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Introduction.

Given a metric space (X, d), we denote by Lip1+(X) the set of all nonnegative 1-Lipschitz
maps on X equipped with the metric

ρ(f, g) := sup
x∈X

|f(x)− g(x)|

1 + |f(x)− g(x)|
, ∀f, g ∈ Lip1+(X).

If X is a group and f, g : X −→ R are two functions, the inf-convolution of f and g
is defined by the following formula

(f ⊕ g)(x) := inf
y,z∈X/yz=x

{f(y) + g(z)} ; ∀x ∈ X.

We recall the following definition.

Definition 1. Let (X, d) be a metric group. We say that (X, d) is invariant if and only
if,

d(xy, xz) = d(yx, zx) = d(y, z), ∀x, y, z ∈ X.

If moreover X is complete for the metric d, then we say that (X, d) is an invariant
complete metric group.
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Examples of invariant metric groups are given in [1]. In all the paper (X, d) and
(Y, d′) will be assumed to be invariant metric groups having respectively e and e′ as
identity element and (X, d) (resp. (Y , d′)) denotes the group completion of (X, d) (resp.
of (Y, d′)).

Recently, we established in [1] that the set (Lip1+(X),⊕) enjoys a monoid structure,
having the map δe : x 7→ d(x, e) as identity element and that the group completion (X, d)
of (X, d) is completely determined by the metric monoid structure of (Lip1+(X),⊕, ρ).
In other words, (Lip1+(X),⊕, ρ) and (Lip1+(Y ),⊕, ρ) are isometrically isomorphic as
monoids if and only if, (X, d) and (Y , d′) are isometrically isomorphic as groups. Also,
we proved that the group of all invertible elements of Lip1+(X) coincides, up to isometric
isomorphism, with the group completion X (See [Theorem 1., [1]] and [Theorem 2., [1]]).
The main result of [1], gives a Banach-Stone type theorem.

The representations of isometries between Banach spaces of Lipschitz maps defined
on metric spaces and equipped with their natural norms, was considered by several
authors [3], [6], [5]. In general, such isometries are given, under some conditions, canon-
ically as a composition operators. Other Banach-Stone type theorems are also given for
unital vector lattices structure [4].

In this note, we provide the following result which gives complete representations of
isometric isomorphisms for the monoid structure between Lip1+(X) and Lip1+(Y ). Our
result complement those given in [1] and [2].

Theorem 1. Let (X, d) and (Y, d′) be two invariant metric groups. Let Φ be a map from
(Lip1+(X),⊕, ρ) into (Lip1+(Y ),⊕, ρ). Then the following assertions are equivalent.

(1) Φ is an isometric isomorphism of monoids
(2) there exists an isometric isomorphism of groups T : (X, d) −→ (Y , d′) such

that Φ(f) = (f ◦ T−1)|Y for all f ∈ Lip1+(X), where f denotes the unique 1-Lipschitz

extenstion of f to X and (f ◦ T−1)|Y denotes the restriction of f ◦ T−1 to Y .

If A (resp. X) is a metric monoid (resp. a metric group), by Ism(A) (resp. Isg(X))
we denote the group of all isometric automorphism of the monoid A (resp. of the group
X). The symbol ”≃” means "isomorphic as groups". An immediate consequence of
Theorem 1 is given in the following corollary.

Corollary 1. Let (X, d) be an invariant metric group. Then,

Ism(Lip1+(X)) ≃ Isg(X).

As application of the results of this note, we discover new semigroups law on R
n

(different from the usual operation +) having some nice properties. We treat this
question in Example 1 at Section 3, where it is shown that each finite group structure
(G, ·), extend canonically to a semigroup structure on R

n (where n is the cardinal of
G). In other words, there always exists a semigroup law ⋆G on R

n and an injective
group morphism i from (G, ·) into (Rn, ⋆G) such that the maximal subgroup of (Rn, ⋆G)
having e := (0, 1, 1, ..., 1) as identity element is isomorphic to the group G×R. The idea
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is simply based on the use of the results of this paper and the identification between
(Rn, ⋆G) and (Lip(G),⊕) where G is equiped with the discrete metric, and Lip(G)
denotes the space of all Lipschitz map on G.

