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Abstract. The Krein-Milman theorem states that every convex compact subset of
a Hausdorff locally convex topological space, is the closed convex hull of its extreme
points. We prove that, in the metrizable case the situation is rather better. Indeed, we
introduce a concept of "affine exposed points" which is intermediate between the notions
of exposed points and extreme points. Then, we prove that every convex compact
metrizable subset of a Hausdorff locally convex topological space, is the closed convex
hull of its affine exposed points. This fails in general for not metrizable compact convex
subsets.
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1 Introduction.

Let X be a Hausdorff locally convex topological space (in short l.c.t space, "Hausdorff"
will be implicit), X∗ denotes its topological dual. Let C be a convex subset of X, we
say that a point x ∈ C is an extreme point of C, and write x ∈ Ext(C), if and only if
the following implication holds:

y, z ∈ C; x =
y + z

2
=⇒ x = y = z.

We say that a point x ∈ C is an exposed point of C, and write x ∈ Exp(C), if there
exists some continuous linear functional x∗ ∈ X∗ which attains its strict maximum over
C at x. Such a functional is then said to expose C at x. Note that there can be many
exposing functionals for x. It is well know that, when it exists, an exposed point is an
extreme point i.e. Exp(C) ⊆ Ext(C), but this inclusion is strict in general. If X is a
dual space, a weak∗ exposed point x (we write x ∈ w∗Exp(C)) is to simply an exposed
point by a continuous functional from the predual. We denote by conv(A) the closed
convex hull of a subset A of X.
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The result in what is known as the Krein-Milman theorem (1940, [10]), asserts that
if K is a convex compact subset of an l.c.t space, then K is the closed convex hull of
its extreme points,

K = conv(Ext(K)).

The Krein-Milman theorem has a partial converse known as Milman’s theorem which
states that if A is a subset of K and the closed convex hull of A is all of K, then every
extreme point of K belongs to the closure of A,

(A ⊂ K; K = conv(A)) =⇒ Ext(K) ⊂ A.

It is natural to ask what are the spaces in which, every convex compact subset is the
closed convex hull of its exposed points. This probleme was solved by Klee in [9] (1958)
for normed vector space, where he proved that in normed vector spaces, every convex
compact subset is the closed convex hull of its exposed points. But, Klee [9] pointed
the fact that outside the normed space, some condition rather close to normability
may be needed and that the metrizability is inadequate even in the separable case,
mentioning the following counterexample: in the locally convex separable metrizable
space Rℵ0 , the cube [−1, 1]ℵ0 has no exposed points. We solve this problem positively
in the metrizable case, by introducing a new concept of remarkable points called "affine
exposed points" that is intermediate between the notions of exposed points and extreme
points (See Definition 1 bellow). Our result is then the following (Theorem 3): Every
convex compact metrizable subset of a l.c.t space, is the closed convex hull of its affine
exposed points.

Let K be a convex subset of a vector space. A function ϕ : K → R is said to be
affine if for all x, y ∈ K and 0 ≤ λ ≤ 1, ϕ(λx + (1 − λ)y) = λϕ(x) + (1 − λ)ϕ(y). The
set of all continuous real-valued affine functions on a convex subset K of a topological
vector space will be denoted by Aff(K).

Definition 1. Let K be a convex subset of a l.c.t space X. We say that a point x ∈ K
is an affine exposed point of K, and write x ∈ AExp(K), if there exists some affine
continuous map τ ∈ Aff(K) which attains its strict maximum over K at x.

Clearly, Exp(K) ⊆ AExp(K) ⊆ Ext(K), but these inclusions are strict in general.
For example, the cube [−1, 1]ℵ0 has affine exposed points but is without exposed points.
A comparison of these three sets will be given in Section 2.

Let us mention here that the concept of affine exposed points seems to be very
natural and usefull. Indeed, we prove in Lemma 4 that if K is a convex compact
metrizable subset of an l.c.t space, then a point Q of the dual unit ball B(Aff(K))∗ of
Aff(K) is weak∗ exposed if and only if there exists an affine exposed point k of K such
that Q = ±δk, where δk : ϕ 7→ ϕ(k) for all ϕ ∈ Aff(K)..

