population plays by far the most important role, serving as a proxy for the local size of both
final goods and labor markets. This fact is discussed at length by Bottazzi and Gragnolati (2015,
esp. pp. 9–11, tab. 2), where the marginal effect of population in shaping the attractiveness of
commuting zones is shown to be orders of magnitude stronger than any other intrinsic feature.
To facilitate visual inspection of this key variable, Figure 4a illustrates the spread of population
among Italian commuting zones in 2001.
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5 Results
Considering that the focus here is on the detection of non-linearity, one looks at the estimates
of c. To provide a visual summary of the data on which estimation is based, Figure 4 illustrates
the spatial distributions for two different sectors together with the spatial distribution of a
key control variable such as population. The results of the estimation procedure as applied
on a comprehensive set of manufacturing and service sectors are reported in Table 1. As a
premise, it should be noted that the estimates can be derived for high values of both N and L,
thus allowing one to apply the present methodology at virtually any spatial scale or sectoral
disaggregation.

The basic result we obtained is a negative one. The estimate of c turns out to be statistically
different from zero only in a very small minority of the 43 sectors under analysis. More precisely,
only in four sectors is the null hypothesis H0 : c = 0 rejected at a 90% confidence level, and only
in two sectors it is rejected at a 95% confidence level. These numbers are consistent with the
overall validity of the null hypothesis, as they correspond to the 10% and 5% of the independent
estimates, respectively. Hence, at the scale of commuting zones, the geography of production
across the various sectors of the Italian economy in year 2001 is not generally characterized by
quadratic localization externalities. In fact, a linear specification of the Polya model is already
accurate enough to capture most of the effect of externalities on firm localization. Therefore,
adding an extra firm to a location l that hosts nl = 10 or to a location m that hosts nm = 100
firms has approximately the same incremental effect on the probability for each location to
further attract other firms at the next localization round. Nonetheless, all other things being
equal, positive localization externalities make m more attractive than l in absolute terms,
precisely because m hosts more firms to begin with.

Moreover, in the rare instances in which it is significantly different from zero, ĉ is posi-
tive. This result rules out the presence of congestion effects at the scale of commuting zones,
especially if one takes into account that the condition ∂pl/∂nl < 0 would need a sufficiently
negative value of c in order to be met (see the related discussion above in Section 2). In fact,
albeit rarely, firm localization might be affected by more-than-linear positive feedbacks, thus
making the overall effect of localization externalities at the scale of commuting zones positive.
That is why having an extra firm generally increases the attractiveness of a commuting zone.

Relatedly, the multistage procedure that would serve to estimate the other unknown pa-
rameters (β, b) is almost never triggered. Since c is normally not statistically different from
zero, the multistage estimates of the other unknown parameters turn out to be never statisti-
cally different from the initialization values obtained by estimating the linear Polya model. In
this sense, the original marginal effects put froward by Bottazzi and Gragnolati (2015) are not
falsified. It also follows that their conclusion about the relative strength of localization and
urbanization economies result to be robust to a changing functional specification of localization
externalities. Similarly, other results in the literature that were based on a linear specification
of externalities may also possibly represent a sufficiently accurate estimate of the determinants
of firm localization (see Black and Henderson, 1999, Desmet and Fafchamps, 2006, Devereux
et al., 2004, Dumais et al., 2002, Duranton and Overman, 2005, Ellison and Glaeser, 1999,
Henderson, 2003, Maurel and Sédillot, 1999, Rosenthal and Strange, 2001).

6 Conclusion
This paper has presented an empirical analysis on the functional shape of localization external-
ities. So far, most of the econometric studies regarding the determinants of the localization of
economic activities have adopted a linear specification of externalities. Such an approach may
produce an inaccurate measurement of the actual strength of localization externalities, par-
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ticularly if congestion effects are present. Hence, before jumping to strong conclusions about
the weight of externalities relative to other determinants of firm localization, one may want
to investigate the effect of an alternative function specification of externalities. In particular,
the present work has adopted a quadratic specification. The main result is of a negative kind.
The quadratic externality coefficient is almost never statistically different from zero. Therefore,
localization externalities are approximated accurately enough by a linear specification and, as
already discussed, by a specification that suggests the presence of positive technological exter-
nalities that increase with the number of co-located firms. If one accepts the assumption that
pecuniary agglomerating factors act more or less commonly across the entire economy while
technological ones are somehow limited in scope inside a specific sector, the analysis confirms a
strong presence of the latter in basically all sectors under scrutiny, reinforcing the conclusions
put forward by Bottazzi and Gragnolati (2015).