This note is organized as follows. Section 1 concern the proof of Theorem 1 and
is divided on two subsections: in Subsection 1.1 we prove some useful lemmas and
in Subsection 1.2, we give the proof of the main result Theorem 1. In Section 2, we
give some properties of the group of invertible elements for the inf-convolution law. In
section 3, we review the results of this paper in the algebraic case.

1 Proof of the main result.

1.1 Preliminary results

We follow the notation of [1]. For each fixed point x ∈ X, the map δx is defined from
X into R as follows

δx : X → R

z 7→ d(z, x) = d(zx−1, e).

We define the subset G(X) of Lip1+(X) as follows

G(X) := {δx : x ∈ X} ⊂ Lip1+(X).

We consider the operator γX defined as follows

γX : X → G(X)

x 7→ δx

We are going to prove some lemmas.

Lemma 1. Let (X, d) and (Y, d′) be two invariant complete metric groups having re-
spectively e and e′ as identity elements. Let Φ be a map from (Lip1+(X),⊕, ρ) onto
(Lip1+(Y ),⊕, ρ) which is an isometric isomorphism of monoids. Then, the following
asserions holds.

(1) for all f ∈ Lip1+(X), infY Φ(f) = infX f and for all r ∈ R
+, Φ(r) = r.

(2) there exists an isometric isomorphism of groups T : (X, d) −→ (Y, d′) such that
Φ(r + δx) = r + δT (x) = r + δx ◦ T

−1, for all r ∈ R
+ and for all x ∈ X.

(3) Φ(f + r) = Φ(f) + r, for all f ∈ Lip1+(X) and for all r ∈ R
+.

Proof. Since an isomorphism of monoids, sends the group of unit onto the group of
unit, then using [Theorem 1., [1]], the restriction T1 := Φ|G(X) is an isometric group
isomorphism from G(X) onto G(Y ). On the other hand, the map γX : X −→ G(X) gives
an isometric group isomorphism by [Lemma 2., [1]]. Thus, the map T := γ−1

Y ◦ T1 ◦ γX ,
gives an isometric group isomorphism from X onto Y and we have that for all x ∈ X,
Φ(δx) := T1(δx) = T1 ◦ γX(x) = γY ◦ T (x) = δT (x) = δx ◦ T

−1.

We prove the part (1). Note that f ⊕ 0 = 0 ⊕ f = infx∈X f for all f ∈ Lip1+(X).
First, we prove that Φ(0) = 0. Indeed, for all x ∈ X, we have that 0 ⊕ δx = 0. Thus,
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Φ(0) = Φ(0) ⊕ Φ(δx) = Φ(0) ⊕ δTx. Using the surjectivity of T , we obtain that for all
y ∈ Y , we have that Φ(0) = Φ(0) ⊕ δy. So, using the definition of the if-convolution,
we get Φ(0)(z) = infts=z{Φ(0)(t) + δy(s)} ≤ Φ(0)(zy−1) for all y, z ∈ Y . By taking the
infinimum over y ∈ Y , we obtain that Φ(0)(z) ≤ infY Φ(0), for all z ∈ Y . It follows
that Φ(0) = infY Φ(0) is a constant function. Now, since Φ(0) is a constant function,
we have 2Φ(0) = Φ(0) ⊕ Φ(0) = Φ(0⊕ 0) = Φ(0), it follows that Φ(0) = 0. Finaly, we
prove that Φ(r) = r for all r ∈ R

+. Indeed, since r⊕0 = r and Φ(0) = 0, it follows that
Φ(r) = Φ(r) ⊕ 0 = infY Φ(r), which implies that Φ(r) is a constant function. Using
the fat that Φ is an isometry, we get that ρ(Φ(r), 0) = ρ(Φ(r),Φ(0)) = ρ(r, 0). In

other word, Φ(r)
1+Φ(r) = r

1+r , which implies that Φ(r) = r. Now, we have infy∈Y Φ(f) =

Φ(f)⊕ 0 = Φ(f)⊕ Φ(0) = Φ(f ⊕ 0) = Φ(infx∈X f) = infx∈X f .

