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We prove that each isometric isomorphism, between the monoids of all nonegative 1-Lipschitz maps defined on invariant metric groups and equiped with the inf-convolution law, is given canonically from an isometric isomorphism between their groups of units.

Introduction.

Given a metric space (X, d), we denote by Lip 1 + (X) the set of all nonnegative 1-Lipschitz maps on X equipped with the metric ρ(f, g) := sup

x∈X |f (x) -g(x)| 1 + |f (x) -g(x)| , ∀f, g ∈ Lip 1 + (X).
If X is a group and f, g : X -→ R are two functions, the inf-convolution of f and g is defined by the following formula

(f ⊕ g)(x) := inf y,z∈X/yz=x {f (y) + g(z)} ; ∀x ∈ X.
We recall the following definition.

Definition 1. Let (X, d) be a metric group. We say that (X, d) is invariant if and only if, d(xy, xz) = d(yx, zx) = d(y, z), ∀x, y, z ∈ X.

If moreover X is complete for the metric d, then we say that (X, d) is an invariant complete metric group.

Theorem 1. Let (X, d) and (Y, d ′ ) be two invariant metric groups. Let Φ be a map from (Lip 1 + (X), ⊕, ρ) into (Lip 1 + (Y ), ⊕, ρ). Then the following assertions are equivalent. (1) Φ is an isometric isomorphism of monoids [START_REF] Bachir | The inf-convolution as a law of monoid. An analogue to the Banach-Stone theorem[END_REF] there exists an isometric isomorphism of groups T : (X, d) -→ (Y , d ′ ) such that Φ(f ) = (f • T -1 ) |Y for all f ∈ Lip 1 + (X), where f denotes the unique 1-Lipschitz extenstion of f to X and (f • T -1 ) |Y denotes the restriction of f • T -1 to Y .

If A (resp. X) is a metric monoid (resp. a metric group), by Is m (A) (resp. Is g (X)) we denote the group of all isometric automorphism of the monoid A (resp. of the group X). The symbol "≃" means "isomorphic as groups". An immediate consequence of Theorem 1 is given in the following corollary.

Corollary 1. Let (X, d) be an invariant metric group. Then,

Is m (Lip 1 + (X)) ≃ Is g (X).
As application of the results of this note, we discover new semigroups law on R n (different from the usual operation +) having some nice properties. We treat this question in Example 1 at Section 3, where it is shown that each finite group structure (G, •), extend canonically to a semigroup structure on R n (where n is the cardinal of G). In other words, there always exists a semigroup law ⋆ G on R n and an injective group morphism i from (G, •) into (R n , ⋆ G ) such that the maximal subgroup of (R n , ⋆ G ) having e := (0, 1, 1, ..., 1) as identity element is isomorphic to the group G× R. The idea is simply based on the use of the results of this paper and the identification between (R n , ⋆ G ) and (Lip(G), ⊕) where G is equiped with the discrete metric, and Lip(G) denotes the space of all Lipschitz map on G. This note is organized as follows. Section 1 concern the proof of Theorem 1 and is divided on two subsections: in Subsection 1.1 we prove some useful lemmas and in Subsection 1.2, we give the proof of the main result Theorem 1. In Section 2, we give some properties of the group of invertible elements for the inf-convolution law. In section 3, we review the results of this paper in the algebraic case.

1 Proof of the main result.

Preliminary results

We follow the notation of [START_REF] Bachir | A Banach-Stone type theorem for invariant metric groups[END_REF]. For each fixed point x ∈ X, the map δ x is defined from X into R as follows

δ x : X → R z → d(z, x) = d(zx -1 , e).
We define the subset G(X) of Lip 1 + (X) as follows

G(X) := {δ x : x ∈ X} ⊂ Lip 1 + (X).
We consider the operator γ X defined as follows

γ X : X → G(X) x → δ x
We are going to prove some lemmas.

Lemma 1. Let (X, d) and (Y, d ′ ) be two invariant complete metric groups having respectively e and e ′ as identity elements. Let Φ be a map from (Lip 1 + (X), ⊕, ρ) onto (Lip 1 + (Y ), ⊕, ρ) which is an isometric isomorphism of monoids. Then, the following asserions holds.