We also introduce the following class of l.c.t spaces.

Definition 2. An l.c.t space X is said to have the "Affine Exposed Points Property"
(in short A.E.P.P.) if and only if every convex compact subset of X is the closed convex
hull of its affine exposed points.
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Let us define

Ξ := {X l.c.t space in which every compact subset is metrizable}.

The class Ξ, has been actively studied in the 80′s years by several authors. This class
contains of course all metrizable l.c.t spaces, in particular Fréchet spaces but is much
larger. For several examples, we refer to [5] and references therein.

As a consequence, we get that every l.c.t space X from the class Ξ, has the A.E.P.P.
In particular the space Rℵ0 has the A.E.P.P. Examples of l.c.t spaces having the A.E.P.P.
who do not belong to the class Ξ are given in Remark 1. For an example of an l.c.t space
without A.E.P.P. we mention the l.c.t space ((l1(Γ))∗,Weak∗), where Γ is uncountable
(See Example D) in Section 2). Thus, spaces having A.E.P.P. encompasses a broad
class of spaces and it would be interesting to better know their properties.

The result mentioned in the abstract is based on a new version of variational principle
(See Lemma 2 and Theorem 2) which also gives a new information about the set of "ill-
posed problems" on compact metric sets (See Section 3). It is shown that the set of
"ill-posed problems" in the compact metric framework, can be more smaller than be of
the first Baire category, given by Deville, Godefroy and Zizler [6], or to be σ-porous,
given by Deville and Rivalski [7].

This paper is organized as follows. In Section 2 we give some examples showing that
in general, exposed points, affine exposed points and etreme points are distinct notions
of remarkable points. Section 3 is devoted to the proof of a new version of varitional
principle in the compact metric framework (Lemma 2 and Theorem 2). In Section 4,
we give the proof of the result mentioned in the abstract (Theorem 3) and gives some
consequences.

2 Examples.

Let K be a convex subset of a l.c.t space X. It is easy to see that we always have

Exp(K) ⊆ AExp(K) ⊆ Ext(K).

This section is devoted to give examples showing that these inclusions are strict in
general. We also give an example of l.c.t space without the A.E.P.P.

If (E, ‖.‖) is a Banach space and E∗ is its topological dual, the spaceX = (E∗,Weak∗)
is a l.c.t space. It is well know that in this case we have that X∗ = E (See for instance
[Corollary 224., [8]]). In this case, the exposed points of a subset of X are called weak∗

exposed points and the closure of a subset coincides with the weak∗ closure. Recall that
a Banach space E is said to be a Gâteaux differentiability space (GDS) iff each convex
continuous real valued function defined on E is Gâteaux differentiable at each point of
a dense subset. In [11], Phelps proved the following result.

Theorem 1. ([Theorem 6.2., [11] p. 95]) A Banach space E is a GDS if and only if
every weak∗ compact convex subset of E∗ is the weak∗ closed convex hull of its weak∗

exposed points.
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Remark 1. Since the exposed points are in particular affine exposed points, it follows
from the above theorem that the space (E∗,Weak∗) has the A.E.P.P. whenever E is a
GDS. However, if E is a non separable GDS, the dual unit ball is a weak∗ compact not
metrizable subset. Thus, the space (E∗,Weak∗) has the A.E.P.P. but (E∗,Weak∗) /∈ Ξ,
whenever E is a nonseparable GDS (For example the nonseparable Hilbert spaces).

A) Example where Exp(K)  AExp(K). Here we take the example given in the
introduction. The cube [−1, 1]ℵ0 in the locally convex separable metrizable space Rℵ0 ,
has no exposed points however the set of its affine exposed points is nonempty. In-
deed, for example the point b = (1, 1, 1, ...) is affine exposed in [−1, 1]ℵ0 by the affine
continuous map defined on [−1, 1]ℵ0 by ϕ : (x1, x2, x3, ...) 7→

∑

n≥0 2
−nxn.