We prove the part (2). Let r ∈ R
+ and set g = Φ(r+ δe) ∈ Lip1+(Y ). We first prove

that g = r + δe′ . Using the part (1), we have that r = Φ(r) = Φ(infx∈X(r + δe)) =
infy∈Y Φ(r + δe) ≤ Φ(r + δe) = g. Thus g − r ≥ 0 and so g − r ∈ Lip1+(Y ). On the
other hand, since Lip1+(Y ) is a monoid having δe′ as identity element, we have that
g = (g − r)⊕ (r+ δe′) = (r+ δe′)⊕ (g − r). Now, since Φ−1 is a monoid morphism, we
get that

r + δe = Φ−1(g)

= Φ−1(g − r)⊕ Φ−1(r + δe′) = Φ−1(r + δe′)⊕ Φ−1(g − r).

As above we prove that Φ−1(r+ δe′)− r ≥ 0. Thus, Φ−1(r+ δe′)− r ∈ Lip1+(X). Since
r is a constant function, the above equality is equivalent to the following one

δe = Φ−1(g − r)⊕ (Φ−1(r + δe′)− r) = (Φ−1(r + δe′)− r)⊕ Φ−1(g − r).

Since from [Theorem 1, [1]], the invertible element in Lip1+(X) are exactely the element
of G(X) and since G(X) is a group by [Lemma 2, [1]], we deduce from the above equality
that Φ−1(r + δe′)− r ∈ G(X) and Φ−1(g − r) ∈ G(X) and there exists α(r), β(r) ∈ X
such that







e = α(r)β(r)
Φ−1(r + δe′)− r = δα(r)
Φ−1(g − r) = δβ(r)

This implies that






e = α(r)β(r)
Φ(r + δα(r)) = r + δe′

g = r +Φ(δβ(r)) = r + δT (β(r))

(1)

We need to prove that α(r) = β(r) = e for all r ∈ R
+. Indeed, since Φ is an isometry,

we have that

ρ(Φ(r + δα(r)),Φ(δe)) = ρ(r + δα(r), δe).

Using the above formula, the second equations in (1) and the definition of the metric ρ
with the fact that Φ(δe) = δe′ , we get
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r

1 + r
= ρ(r + δe′ , δe′)

= ρ(Φ(r + δα(r)),Φ(δe))

= ρ(r + δα(r), δe)

= sup
t∈X

|r + δα(r)(t)− δe(t)|

1 + |r + δα(r)(t)− δe(t)|
.

≥
r + δα(r)(e)

1 + r + δα(r)(e)

A simple computation of the above inequality, gives that δα(r)(e) ≤ 0 i.e. d(α(r), e) ≤ 0.
In other word, we have that α(r) = e for all r ∈ R

+. On the other hand, using the first
equation of (1), we get that β(r) = e for all r ∈ R

+. It follows from the equation (1)
that Φ(r + δe) = r + δe′ for all r ∈ R

+. Now, it is easy to see that for all r ∈ R+ and
all x ∈ X we have

r + δx = (r + δe)⊕ δx.

It follows that

Φ(r + δx) = Φ(r + δe)⊕ Φ(δx)

= (r + δe′)⊕ δT (x)

= r + δT (x)

Since T is isometric, we obtain that Φ(r + δx) = r + δT (x) = r + δx ◦ T
−1.

Now, we prove the part (3). Let f ∈ Lip1+(X) and r ∈ R
+. It is easy to see that

f+r = f⊕(r+δe). So, using the part (2), we obtain that Φ(f+r) = Φ(f)⊕Φ(r+δe) =
Φ(f)⊕ (r + δe′) = Φ(f) + r.

Lemma 2. Let (X, d) be an invariant metric group. Let f ∈ Lip1+(X). Then, for all
x ∈ X and all positive real number a such that a ≥ f(x), we have that

f(x) = (inf(δe, a)⊕ f)(x).

Proof. Let x ∈ X and a ≥ 0 such that f(x) ≤ a. We have that

(inf(δe, a)⊕ f)(x) = inf
t∈X

{inf(d(xt−1, e), a) + f(t)}

= inf
t∈X

{f(t) + inf(d(t, x), a)}

= min{ inf
t∈X/d(t,x)≤a

{f(t) + inf(d(t, x), a)};

inf
t∈X/d(t,x)≥a

{f(t) + inf(d(t, x), a)}}

= min{ inf
t/d(t,x)≤a

{f(t) + d(t, x)}, inf
t/d(t,x)≥a

{f(t) + a}}.
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Since f is 1-Lipschitz we have that f(x) = inft/d(t,x)≤a{f(t) + d(t, x)}. It follows
that

(inf(δe, a)⊕ f)(x) = min{f(x), inf
t/d(t,x)≥a

{f(t)}+ a}

= f(x).