(1) for all f ∈ Lip 1 + (X), inf Y Φ(f ) = inf X f and for all r ∈ R + , Φ(r) = r. (2) there exists an isometric isomorphism of groups T : (

X, d) -→ (Y, d ′ ) such that Φ(r + δ x ) = r + δ T (x) = r + δ x • T -1 ,
for all r ∈ R + and for all x ∈ X.

(3) Φ(f + r) = Φ(f ) + r, for all f ∈ Lip 1 + (X) and for all r ∈ R + .

Proof. Since an isomorphism of monoids, sends the group of unit onto the group of unit, then using [Theorem 1., [START_REF] Bachir | A Banach-Stone type theorem for invariant metric groups[END_REF]], the restriction

T 1 := Φ |G(X) is an isometric group isomorphism from G(X) onto G(Y ).
On the other hand, the map γ X : X -→ G(X) gives an isometric group isomorphism by [Lemma 2., [START_REF] Bachir | A Banach-Stone type theorem for invariant metric groups[END_REF]]. Thus, the map T := γ -1 Y • T 1 • γ X , gives an isometric group isomorphism from X onto Y and we have that for all x ∈ X,

Φ(δ x ) := T 1 (δ x ) = T 1 • γ X (x) = γ Y • T (x) = δ T (x) = δ x • T -1 .
We prove the part (1). Note that f ⊕ 0 = 0 ⊕ f = inf x∈X f for all f ∈ Lip 1 + (X). First, we prove that Φ(0) = 0. Indeed, for all x ∈ X, we have that 0 ⊕ δ x = 0. Thus,

Φ(0) = Φ(0) ⊕ Φ(δ x ) = Φ(0) ⊕ δ T x .
Using the surjectivity of T , we obtain that for all y ∈ Y , we have that Φ(0) = Φ(0) ⊕ δ y . So, using the definition of the if-convolution, we get Φ(0)(z) = inf ts=z {Φ(0)(t) + δ y (s)} ≤ Φ(0)(zy -1 ) for all y, z ∈ Y . By taking the infinimum over y ∈ Y , we obtain that Φ(0

)(z) ≤ inf Y Φ(0), for all z ∈ Y . It follows that Φ(0) = inf Y Φ(0) is a constant function. Now, since Φ(0) is a constant function, we have 2Φ(0) = Φ(0) ⊕ Φ(0) = Φ(0 ⊕ 0) = Φ(0)
, it follows that Φ(0) = 0. Finaly, we prove that Φ(r) = r for all r ∈ R + . Indeed, since r ⊕ 0 = r and Φ(0) = 0, it follows that Φ(r) = Φ(r) ⊕ 0 = inf Y Φ(r), which implies that Φ(r) is a constant function. Using the fat that Φ is an isometry, we get that ρ(Φ(r), 0) = ρ(Φ(r), Φ(0)) = ρ(r, 0). In other word, Φ(r) 1+Φ(r) = r 1+r , which implies that Φ(r) = r. Now, we have

inf y∈Y Φ(f ) = Φ(f ) ⊕ 0 = Φ(f ) ⊕ Φ(0) = Φ(f ⊕ 0) = Φ(inf x∈X f ) = inf x∈X f . We prove the part (2). Let r ∈ R + and set g = Φ(r + δ e ) ∈ Lip 1 + (Y ). We first prove that g = r + δ e ′ . Using the part (1), we have that r = Φ(r) = Φ(inf x∈X (r + δ e )) = inf y∈Y Φ(r + δ e ) ≤ Φ(r + δ e ) = g. Thus g -r ≥ 0 and so g -r ∈ Lip 1 + (Y ).
On the other hand, since Lip 1 + (Y ) is a monoid having δ e ′ as identity element, we have that

g = (g -r) ⊕ (r + δ e ′ ) = (r + δ e ′ ) ⊕ (g -r). Now, since Φ -1 is a monoid morphism, we get that r + δ e = Φ -1 (g) = Φ -1 (g -r) ⊕ Φ -1 (r + δ e ′ ) = Φ -1 (r + δ e ′ ) ⊕ Φ -1 (g -r).
As above we prove that