A slight change of the set [−1, 1]ℵ0 , gives also an example where ∅ 6= Exp(K) 6=
AExp(K). For example we can take the convex compact set K := {ta + (1 − t)k/t ∈
[0, 1], k ∈ [−1, 1]ℵ0}, where a = (−2, 0, 0, 0, ...). In this case the point a is exposed by
the continuous functional x∗ : (x1, x2, x3, ...) 7→ −x1, but the point b = (1, 1, 1, ...) is
not an exposed point. However, b is affine exposed by the affine continuous map defined
on K by ϕ : (x1, x2, x3, ...) 7→

∑

n≥0 2
−nxn.

B) Example where Exp(K) = AExp(K). Let BE∗ be the closed unit ball of the
dual of a Banach space E. It is well know from a Banach-Dieudonné result that the
space Aff(BE∗), (where BE∗ is equiped with the weak∗ topology) coincides with the
set {x̂|BE∗

+ r : x ∈ E, r ∈ R} where x̂ denotes the map x∗ 7→ x∗(x) for all x∗ ∈ E∗.
Thus, in this case the weak∗ exposed points (equivalent to the concept of exposed points
in the l.c.t space (E∗,Weak∗)) and the affine exposed points of BE∗ coincides.

C) Example where AExp(K)  Ext(K). It suffices here to take K = BE∗ where
E = l1(Γ) (Γ is uncountable set) which is not a GDS. Indeed, we know that the norm ‖.‖1
is nowhere Gâteaux differentiable (See Example 1.4 (b) p. 3 in [11]). So from [Proposi-
tion 6.9., [11]] we get that the dual unit ball B(l1(Γ))∗ in the l.c.t space ((l1(Γ))∗,Weak∗),
has no (weak∗) exposed points. It follows from Example B) that AExp(B(l1(Γ))∗) = ∅.
However, we have that Ext(B(l1(Γ))∗) 6= ∅ by the Krein-Milman theorem.

D) Example of l.c.t space without the A.E.P.P. The above discussion shows that
the l.c.t space ((l1(Γ))∗,Weak∗) does not have the A.E.P.P. More generally, the l.c.t
space (E∗,Weak∗) does not have the A.E.P.P. whenever E is a Banach space equipped
with a nowhere Gâteaux differentiable norm.

3 Variational principle.

Let (M,d) be a complete metric space and f :M :−→ R ∪ {+∞} be an extended real-
valued function which is bounded from below and proper. By the term proper we mean
that the domain of f , dom(f) := {x ∈ M/f(x) < +∞} is non-empty. We say that f
has a strong minimum at x if infX f = f(x) and d(xn, x) → 0 whenever f(xn) → f(x).
The problem to find a strong minimum for f , is called Tykhonov well-posed-problem.
Let (Cb(M), ‖.‖∞) be the space of all real-valued bounded and continuous functions on
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M , equipped with the sup-norm and (Y, ‖.‖Y ) is a Banach space included in Cb(M).
Let

N(f) = {ϕ ∈ Y : f − ϕ does not have a strong minimum on M} .

The set N(f) is called the set of "ill-posed problems". The problem is to find conditions
on Y under which the set N(f) is a "small" set. In [6], Deville, Godefroy and Zizler
proved that the set N(f) is of the first Baire category in Y , and in [7], Deville and
Rivalski generalize the result of Deville-Godefroy-Zizler, where they showed that the
set N(f) is σ-porous in Y, whenever f is bounded from below, proper and lower semi
continuous and Y satisfy the following conditions:

(i) ‖g‖ ≥ ‖g‖∞, for all g ∈ Y ;
(ii) for every natural number n, there exists a positive constant Mn such that for any

point x ∈ M there exists a function hn : X −→ [0; 1], such that hn ∈ Y , ‖hn‖ ≤ Mn,
hn(x) = 1 and diam(supp(h)) < 1

n
.