Lemma 3. Let (X, d) be an invariant metric group. Then, the following assertions
hold.

(1) for each f ∈ Lip1+(X) and for each bounded function h ∈ Lip1+(X), the function
f ⊕ h ∈ Lip1+(X) is bounded.

(2) Let f, g ∈ Lip1+(X), then the following assertions are equivalent.
(a) f ≤ g
(b) h⊕ f ≤ h⊕ g, for all function h ∈ Lip1+(X) which is bounded.

Proof. (1) Since 0 ≤ f ⊕ h(x) ≤ f(e) + h(x) for all x ∈ X and since h is bounded, it
follows that f ⊕ h is bounded. On the other hand, f ⊕ h ∈ Lip1+(X) since Lip1+(X) is
a monoide.

(2) The part (a) =⇒ (b) is easy. Let us prove the part (b) =⇒ (a). Indeed, let
x ∈ X and chose a positive real number a ≥ max(f(x), g(x)). Set h := inf(δe, a). It
is clear that h ∈ Lip1+(X) and is bounded. So, from the hypothesis (b) we have that
(inf(δe, a)⊕ f) ≤ (inf(δe, a)⊕ g). Using Lemme 2, we obtain that f(x) ≤ g(x).

Lemma 4. Let A be a nonempty set and f, g : A −→ R be two functions. Then, the
following assertions are equivalent.

(1) supx∈A |f(x)− g(x)| < +∞.

(2) supx∈A
|f(x)−g(x)|

1+|f(x)−g(x)| < 1.

Proof. Suppose that (1) hold. Using [Lemma 1., [1]], we have that supx∈A
|f(x)−g(x)|

1+|f(x)−g(x)| =
supx∈A |f(x)−g(x)|

1+supx∈A |f(x)−g(x)| < 1. Now, suppose that (2) holds. Set α = supx∈A
|f(x)−g(x)|

1+|f(x)−g(x)| < 1.

Then, we obtain that |f(x)−g(x)| ≤ α
1−α , for all x ∈ A. This implies that supx∈A |f(x)−

g(x)| < +∞.

Lemma 5. Let (X, d) and (Y, d′) be two invariant complete metric groups. Let

Φ : (Lip1+(X), ρ) −→ (Lip1+(Y ), ρ)

be an isometric isomorphism of monoids. Then, for all f, g ∈ Lip1+(X), we have

f ≤ g ⇐⇒ Φ(f) ≤ Φ(g).

Proof. The proof is divided on two cases.
Case1: (The case where f and g are bounded.) Let f, g ∈ Lip1+(X) be bounded

functions. In this case we have supx∈X |f(x) − g(x)| < +∞, so using Lemma 4 and
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the fact that Φ is isometric, we get also that supy∈Y |Φ(f)(y)−Φ(g)(y)| < +∞. Using
[Lemma 1. [1]] and the fact that Φ is isometric, we obtain that

supy∈Y |Φ(f)(y)− Φ(g)(y)|

1 + supy∈Y |Φ(f)(y)− Φ(g)(y)|
=

supx∈X |f(x)− g(x)|

1 + supx∈X |f(x)− g(x)|
.

This implies that

sup
y∈Y

|Φ(f)(y)− Φ(g)(y)| = sup
x∈X

|f(x)− g(x)|.

Set r := supy∈Y |Φ(f)(y) − Φ(g)(y)| = supx∈X |f(x) − g(x)| < +∞. By applying the
above arguments to f + r and g which are bounded, we also get that

sup
y∈Y

|Φ(f + r)(y)− Φ(g)(y)| = sup
x∈X

|(f + r)(x)− g(x)|.

Using the fact that Φ(f + r) = Φ(f) + r (by Lemma 1) and the choice of the number
r, we get that

sup
x∈X

{Φ(f)(x)− Φ(g)(x) + r} = sup
x∈X

{f(x)− g(x) + r}

which implies that

sup
y∈Y

{Φ(f)(y)− Φ(g)(y)} = sup
x∈X

{f(x)− g(x)}.

It follows that f ≤ g ⇐⇒ Φ(f) ≤ Φ(g). Replacing Φ by Φ−1 we also have k ≤ l ⇐⇒
Φ−1(k) ≤ Φ−1(l), for all bounded functions k, l ∈ Lip1+(Y ).