Φ -1 (r + δ e ′ ) -r ≥ 0. Thus, Φ -1 (r + δ e ′ ) -r ∈ Lip 1 + (X).
Since r is a constant function, the above equality is equivalent to the following one

δ e = Φ -1 (g -r) ⊕ (Φ -1 (r + δ e ′ ) -r) = (Φ -1 (r + δ e ′ ) -r) ⊕ Φ -1 (g -r).
Since from [Theorem 1, [START_REF] Bachir | A Banach-Stone type theorem for invariant metric groups[END_REF]], the invertible element in Lip 1 + (X) are exactely the element of G(X) and since G(X) is a group by [Lemma 2, [START_REF] Bachir | A Banach-Stone type theorem for invariant metric groups[END_REF]], we deduce from the above equality that Φ -1 (r + δ e ′ ) -r ∈ G(X) and Φ -1 (g -r) ∈ G(X) and there exists α(r), β(r) ∈ X such that

   e = α(r)β(r) Φ -1 (r + δ e ′ ) -r = δ α(r) Φ -1 (g -r) = δ β(r) This implies that    e = α(r)β(r) Φ(r + δ α(r) ) = r + δ e ′ g = r + Φ(δ β(r) ) = r + δ T (β(r)) (1) 
We need to prove that α(r) = β(r) = e for all r ∈ R + . Indeed, since Φ is an isometry, we have that

ρ(Φ(r + δ α(r) ), Φ(δ e )) = ρ(r + δ α(r) , δ e ).
Using the above formula, the second equations in (1) and the definition of the metric ρ with the fact that Φ(δ e ) = δ e ′ , we get

r 1 + r = ρ(r + δ e ′ , δ e ′ ) = ρ(Φ(r + δ α(r) ), Φ(δ e )) = ρ(r + δ α(r) , δ e ) = sup t∈X |r + δ α(r) (t) -δ e (t)| 1 + |r + δ α(r) (t) -δ e (t)| . ≥ r + δ α(r) (e) 1 + r + δ α(r) (e)
A simple computation of the above inequality, gives that δ α(r) (e) ≤ 0 i.e. d(α(r), e) ≤ 0. In other word, we have that α(r) = e for all r ∈ R + . On the other hand, using the first equation of (1), we get that β(r) = e for all r ∈ R + . It follows from the equation (1) that Φ(r + δ e ) = r + δ e ′ for all r ∈ R + . Now, it is easy to see that for all r ∈ R + and all x ∈ X we have

r + δ x = (r + δ e ) ⊕ δ x .

It follows that

Φ(r + δ x ) = Φ(r + δ e ) ⊕ Φ(δ x ) = (r + δ e ′ ) ⊕ δ T (x) = r + δ T (x) Since T is isometric, we obtain that Φ(r + δ x ) = r + δ T (x) = r + δ x • T -1 .
Now, we prove the part (3). Let f ∈ Lip 1 + (X) and r ∈ R + . It is easy to see that f +r = f ⊕(r +δ e ). So, using the part (2), we obtain that Φ(f +r) = Φ(f )⊕Φ(r +δ e ) = Φ(f ) ⊕ (r + δ e ′ ) = Φ(f ) + r. Lemma 2. Let (X, d) be an invariant metric group. Let f ∈ Lip 1 + (X). Then, for all x ∈ X and all positive real number a such that a ≥ f (x), we have that

f (x) = (inf(δ e , a) ⊕ f )(x).
Proof. Let x ∈ X and a ≥ 0 such that f (x) ≤ a. We have that 

(inf(δ e , a) ⊕ f )(x) = inf t∈X {inf(d(xt -1 , e), a) + f (t)} = inf t∈X {f (t) + inf(d(t, x), a)} = min{ inf t∈X/d(t
(inf(δ e , a) ⊕ f )(x) = min{f (x), inf t/d(t,x)≥a {f (t)} + a} = f (x).
Lemma 3. Let (X, d) be an invariant metric group. Then, the following assertions hold.

(1) for each f ∈ Lip 1 + (X) and for each bounded function

h ∈ Lip 1 + (X), the function f ⊕ h ∈ Lip 1 + (X) is bounded. (2) Let f, g ∈ Lip 1
+ (X), then the following assertions are equivalent.