We prove in Lemma 2 that when we assume that (K, d) is compact metric space
and (Y, ‖.‖Y ) is a separable Banach space included in Cb(K), the set N(f) can be more
smaller than σ-porous. In fact we prove that in this situation, the set N(f) can be
covered by countably many d.c. hypersurface (See the definitions below). Moreover,
Y does not need to satisfies the condition (ii), which is crucial in the proofs of Deville-
Rivalski and Deville-Godefroy-Zizler. This will allow us to consider the space Y =
Aff(K) which not satisfies the condition (ii) (K is here a convex compact subset of an
l.c.t space). Our version of variational principle applied to the space of affine maps is
the key for proving that the set of affine exposed points of a convex compact metrizable
subset of an l.c.t space, is a nonempty set. The proof of our version of variational
principle in the compact framework, is based on the use of a differentiability result of
convex continuous functions on a separable Banach spaces due to Zajicek [13] and a non
convex analogue to Fenchel duality introduced in [2]. This paper is also the occasion to
give new applications to this duality.

We recall from [14] the following definitions.

Definition 3. Let Y , Z be Banach spaces, C ⊂ Y an open convex set, and F : C → Z
a continuous mapping. We say that F is d.c. (that is, delta-convex) if there exists a
continuous convex function f : C → R such that y∗ ◦F + f is convex whenever y∗ ∈ Y ∗,
‖y∗‖ ≤ 1.

Definition 4. Let Y be a Banach space and n ∈ N∗, 1 ≤ n < dimY . We say that A ⊂ X
is a d.c. surface of codimension n if there exist an n-dimensional linear space F ⊂ X,
its topological complement E and a d.c. (that is, delta-convex) mapping ϕ : E → F
such that A = {x+ ϕ(x) : x ∈ E}. A d.c. surface of codimension 1 will be called a d.c.
hypersurface.

In [13], Zajicek proved that in a separable Banach space, the setNG(F ) of the points
where a convex continuous function F is not Gâteaux differentiable, can be covered by
countably many d.c. hypersurface. Recall that in a separable Banach space Y , each
set N which can be covered by countably many dc hypersurface is σ-lower porous, also
σ-directionally porous; in particular it is both Aronszajn (equivalent to Gauss) null and
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Γ-null. For several properties and details about this notions of small sets we refer to
[14] and references therein.

If (Y, ‖.‖Y ) is a Banach space included in Cb(M) with ‖.‖ ≥ ‖.‖∞ and x ∈ M , we
denote by δx the evaluation map (Dirac mass) on Y at x i.e. δx : ϕ −→ ϕ(x), for all
ϕ ∈ Y . The map δx is a linear continuous functional on Y since ‖.‖ ≥ ‖.‖∞. We recall
the following definition from [2].

Definition 5. Let (M,d) be a complete metric space and (Y, ‖.‖Y ) be a Banach space
included in Cb(M) with ‖.‖ ≥ ‖.‖∞. We say that the space Y has the property PG if,
for every sequence (xn)n ⊂M , the following assertions are equivalent:

(i) the sequence (xn)n converges in (M,d),

(ii) the associated sequence of the Dirac masses (δxn
)n converges in (Y ∗,Weak∗).

The letter G in PG is justified by the fact that the Gâteaux bornology, the Gâteaux
differentiability and the weak∗ topology has some connection between them. We refer
to [2] for more details. The space Cb(M), the subspace Cu

b (M) of uniformly continuous
functions and the space Lipb(M) of all bounded and Lipschitz continuous functions
(equipped with their natural norms), satisfies the property PG for any complete metric
space (M,d) (see [Proposition 2.6, [2]]).

Now, what interests us in this paper is the property PG for separable Banach spaces
(Y, ‖.‖Y ) included in Cb(M). As we show in the following lemma, this situation holds
only when M is compact (in fact this characterizes the compact sets), but we will see in
Lemma 2 that despite this restriction, we get new informations on variational principles.

Lemma 1. Let (K, d) be a complete metric space and (Y, ‖.‖Y ) be a separable Banach
space included in Cb(K), which separate the points of K and such that ‖.‖ ≥ ‖.‖∞.
Then, the following assertions are equivalent.

(1) K is compact.
(2) Y has the property PG.