Case2: (The general case.) First, note that for each bounded function k ∈ Lip1+(Y ),
we have that Φ−1(k) ∈ Lip1+(X) is bounded. Indeed, there exists r ∈ R

+ such that
0 ≤ k ≤ r. Using the above case, we get that Φ−1(0) ≤ Φ−1(k) ≤ Φ−1(r). This shows
that Φ−1(k) is bounded, since Φ−1(0) = 0 and Φ−1(r) = r by Lemma 1.

Now, let f, g ∈ Lip1+(X) be two functions such that f ≤ g. Let k ∈ Lip1+(Y ) be
any bounded function. It follows that f ⊕ Φ−1(k) ≤ g ⊕ Φ−1(k). From the part (1) of
Lemma 3, we have that f ⊕Φ−1(k), g⊕Φ−1(k) ∈ Lip1+(X) are bounded. Using Case1.,
we get that Φ(f ⊕ Φ−1(k)) ≤ Φ(g ⊕ Φ−1(k)). Since Φ is a morphism, we have that
Φ(f)⊕ k ≤ Φ(g) ⊕ k, which implies that Φ(f) ≤ Φ(g) by using the part (2) of Lemma
3. The converse is true by changing Φ by Φ−1.

Lemma 6. Let (X, d) and (Y, d′) be two invariant metric groups and let Φ be a monoid
isomorphism Φ : (Lip1+(X),⊕, ρ) −→ (Lip1+(Y ),⊕, ρ). Then, the following assertions
are equivalent.

(1) for all f, g ∈ Lip1+(X), we have that (f ≤ g ⇐⇒ Φ(f) ≤ Φ(g)).
(2) for all f ′, g′ ∈ Lip1+(Y ), we have that (f ′ ≤ g′ ⇐⇒ Φ−1(f ′) ≤ Φ−1(g′)).
(3) for all familly (fi)i∈I ⊂ Lip1+(X), where I is any nonempty set, we have

Φ(infi∈I fi) = infi∈I Φ(fi).
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Proof. The part (1) ⇐⇒ (2) is clear. Let us prove (1) =⇒ (3). Let (fi)i∈I ⊂ Lip1+(X),
where I is any nonempty set. First, it is easy to see that the infinimum of a nonempty
familly of nonnegative and 1-Lipschitz functions is also nonnegative and 1-Lipschitz
function. So, inf i∈I fi ∈ Lip1+(X). For all i ∈ I, we have that inf i∈I fi ≤ fi, which
implies by hypothesis that Φ(inf i∈I fi) ≤ Φ(fi) for all i ∈ I. Consequently we have
that Φ(infi∈I fi) ≤ infi∈I Φ(fi). On the other hand, since inf i∈I Φ(fi) ≤ Φ(fi) for all
i ∈ I, using (2), we have that Φ−1(inf i∈I Φ(fi)) ≤ fi, for all i ∈ I. It follows that,
Φ−1(inf i∈I Φ(fi)) ≤ inf i∈I fi. Using (1), we obtain that infi∈I Φ(fi) ≤ Φ(infi∈I fi).
Hence, infi∈I Φ(fi) = Φ(inf i∈I fi). Now, let us prove that (3) =⇒ (1). First, let us
show that from (3) we also have that Φ−1(inf i∈I gi) = inf i∈I Φ

−1(gi), where I is a
nonempty set and gi ∈ Lip1+(Y ) for all i ∈ I. Indeed, since Φ is bijective, there exists
(fi)i∈I ⊂ Lip1+(X) such that gi = Φ(fi) for all i ∈ I. Thus, inf i∈I gi = infi∈I Φ(fi) =
Φ(infi∈I fi) = Φ(inf i∈I Φ

−1(gi)), which implies that Φ−1(inf i∈I gi) = infi∈I Φ
−1(gi).

Now, let f, g ∈ Lip1+(X). We have that f ≤ g ⇐⇒ f = inf(f, g), so if f ≤ g then Φ(f) =
Φ(inf(f, g)) = inf(Φ(f),Φ(g)). This implies that Φ(f) ≤ Φ(g). Conversely, if Φ(f) ≤
Φ(g) then Φ(f) = inf(Φ(f),Φ(g)) and so f = Φ−1(Φ(f)) = Φ−1(inf(Φ(f),Φ(g))) =
inf(Φ−1(Φ(f)),Φ−1(Φ(g))) = inf(f, g). This implies that f ≤ g.