(a) f ≤ g (b) h ⊕ f ≤ h ⊕ g, for all function h ∈ Lip 1 + (X) which is bounded. Proof. (1) Since 0 ≤ f ⊕ h(x) ≤ f (e) + h(x) for all x ∈ X and since h is bounded, it follows that f ⊕ h is bounded. On the other hand, f ⊕ h ∈ Lip 1 + (X) since Lip 1 + (X) is a monoide.
(2) The part (a) =⇒ (b) is easy. Let us prove the part (b) =⇒ (a). Indeed, let x ∈ X and chose a positive real number a ≥ max(f (x), g(x)). Set h := inf(δ e , a). It is clear that h ∈ Lip 1 + (X) and is bounded. So, from the hypothesis (b) we have that (inf(δ e , a) ⊕ f ) ≤ (inf(δ e , a) ⊕ g). Using Lemme 2, we obtain that f (x) ≤ g(x). Lemma 4. Let A be a nonempty set and f, g : A -→ R be two functions. Then, the following assertions are equivalent.

(1) sup x∈A |f (x) -g(x)| < +∞.

(

) sup x∈A |f (x)-g(x)| 1+|f (x)-g(x)| < 1. 2 
Proof. Suppose that (1) hold. Using [Lemma 1., [START_REF] Bachir | A Banach-Stone type theorem for invariant metric groups[END_REF]], we have that sup x∈A

|f (x)-g(x)| 1+|f (x)-g(x)| = sup x∈A |f (x)-g(x)| 1+sup x∈A |f (x)-g(x)| < 1. Now, suppose that (2) holds. Set α = sup x∈A |f (x)-g(x)| 1+|f (x)-g(x)| < 1.
Then, we obtain that |f (x)-g(x)| ≤ α 1-α , for all x ∈ A. This implies that sup x∈A |f (x)g(x)| < +∞. Lemma 5. Let (X, d) and (Y, d ′ ) be two invariant complete metric groups. Let

Φ : (Lip 1 + (X), ρ) -→ (Lip 1 + (Y ), ρ)
be an isometric isomorphism of monoids. Then, for all f, g ∈ Lip 1 + (X), we have

f ≤ g ⇐⇒ Φ(f ) ≤ Φ(g).
Proof. The proof is divided on two cases. Case1: (The case where f and g are bounded.) Let f, g ∈ Lip 1 + (X) be bounded functions. In this case we have sup x∈X |f (x) -g(x)| < +∞, so using Lemma 4 and the fact that Φ is isometric, we get also that sup y∈Y |Φ(f )(y) -Φ(g)(y)| < +∞. Using [Lemma 1. [START_REF] Bachir | A Banach-Stone type theorem for invariant metric groups[END_REF]] and the fact that Φ is isometric, we obtain that

sup y∈Y |Φ(f )(y) -Φ(g)(y)| 1 + sup y∈Y |Φ(f )(y) -Φ(g)(y)| = sup x∈X |f (x) -g(x)| 1 + sup x∈X |f (x) -g(x)| .
This implies that

sup y∈Y |Φ(f )(y) -Φ(g)(y)| = sup x∈X |f (x) -g(x)|. Set r := sup y∈Y |Φ(f )(y) -Φ(g)(y)| = sup x∈X |f (x) -g(x)| < +∞.
By applying the above arguments to f + r and g which are bounded, we also get that

sup y∈Y |Φ(f + r)(y) -Φ(g)(y)| = sup x∈X |(f + r)(x) -g(x)|.
Using the fact that Φ(f + r) = Φ(f ) + r (by Lemma 1) and the choice of the number r, we get that

sup x∈X {Φ(f )(x) -Φ(g)(x) + r} = sup x∈X {f (x) -g(x) + r} which implies that sup y∈Y {Φ(f )(y) -Φ(g)(y)} = sup x∈X {f (x) -g(x)}. It follows that f ≤ g ⇐⇒ Φ(f ) ≤ Φ(g). Replacing Φ by Φ -1 we also have k ≤ l ⇐⇒ Φ -1 (k) ≤ Φ -1 (l)
, for all bounded functions k, l ∈ Lip 1 + (Y ). Case2: (The general case.) First, note that for each bounded function k ∈ Lip 1 + (Y ), we have that Φ -1 (k) ∈ Lip 1 + (X) is bounded. Indeed, there exists r ∈ R + such that 0 ≤ k ≤ r. Using the above case, we get that Φ -1 (0) ≤ Φ -1 (k) ≤ Φ -1 (r). This shows that Φ -1 (k) is bounded, since Φ -1 (0) = 0 and Φ -1 (r) = r by Lemma 1. Now, let f, g ∈ Lip 1 + (X) be two functions such that f ≤ g.