Proof. (1) =⇒ (2) Suppose that K is compact and let (xn)n be a sequence of K. If
(xn)n converge to some point x in (K, d), it is clear that (δxn

)n converge to δx for the
weak∗ topology. Suppose now that (δxn

)n converge to some point Q in Y ∗ for the weak∗

topology. We prove that the sequence (xn)n converge in (K, d). Indeed, suppose that l1
and l2 are two distinct cluster point of (xn)n. There exists two subsequences (yn)n and
(zn)n such that (yn)n converge to l1 and (zn)n converge to l2 . Since (δxn

)n converge
to Q and (Y ∗,Weak∗) is a Hausdorff space, it follows that δl1 = Q = δl2 which is a
contradiction since Y separate the points of K. So, the sequence (xn)n has a unique
cluster point, and hence it converges to some point since K is a compact metric space.

(2) =⇒ (1) Since Y is separable, by the Banach-Alaoglu theorem, the dual unit ball
BY ∗ is a compact metrizable space. Let us denotes δ(K) := {δk : k ∈ K} and consider
the map:

δ : (K, d) → (δ(K),Weak∗)

x 7→ δx

Since Y has the property PG, it follows that (δ(K),Weak∗) is a closed subspace of the
compact metrizable set (BY ∗ ,Weak∗). Therefore, (δ(K),Weak∗) is a Hausdorff compact
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space. Since Y separate the points of K, the map δ is one-to-one. Consequently,
δ : (K, d) → (δ(X),Weak∗) is a continuous and bijective map from (K, d) onto the
compact space (δ(K),Weak∗), it is then an homeomorphism which implies that (K, d)
is a compact space.

Now, we prove the following variational principle in the compact metric frameworke
which says that N(f) can be a very "small" subset.

Lemma 2. Let K be a compact metric space and (Y, ‖.‖Y ) be a separable Banach space
included in C(K) such that Y separate the points of K and satisfies ‖.‖Y ≥ ‖.‖∞. Let
f : K → R ∪ {+∞} be a proper lower semicontinuous function. Then, the set

N(f) = {ϕ ∈ Y : f − ϕ does not have a strong minimum on K}

can be covered by countably many d.c. hypersurface of Y .
This holds in particular when (Y, ‖.‖Y ) = (C(K), ‖.‖∞) or Y is any closed subspace of
C(K) which separates the points of K.

Proof. Consider the function f× defined for all ϕ ∈ Y by

f×(ϕ) := sup
x∈K

{ϕ(x) − f(x)}.

It is clear that f× is a convex 1-Lipschitz continuous function on Y . Since Y is separable
we get from [Theorem 2; [13]] that f× is Gâteaux-differentiable outside a set N(f) which
can be covered by countably many d.c hypersurface. On the other hand, combining
Lemma 1 and [Theorem 2.8., [2]] we get that f× is Gâteaux-differentiable at a point
ϕ ∈ Y if and only if f − ϕ has a strong minimum on K. Thus, the set N(f) coincide
with the set

{ϕ ∈ Y : f − ϕ does not have a strong minimum on K} .

This gives the proof.

Remark 2. A strong and strict minimum coincides for lower semi continuous functions
on a compact metric space.

We obtain the following predual version of Stegall’s variational principle.

Corollary 1. Let E be a separable Banach space and BE∗ the closed unit ball of E∗.
Let f : (BE∗ ,Weak∗) −→ R ∪ {+∞} be a proper lower semicontinuous function. Then,
the set

N(f) = {x ∈ E : f − x̂ does not have a strict minimum on BE∗}

can be covered by countably many d.c. hypersurface of E. In particular, the set of
functionals from E which weak∗ expose the closed unit ball BE∗ of E∗, has a complement
in E which can be covered by countably many d.c hypersurface.
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Proof. Since E is a separable Banach space, the closed unit ball BE∗ of E∗ is a weak∗

compact metrizable set, by the Banach-Alaoglu theorem. We conclude by applying
Lemma 2 with the compact metrizable set K = (BE∗ ,Weak∗) and the Banach space
Y = (A(BE∗), ‖.‖∞) which is isometrically isomorphic to (E, ‖.‖), where A(BE∗) :=
{x̂|BE∗

/x ∈ E} and x̂ : x∗ 7→ x∗(x) for all x∗ ∈ E∗. The second part is given by taking
f = 0.