1.2 Proof of the main result.

Now, we give the proof of the main result.

Proof of Theorem 1. We know from [Lemma 3. , [1]] that the map

χX : (Lip1+(X),⊕, ρ) → (Lip1+(X),⊕, ρ)

f 7→ f

is an isometric isomorphism of monoids, where f denotes the unique 1-Lipschitz ex-
tention of f to X. Let us define the map Φ : (Lip1+(X),⊕, ρ) −→ (Lip1+(Y ),⊕, ρ) by
Φ := χY ◦Φ ◦ χ−1

X . Then, Φ is an isometric isomorphism of monoids.
(1) =⇒ (2). Since Lip1+(X) is a monoid having δe : X ∋ x 7→ d(x, e) as identity

element, we have that f = δe ⊕ f for all f ∈ Lip1+(X). Thus, f = inft∈X{f(t) + δt}

for all f ∈ Lip1+(X). Using Lemma 6 together with Lemma 5, we have that for all
f ∈ Lip1+(X), Φ(f) = Φ(inft∈X{f(t) + δt}) = inft∈X Φ(f(t) + δt). Using Lemma

1, there exists an isometric isomorphism of groups T : (X, d) −→ (Y , d′) such that
Φ(f(t)+δt) = f(t)+δT (t), for all t ∈ X . Thus, we get that Φ(f) = inft∈X{f(t)+δT (t)}.

Equivalently, for all y ∈ Y , we have

Φ(f)(y) = inf
t∈X

{f(t) + δT (t)(y)}

= inf
t∈X

{f(t) + d′(y, T (t))}

= inf
t∈X

{f(t) + d(T−1(y), t)}

= (δe ⊕ f)(T−1(y))

= f(T−1(y))

= f ◦ T−1(y).
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From the formulas Φ = χ−1
Y ◦Φ◦χX , we get that Φ(f) = (f ◦T−1)|Y for all f ∈ Lip1+(X).

(2) =⇒ (1). If T : (X, d) −→ (Y , d′) is an isometric isomorphism of groups, then
clearly the map Φ defined by Φ(f) := f ◦ T−1 for all f ∈ Lip1+(X), gives an isometric
isomorphism from (Lip1+(X),⊕, ρ) onto (Lip1+(Y ),⊕, ρ). Thus, the map Φ := χ−1

Y ◦Φ ◦
χX gives an isometric isomorphism from (Lip1+(X),⊕, ρ) onto (Lip1+(Y ),⊕, ρ). Now, it
clear that Φ(f) = (f ◦ T−1)|Y for all f ∈ Lip1+(X).

Remark 1. (1) The description of all isomorphisms seems to be more complicated than
the representations of the isometric isomorphisms. Here is two examples of isomor-
phisms which are not isometric.

(a) The map Φ : Lip1+(X) −→ Lip1+(X) defined by Φ(f) = f + infX(f) for all
f ∈ Lip1+(X), is an isomorphism of monoids which respect the order but is not isometric
for ρ (the proof is similar to the proof of [Theorem 7., [2]]. Note that we always have
infX(f ⊕ g) = infX(f) + infY (g)).

(b) The map Φ : Lip1+(R) −→ Lip1+(R) defined by Φ(f)(x) = f(x+ infX(f)) for
all f ∈ Lip1+(R) and all x ∈ R, is an isomorphism but not isometric for ρ.

(2) Following the proof of Theorem 1 and changing "1-Lipschitz function" by "1-
Lipschitz and convex function", we get a positive answer to the problem 2. in [2].

2 The group of units.

In order that the inf-convolution of two functions f and g takes finit values i.e f ⊕ g >
−∞, we need to assume that f and g are bound from below. Since, we work with
Lipschitz maps, for simplicity, we assume in this section, that (X, d) is a bounded
invariant metric group. By Lip10(X) we denote the set of all 1-Lipschitz map f from X
into R such that infX(f) = 0. By Lip1(X) (resp. Lip(X), ) we denote the set of all
1-Lipschitz map (resp. the set of all Lipchitz map) defined from X to R. We have that

Lip10(X) ⊂ Lip1+(X) ⊂ Lip1(X) ⊂ Lip(X).