Let k ∈ Lip 1 + (Y ) be any bounded function. It follows that f ⊕ Φ -1 (k) ≤ g ⊕ Φ -1 (k). From the part (1) of Lemma 3, we have that f ⊕ Φ -1 (k), g ⊕ Φ -1 (k) ∈ Lip 1 + (X) are bounded. Using Case1., we get that Φ(f ⊕ Φ -1 (k)) ≤ Φ(g ⊕ Φ -1 (k)). Since Φ is a morphism, we have that Φ(f ) ⊕ k ≤ Φ(g) ⊕ k,
which implies that Φ(f ) ≤ Φ(g) by using the part (2) of Lemma 3. The converse is true by changing Φ by Φ -1 . Lemma 6. Let (X, d) and (Y, d ′ ) be two invariant metric groups and let Φ be a monoid isomorphism

Φ : (Lip 1 + (X), ⊕, ρ) -→ (Lip 1 + (Y ), ⊕, ρ).
Then, the following assertions are equivalent.

(1) for all f, g ∈ Lip 1 + (X), we have that

(f ≤ g ⇐⇒ Φ(f ) ≤ Φ(g)). (2) for all f ′ , g ′ ∈ Lip 1 + (Y ), we have that (f ′ ≤ g ′ ⇐⇒ Φ -1 (f ′ ) ≤ Φ -1 (g ′ )). (3) for all familly (f i ) i∈I ⊂ Lip 1 + (X)
, where I is any nonempty set, we have

Φ(inf i∈I f i ) = inf i∈I Φ(f i ). Proof. The part (1) ⇐⇒ (2) is clear. Let us prove (1) =⇒ (3). Let (f i ) i∈I ⊂ Lip 1 + (X)
, where I is any nonempty set. First, it is easy to see that the infinimum of a nonempty familly of nonnegative and 1-Lipschitz functions is also nonnegative and 1-Lipschitz function. So, inf i∈I f i ∈ Lip 1 + (X). For all i ∈ I, we have that inf i∈I f i ≤ f i , which implies by hypothesis that Φ(inf i∈I f i ) ≤ Φ(f i ) for all i ∈ I. Consequently we have that Φ(inf i∈I f i ) ≤ inf i∈I Φ(f i ). On the other hand, since inf i∈I Φ(f i ) ≤ Φ(f i ) for all i ∈ I, using (2), we have that

Φ -1 (inf i∈I Φ(f i )) ≤ f i , for all i ∈ I. It follows that, Φ -1 (inf i∈I Φ(f i )) ≤ inf i∈I f i . Using (1), we obtain that inf i∈I Φ(f i ) ≤ Φ(inf i∈I f i ).
Hence, inf i∈I Φ(f i ) = Φ(inf i∈I f i ). Now, let us prove that (3) =⇒ [START_REF] Bachir | A Banach-Stone type theorem for invariant metric groups[END_REF]. First, let us show that from (3) we also have that Φ -1 (inf i∈I g i ) = inf i∈I Φ -1 (g i ), where I is a nonempty set and g i ∈ Lip 1 + (Y ) for all i ∈ I. Indeed, since Φ is bijective, there exists

(f i ) i∈I ⊂ Lip 1 + (X) such that g i = Φ(f i ) for all i ∈ I. Thus, inf i∈I g i = inf i∈I Φ(f i ) = Φ(inf i∈I f i ) = Φ(inf i∈I Φ -1 (g i )), which implies that Φ -1 (inf i∈I g i ) = inf i∈I Φ -1 (g i ). Now, let f, g ∈ Lip 1 + (X). We have that f ≤ g ⇐⇒ f = inf(f, g), so if f ≤ g then Φ(f ) = Φ(inf(f, g)) = inf(Φ(f ), Φ(g)). This implies that Φ(f ) ≤ Φ(g). Conversely, if Φ(f ) ≤ Φ(g) then Φ(f ) = inf(Φ(f ), Φ(g)) and so f = Φ -1 (Φ(f )) = Φ -1 (inf(Φ(f ), Φ(g))) = inf(Φ -1 (Φ(f )), Φ -1 (Φ(g))) = inf(f, g). This implies that f ≤ g.
1.2 Proof of the main result. Now, we give the proof of the main result.