Notably, the entire analysis is structured so as to allow for a direct comparison with Bottazzi
and Gragnolati (2015). On the one hand, this approach allows one to test their results further,
which however cannot be generally falsified. On the other hand, the focus here on comparison
has led to the adoption of the same data. This meant estimating the quadratic Polya model at
the scale of commuting zones. Nonetheless, non-linearities in firm localization could possibly
be occurring at other spatial scales. In particular, even in the very few sectors in which the
quadratic externality coefficient is not statistically equal to zero, its size is extremely small.
This may signal that commuting zones are too coarse at a spatial scale to make non-linearities
detectable at a sufficient level of statistical precision. For this reason, it could be interesting
to apply the analytical framework presented here on finer spatial scales, which may allows to
capture better, for instance, the effect of spatial congestion.
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Table 1: Number of plants, estimate of c, and corresponding p-value.

Sectors N ĉ p-value

15-Food products 73680 6.77E-006 0.460
17-Textiles 31984 -4.63E-006 0.300
18-Apparel 46377 -7.94E-006 0.360
19-Leather products 24195 1.91E-004 0.230
20-Wood processing 50250 -1.73E-005 0.360
21-Pulp and paper 5175 6.82E-004 0.190
22-Publishing and printing 29166 1.91E-005 0.500
23-Coke,petroleum and nuclear fuel 913 1.45E-003 0.110
24-Organic and inorganic chemicals 7721 -3.99E-004 0.210
25-Rubber and plastic products 15115 7.87E-005 0.025
26-Non metallic mineral products 31177 1.10E-004 0.160
27-Basic metals 3984 5.22E-004 0.410
28-Fabricated metal products 102295 -7.67E-006 0.420
29-Industrial machinery 46481 -5.68E-005 0.570
30-Office machinery 1715 -7.84E-004 0.540
31-Electrical machinery 20282 -7.12E-005 0.590
32-Radio TV and TLC devices 9677 9.27E-005 0.330
33-Precision instruments 26244 -6.38E-005 0.320
34-Motor vehicles and trailers 2229 5.41E-004 0.690
35-Other transport equipment 4951 -7.25E-005 0.730
361-Furniture 35784 5.47E-005 0.680
362-Jewelry 10906 2.02E-005 0.790
363-Musical instruments 695 -4.96E-003 0.081
36R-Residual of sector 36 6728 5.97E-008 0.710
40-Electricity and gas 4159 -6.97E-004 0.730
41-Water 1408 -5.66E-003 0.220
45-Construction 529757 1.50E-002 0.015
50-Sale and services of motor vehicles 164079 2.94E-006 0.810
51-Wholesale and commission trade 404278 3.75E-007 0.840
52-Retail trade 772730 1.80E-005 0.011
55-Hotels and restaurants 261304 -2.61E-005 0.320
60-Land transport 135135 -1.56E-005 0.690
61-Water transport 1319 -3.88E-004 0.840
62-Air transport 457 6.22E-004 0.910
63-Auxiliary transport activities 33765 -1.14E-004 0.088
64-Post and telecommunications 18056 -1.98E-004 0.540
65-Financial intermediation 30587 -1.04E-004 0.350
66-Private insurance and pensions 1771 -4.46E-004 0.860
67-Auxiliary financial activities 84677 4.73E-006 0.920
70-Real estate activities 149990 -1.57E-005 0.790
71-Renting of machinery and equipment 13291 4.41E-004 0.110
72-Computer and related activities 84100 -3.39E-005 0.210
74-Business services 216883 -2.32E-005 0.120

Note: For each sector, N is the number of plants and ĉ is the estimate of c,
which is obtained with the corresponding p-value. The number of regions is
fixed to L = 686 commuting zones.
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