Now, we give the main result of this section.

Theorem 2. Let K be a compact metrizable convex subset of a l.c.t space X and
f : K −→ R ∪ {+∞} be a proper lower semi-continuous function. Then the set

N(f) := {ϕ ∈ Aff(K) : f − ϕ does not have a strong minimum on K}

can be covered by countably many d.c hypersurface of (Aff(K), ‖.‖∞).

Proof. We use Lemma 2 with Y = Aff(K). Since (Aff(K), ‖.‖∞) is a closed Banach
subspace of the separable Banach space (C(K), ‖.‖∞), it is separable. On the other
hand, by the Hahn-Banach theorem, Aff(K) separate the points of K, since it contains
the set {x∗|K : x∗ ∈ X∗}. So, from Lemma 2, the set

N(f) = {ϕ ∈ Aff(K) : f − ϕ does not have a strong minimum on K}

can be covered by countably many d.c hypersurface of (Aff(K), ‖.‖∞).

Let K be a convex compact subset of an l.c.t space. Clearly, all translates of contin-
uous linear functionals are elements of Aff(K), but the converse in not true in general
(see [12] page 22.). However, we do have the following relationship.

Proposition 1. ([12], Proposition 4.5) Assume that K is a compact convex subset of
an l.c.t space X, then

L(K) :=
{

a ∈ Aff(K) : a = r + x∗|K for some x∗ ∈ X∗ and some r ∈ R
}

is dense in (Aff(K), ‖.‖∞), where ‖.‖∞ denotes the norm of uniform convergence.

As it is given in Example B) Section 2, there exists situations where the sets L(K)
and Aff(K) coincides, for instance if K = BE∗ is the dual unit ball of a Banach space.
There exist also situations, where L(K) is a very "small" subset of Aff(K). Indeed,
if K is a compact metrizable subset of a l.c.t space X, without exposed points (for
example if K = [−1, 1]ℵ0 in Rℵ0), then from Theorem 2, we get that L(K) can be
covered by countably many d.c hypersurface of (Aff(K), ‖.‖∞).

4 Affine exposed points and consequences.

Now, we give the main result of this section.
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Theorem 3. Let K be a convex compact metrizable subset of a l.c.t space X. Then,
AExp(K) 6= ∅ and K is the closed convex hull of its affine exposed points

K = conv(AExp(K)).

Moreover, the set of all affine maps which affine expose K at some point, has a com-
plement which can be covered by countably many d.c hypersurface in (Aff(K), ‖.‖∞).

Proof. From Theorem 2 (applied with f = 0), we get that the set of affine maps which
affine expose K at some point, has a complement which can be covered by countably
many d.c hypersurface in (Aff(K), ‖.‖∞), in particular AExp(K) 6= ∅. Since K is
convex and closed set, it is clear that conv(AExp(K)) ⊂ K. Now, let us prove that
K = conv(AExp(K)). Suppose towards a contradiction that there exists k0 ∈ K \
conv(AExp(K)). By the Hahn-Banach theorem, there exists x∗0 ∈ X∗ \ {0} and r ∈ R
such that

sup{x∗0(k) : k ∈ conv(AExp(K))} < r < x∗0(k0).

From Theorem 2 (applied with f = x∗0|K ∈ Aff(K)), we can find ϕ ∈ Aff(K) which

affine exposes K at some point k1 ∈ AExp(K) and such that ϕ is close (with respect to
the sup-norm) to x∗0|K in (Aff(K), ‖.‖∞). Hence, ϕ satisfies

sup{ϕ(k) : k ∈ conv(AExp(K))} < r < ϕ(k0). (1)

On the other hand

ϕ(k0) ≤ sup{ϕ(k) : k ∈ K} = ϕ(k1)

which is a contradiction with (1), since k1 ∈ AExp(K).

Note that the above theorem fails for convex compact sets which are not metrizable.
A counterexample is the closed unit ball Bl∞(Γ) in the l.c.t (l∞(Γ),Weak∗), where Γ is
an uncountable set. Indeed, in this case we have that AExp(Bl∞(Γ)) = ∅ (See Example
D) in Section 2).