Proof of Theorem 1. We know from [Lemma 3. , [START_REF] Bachir | A Banach-Stone type theorem for invariant metric groups[END_REF]] that the map

χ X : (Lip 1 + (X), ⊕, ρ) → (Lip 1 + (X), ⊕, ρ) f → f
is an isometric isomorphism of monoids, where f denotes the unique 1-Lipschitz extention of f to X. Let us define the map Φ : (Lip 1 + (X), ⊕, ρ) -→ (Lip 1 + (Y ), ⊕, ρ) by

Φ := χ Y • Φ • χ -1 X .
Then, Φ is an isometric isomorphism of monoids. (1) =⇒ [START_REF] Bachir | The inf-convolution as a law of monoid. An analogue to the Banach-Stone theorem[END_REF]. Since Lip 1 + (X) is a monoid having δ e : X ∋ x → d(x, e) as identity element, we have that f = δ e ⊕ f for all f ∈ Lip 1 + (X). Thus, f = inf t∈X {f (t) + δ t } for all f ∈ Lip 1 + (X). Using Lemma 6 together with Lemma 5, we have that for all f ∈ Lip 1 + (X), Φ(f ) = Φ(inf t∈X {f (t) + δ t }) = inf t∈X Φ(f (t) + δ t ). Using Lemma 1, there exists an isometric isomorphism of groups T : (

X, d) -→ (Y , d ′ ) such that Φ(f (t) + δ t ) = f (t) + δ T (t) , for all t ∈ X. Thus, we get that Φ(f ) = inf t∈X {f (t) + δ T (t) }.
Equivalently, for all y ∈ Y , we have

Φ(f )(y) = inf t∈X {f (t) + δ T (t) (y)} = inf t∈X {f (t) + d ′ (y, T (t))} = inf t∈X {f (t) + d(T -1 (y), t)} = (δ e ⊕ f )(T -1 (y)) = f (T -1 (y)) = f • T -1 (y). From the formulas Φ = χ -1 Y •Φ•χ X , we get that Φ(f ) = (f •T -1 ) |Y for all f ∈ Lip 1 + (X). (2) =⇒ (1). If T : (X, d) -→ (Y , d ′ ) is an isometric isomorphism of groups, then clearly the map Φ defined by Φ(f ) := f • T -1 for all f ∈ Lip 1 + (X), gives an isometric isomorphism from (Lip 1 + (X), ⊕, ρ) onto (Lip 1 + (Y ), ⊕, ρ). Thus, the map Φ := χ -1 Y • Φ • χ X gives an isometric isomorphism from (Lip 1 + (X), ⊕, ρ) onto (Lip 1 + (Y ), ⊕, ρ). Now, it clear that Φ(f ) = (f • T -1 ) |Y for all f ∈ Lip 1 + (X). Remark 1. (1)
The description of all isomorphisms seems to be more complicated than the representations of the isometric isomorphisms. Here is two examples of isomorphisms which are not isometric.

(a) The map Φ :

Lip 1 + (X) -→ Lip 1 + (X) defined by Φ(f ) = f + inf X (f ) for all f ∈ Lip 1 + (X)
, is an isomorphism of monoids which respect the order but is not isometric for ρ (the proof is similar to the proof of [Theorem 7., [START_REF] Bachir | The inf-convolution as a law of monoid. An analogue to the Banach-Stone theorem[END_REF]]. Note that we always have inf

X (f ⊕ g) = inf X (f ) + inf Y (g)).
(b) The map Φ :

Lip 1 + (R) -→ Lip 1 + (R) defined by Φ(f )(x) = f (x + inf X (f )
) for all f ∈ Lip 1 + (R) and all x ∈ R, is an isomorphism but not isometric for ρ. (2) Following the proof of Theorem 1 and changing "1-Lipschitz function" by "1-Lipschitz and convex function", we get a positive answer to the problem 2. in [START_REF] Bachir | The inf-convolution as a law of monoid. An analogue to the Banach-Stone theorem[END_REF].