Proposition 1. Let (X, d) be a bounded invariant metric (abelian) group. Then, the
sets Lip10(X), Lip1+(X) and Lip1(X) are (abelian) monoids having δe as identity element
and Lip(X) is a (abelian) semigroup.

Proof. The proof is similar to [Proposition 1., [1]].

Note that since (X, d) is bounded, each function f ∈ Lip1(X) (resp. f ∈ Lip(X))
is dounded and so d∞(f, g) := supx∈X |f(x)− g(x)| < +∞ for all f, g ∈ Lip1(X) (resp.
f, g ∈ Lip(X)). In this case, from [Lemma 1., [1]], we have that

ρ =
d∞

1 + d∞

on Lip(X). We also consider the following metric:

θ∞(f, g) := d∞(f − inf
X
(f), g − inf

X
(g)) + | inf

X
(f)− inf

X
(g)|, ∀f, g ∈ Lip(X).
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Proposition 2. Let (X, d) be a bounded invariant metric group. Then, the following
map

τ : (Lip1(X), θ∞) −→ (Lip10(X)× R, d∞ + |.|)

f 7→ (f − inf
X
(f), inf

X
(f)).

is an isomeric isomorphism of monoids, where Lip1+(X)×R is equiped with the operation
⊕ defined by (f, c)⊕(f ′, c′) := (f ⊕ f ′, c+ c′)..

Proof. Clearly, (Lip1+(X) × R,⊕) is a monoid having (δe, 0) as identity element, since
(Lip1+(X),⊕) is a monoid having δe as identity element. It is also clear that τ is a
monoid isomorphism. Now, τ is isometric by the defintion of θ∞. It follows that τ is
an isometric isomorphism,

The following proposition gives an alternative way to consider the group completion
of invariant metric groups. Recall that if (M, ·) is a monoid having eM as identity
element, the group of units of M is the set

U(M) := {m ∈ M/ ∃m′ ∈ M : m ·m′ = m′ ·m = eM}.

The symbol ∼= means isometrically isomorphic as groups. We give below an analogue
to [Corollary 1., [1]], for each of the spaces Lip10(X), Lip1(X) and Lip(X). Note that
in the part (1) of the following proposition as in [Corollary 1.,[1]], we do not need to
assume that X is bounded.

Proposition 3. Let (X, d) be a bounded invariant metric group. Then, we have that
(1) (U(Lip10(X)), d∞) = (U(Lip1+(X)), d∞) ∼= (X, d),
(2) (U(Lip1(X)), θ∞) ∼= (X × R, d+ |.|).
(3) The group U(Lip1(X)) is the maximal subgroup of the semigroup Lip(X), having

δe as identity element.

Proof. (1) The fact that (U(Lip1+(X)), d∞) ∼= (X, d), is given in [Corollary 1., [1]]. On

the other hand, since, G(X) ⊂ U(Lip10(X)) ⊂ U(Lip1+(X)) and since G(X) ∼= X (see
[Lemma 2., [1]]) we get that U(Lip10(X)) = U(Lip1+(X)). Let us prove the part (2).
Indeed, since τ (Proposition 2) is an isometric isomorphism, it sends isometrically the
group of units onto the group of units. Hence, from Proposition 2 we have

(U(Lip1(X)),⊕, θ∞) ∼= (U(Lip10(X)× R),⊕, d∞ + |.|).

Since U(Lip10(X)×R) = U(Lip10(X))×R, the conclusion follows from the first part. For
the part (3), let f be an element of the maximal group having δe as identity element.
Then, f ⊕ δe = f and so it follows that f is 1-lipschitz map i.e f ∈ Lip1(X). Thus,
f ∈ U(Lip1(X)).

3 The algebraic case.

Let G be an algebraic group having e as identity element and let f : G −→ R
+ be a

function, we denote Osc(f) := supt,t′∈G |f(t)−f(t′)| and by G∗ we denote the following
set :

G∗ := {f : G −→ R
+/Osc(f) ≤ 1}.
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Note that the set G∗ is juste the set Lip1+(G) where (G, disc) is equipped with the
discrete metric ”disc”, which is an invariant complete metric. So, (G∗,⊕) is a monoid
having δe as identity element, where δe(·) := disc(·, e) i.e. δe(e) = 0 and δe(t) = 1 for all
t 6= e. Observe also that two algebraic groups G and G′ are isomorphic if and only they
are isometrically isomorphic when equipped respectively with the discrete metric. Thus,
we obtain that the algebraic group structure of any group G is completely determined
by the algebraic monoid structure of (G∗,⊕).