2 The group of units.

In order that the inf-convolution of two functions f and g takes finit values i.e f ⊕ g > -∞, we need to assume that f and g are bound from below. Since, we work with Lipschitz maps, for simplicity, we assume in this section, that (X, d) is a bounded invariant metric group. By Lip 1 0 (X) we denote the set of all 1-Lipschitz map f from X into R such that inf X (f ) = 0. By Lip 1 (X) (resp. Lip(X), ) we denote the set of all 1-Lipschitz map (resp. the set of all Lipchitz map) defined from X to R. We have that Lip 1 0 (X) ⊂ Lip 1 + (X) ⊂ Lip 1 (X) ⊂ Lip(X).

Proposition 1. Let (X, d) be a bounded invariant metric (abelian) group. Then, the sets Lip 1 0 (X), Lip 1 + (X) and Lip 1 (X) are (abelian) monoids having δ e as identity element and Lip(X) is a (abelian) semigroup.

Proof. The proof is similar to [Proposition 1., [START_REF] Bachir | A Banach-Stone type theorem for invariant metric groups[END_REF]].

Note that since (X, d) is bounded, each function f ∈ Lip 1 (X) (resp. f ∈ Lip(X)) is dounded and so d ∞ (f, g) := sup x∈X |f (x) -g(x)| < +∞ for all f, g ∈ Lip 1 (X) (resp. f, g ∈ Lip(X)). In this case, from [Lemma 1., [START_REF] Bachir | A Banach-Stone type theorem for invariant metric groups[END_REF]], we have that

ρ = d ∞ 1 + d ∞
on Lip(X). We also consider the following metric:

θ ∞ (f, g) := d ∞ (f -inf X (f ), g -inf X (g)) + | inf X (f ) -inf X (g)|, ∀f, g ∈ Lip(X).

  Since f is 1-Lipschitz we have that f (x) = inf t/d(t,x)≤a {f (t) + d(t, x)}. It follows that

		,x)≤a	{f (t) + inf(d(t, x), a)};
		inf t∈X/d(t,x)≥a	{f (t) + inf(d(t, x), a)}}
	= min{ inf t/d(t,x)≤a	{f (t) + d(t, x)}, inf

t/d(t,x)≥a {f (t) + a}}.

Proposition 2. Let (X, d) be a bounded invariant metric group. Then, the following map

is an isomeric isomorphism of monoids, where Lip 1 + (X)×R is equiped with the operation ⊕ defined by (f, c)⊕(f ′ , c ′ ) := (f ⊕ f ′ , c + c ′ ).. Proof. Clearly, (Lip 1 + (X) × R, ⊕) is a monoid having (δ e , 0) as identity element, since (Lip 1 + (X), ⊕) is a monoid having δ e as identity element. It is also clear that τ is a monoid isomorphism. Now, τ is isometric by the defintion of θ ∞ . It follows that τ is an isometric isomorphism,

The following proposition gives an alternative way to consider the group completion of invariant metric groups. Recall that if (M, •) is a monoid having e M as identity element, the group of units of M is the set

The symbol ∼ = means isometrically isomorphic as groups. We give below an analogue to [Corollary 1., [START_REF] Bachir | A Banach-Stone type theorem for invariant metric groups[END_REF]], for each of the spaces Lip 1 0 (X), Lip 1 (X) and Lip(X). Note that in the part (1) of the following proposition as in [Corollary 1., [START_REF] Bachir | A Banach-Stone type theorem for invariant metric groups[END_REF]], we do not need to assume that X is bounded. Proposition 3. Let (X, d) be a bounded invariant metric group. Then, we have that

(3) The group U (Lip 1 (X)) is the maximal subgroup of the semigroup Lip(X), having δ e as identity element.