Corollary 2. Let G and G′ be two groups. Then the following assertions are equivalent.
(1) the groups G and G′ are isomorphic
(2) the monoids (G∗,⊕, ρ) and (G′∗,⊕, ρ) are isometrically isomorphic
(3) the monoids (G∗,⊕, d∞) and (G′∗,⊕, d∞) are isometrically isomorphic (where

d∞(f, g) := supt∈G |f(t)− g(t)| < +∞, for all f, g ∈ G∗)
(4) the monoids (G∗,⊕) and (G′∗,⊕) are isomorphic.

Moreover, Φ : (G∗,⊕, ρ) −→ (G′∗,⊕, ρ) (resp. Φ : (G∗,⊕, d∞) −→ (G′∗,⊕, d∞))
is an isometric isomorphism of monoids, if and only if there exists an isomorphism of
groups T : G −→ G′ such that Φ(f) = f ◦ T−1 for all f ∈ G∗.

Proof. Since G∗ = Lip1+(G), where G is equipped with the discrete metric and since G
and G′ are isomorphic if and only if (G, disc) and (G′, disc) are isometrically isomorphic,
then the part (1) ⇐⇒ (2) is a direct consequence of Theorem 1. The part (2) =⇒ (3),
follows from the fact that ρ = d∞

1+d∞
by using [Lemma 1, [1]]. The part (3) =⇒ (4) is

trivial. Let us prove (4) =⇒ (1). Since an isomorphism of monoids sends the group
of unit onto the group of unit, and since the group of unit of G∗ (resp. of G′∗) is
isomorphic to G (resp. to G′) by Proposition 3, we get that G and G′ are isomorphic.
The last assertion is given by Theorem 1.

As mentioned in Remark 1, if T : G −→ G′ is an isomorphism, then Φ(f) :=
f ◦ T−1 + infG(f) for all f ∈ G∗ gives an isomorphism of monoids between G∗ and G′∗

which is not isometric.

In the following exemple, we treat the case where G is a finite group.

Examples 1. Let n ≥ 1 and (Rn, d∞) the usual n-dimentional space equiped with the
max-distance. The subsets Mn

+ and Mn of Rn are defined as follows

Mn
+ := {(xk)1≤k≤n ∈ R

n
+/|xi − xj | ≤ 1, 1 ≤ i, j ≤ n}.

Mn := {(xk)1≤k≤n ∈ R
n/|xi − xj | ≤ 1, 1 ≤ i, j ≤ n}.

Let G := {g1, g2, ...gn}, be a group of cardinal n, where g1 is the identity of G. We
define the law ⋆G on R

n depending on G as follows: for all x = (xk)k, y = (yk)k ∈ R
n,

x ⋆G y = (zk)1≤k≤n,

where for each 1 ≤ k ≤ n,

zk := min{xi + yj/gi · gj = gk, 1 ≤ i, j ≤ n}.
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Then,
(1) The set (Rn, ⋆G) has a semigroup structure (and is abelian if G is abelian).
(2) The sets (Mn

+, ⋆G) and (Mn, ⋆G) are monoids having e = (0, 1, 1, 1, ..., 1) as
identity element.

(3) Let G and G′ be two groups of cardinal n. The monoids (Mn
+, ⋆G) and (Mn

+, ⋆G′)
are isomorphic if and only if the groups G and G′ are isomorphic.

(4) We have that
U(Mn

+) ≃ G,

U(Mn) ≃ G×R.

Moreover, the maximal subgroup of (Rn, ⋆G) having e as identity element is isomorphic
to the group G× R.

(5) We have that
Ism(Mn

+) ≃ Aut(G).

The properties (1) − (5) follows easily from the results of this note. It sufficies to
see that the space R

n can be identified to the space Lip(G) of all real-valued Lipschitz
map on (G, disc). Indeed, the map

i : Lip(G) −→ R
n

f 7→ (f(g1), ..., f(gn))

is a bijective map. Then, we observe that the operation ⋆G on R
n is just the operation

⊕ on Lip(G). On the other hand, the subset Mn
+ is identified to Lip1+(G) and Mn is

identified to Lip1(G).
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