Proof. [START_REF] Bachir | A Banach-Stone type theorem for invariant metric groups[END_REF] The fact that (U (Lip 1 + (X)), d ∞ ) ∼ = (X, d), is given in [Corollary 1., [START_REF] Bachir | A Banach-Stone type theorem for invariant metric groups[END_REF]]. On the other hand, since, G(X) ⊂ U (Lip

Let us prove the part (2). Indeed, since τ (Proposition 2) is an isometric isomorphism, it sends isometrically the group of units onto the group of units. Hence, from Proposition 2 we have

, the conclusion follows from the first part. For the part (3), let f be an element of the maximal group having δ e as identity element. Then, f ⊕ δ e = f and so it follows that f is 1-lipschitz map i.e f ∈ Lip 1 (X). Thus, f ∈ U (Lip 1 (X)).

3 The algebraic case.

Let G be an algebraic group having e as identity element and let f : G -→ R + be a function, we denote Osc(f ) := sup t,t ′ ∈G |f (t) -f (t ′ )| and by G * we denote the following set :

Note that the set G * is juste the set Lip 1 + (G) where (G, disc) is equipped with the discrete metric "disc", which is an invariant complete metric. So, (G * , ⊕) is a monoid having δ e as identity element, where δ e (•) := disc(•, e) i.e. δ e (e) = 0 and δ e (t) = 1 for all t = e. Observe also that two algebraic groups G and G ′ are isomorphic if and only they are isometrically isomorphic when equipped respectively with the discrete metric. Thus, we obtain that the algebraic group structure of any group G is completely determined by the algebraic monoid structure of (G * , ⊕).

Corollary 2. Let G and G ′ be two groups. Then the following assertions are equivalent.

(1) the groups G and G ′ are isomorphic (2) the monoids (G * , ⊕, ρ) and (G ′ * , ⊕, ρ) are isometrically isomorphic

) is an isometric isomorphism of monoids, if and only if there exists an isomorphism of groups

, where G is equipped with the discrete metric and since G and G ′ are isomorphic if and only if (G, disc) and (G ′ , disc) are isometrically isomorphic, then the part (1) ⇐⇒ ( 2) is a direct consequence of Theorem 1. The part (2) =⇒ (3), follows from the fact that ρ = d∞ 1+d∞ by using [Lemma 1, [START_REF] Bachir | A Banach-Stone type theorem for invariant metric groups[END_REF]]. The part (3) =⇒ ( 4) is trivial. Let us prove (4) =⇒ [START_REF] Bachir | A Banach-Stone type theorem for invariant metric groups[END_REF]. Since an isomorphism of monoids sends the group of unit onto the group of unit, and since the group of unit of G * (resp. of G ′ * ) is isomorphic to G (resp. to G ′ ) by Proposition 3, we get that G and G ′ are isomorphic. The last assertion is given by Theorem 1.

As mentioned in

for all f ∈ G * gives an isomorphism of monoids between G * and G ′ * which is not isometric.

In the following exemple, we treat the case where G is a finite group.

Examples 1. Let n ≥ 1 and (R n , d ∞ ) the usual n-dimentional space equiped with the max-distance. The subsets M + and M n of R n are defined as follows

Let G := {g 1 , g 2 , ...g n }, be a group of cardinal n, where g 1 is the identity of G. We define the law ⋆ G on R n depending on G as follows: for all

Then,

(1) The set (R n , ⋆ G ) has a semigroup structure (and is abelian if G is abelian).

(2) The sets (M n + , ⋆ G ) and (M n , ⋆ G ) are monoids having e = (0, 1, 1, 1, ..., 1) as identity element.

(3) Let G and G ′ be two groups of cardinal n. The monoids (M n + , ⋆ G ) and (M n + , ⋆ G ′ ) are isomorphic if and only if the groups G and G ′ are isomorphic.

(4) We have that

Moreover, the maximal subgroup of (R n , ⋆ G ) having e as identity element is isomorphic to the group G × R.

(5) We have that Is m (M n + ) ≃ Aut(G).

The properties (1) -(5) follows easily from the results of this note. It sufficies to see that the space R n can be identified to the space Lip(G) of all real-valued Lipschitz map on (G, disc). Indeed, the map

is a bijective map. Then, we observe that the operation ⋆ G on R n is just the operation ⊕ on Lip(G). On the other hand, the subset M n + is identified to Lip 1 + (G) and M n is identified to Lip 1 (G).