Let us denote by B(Aff(K))∗ the dual unit ball of the Banach space (Aff(K), ‖.‖∞).
We give bellow the connection between the weak∗ exposed points of B(Aff(K))∗ and the
affine exposed points of K. We need the following lemma from [4].

Lemma 3. Let Z be a Banach space and h, k : Z → R be two continuous and convex
functions. Suppose that the function z → l(z) := max(h(z), k(z)) is Fréchet (respec-
tively, Gâteaux) differentiable at some point z0 ∈ Z. Then either h or k (maybe both
h and k) is Fréchet (respectively, Gâteaux) differentiable at z0 and l′(z0) = h′(z0) or
l′(z0) = k′(z0).

Proof. We give the proof for the Fréchet differentiability, the Gâteaux differentiability
is similar. Suppose without loss of generality that l(z0) = h(z0) and let us prove that h
is Fréchet differentiable at z0 and that l′(z0) = h′(z0). For each z 6= 0 we have:

0 ≤
h(z0 + z) + h(z0 − z)− 2h(z0)

‖z‖
≤
l(z0 + z) + l(z0 − z)− 2l(z0)

‖z‖
.

9



Since l is convex and Fréchet differentiable at z0, then the right-hand side in the above
inequalities, tends to 0 when z tends to 0. This implies that h is Fréchet differentiable
at z0 by the convexity of h. Now, if we denote f = h − l, then f(z0) = 0, f ≤ 0 and
f ′(z0) exists. Thus, for all z ∈ Z

f ′(z0)(z) = lim
t−→0+

1

t
(f(z0 + tz)− f(z0)) ≤ 0.

This implies that f ′(z0) = 0. Thus h′(z0) = l′(z0).

Now, we prove in the following lemma which shows that the concept of affine exposed
points is the natural concept to describe the weak∗ exposed point of the dual unit ball
B(Aff(K))∗ .

Lemma 4. Let K be a compact metrizable convex subset of a l.c.t space X. Then,the
following assertions are equivalente.

(1) A point Q ∈ B(Aff(K))∗ is a weak∗ exposed point
(2) there exists an affine exposed point k ∈ AExp(K) such that Q = ±δk.

Proof. (1) =⇒ (2). Let Q ∈ w∗Exp(B(Aff(K))∗), so there exists ϕ ∈ Aff(K) which
expose B(Aff(K))∗ at Q. It follows from [Proposition 6.9., [11]] that the norm ‖.‖∞ is
Gâteaux differentiable at ϕ with Gâteaux derivative equal to Q. On the other hand
it is clear that ‖ψ‖∞ = max(0×(ψ), 0×(−ψ)) for all ψ ∈ Aff(K), where 0×(ψ) =
supk∈K ϕ(k) for all ϕ ∈ Aff(K). Thus, from Lemma 3 we have that either ψ 7→ 0×(ψ)
or ψ 7→ 0×(−ψ) is Gâteaux differentiable at ϕ with Gâteaux derivative equal to Q.
Suppose in the first case that is the function ψ 7→ 0×(ψ) which is Gâteaux differentiable
at ϕ with Gâteaux derivative equal to Q. Thus, from Lemma 1 and [Theorem 2.8 [2]]
applied with the space Y = Aff(K) and the function f = 0, we get that there exists
k ∈ K such that ϕ has a strong maximum at k and Q = δk. Thus, in this case k is affine
exposed by ϕ and Q = δk. For the second case, where it is the function ψ 7→ 0×(−ψ)
which is Gâteaux differentiable at ϕ with Gâteaux derivative equal to Q, in a similar
way, using Lemma 1, [Theorem 2.8 [2]] and the chain rule formula we obtain that there
exists some k ∈ K such that −ϕ has a strong maximum at k (so that k is affine exposed
point) and Q = −δk.

(2) =⇒ (1). Suppose that k ∈ AExp(K). There exists ϕ ∈ Aff(K) which affine
exposes k. Thus −ϕ has a strict minimum at k, equivalent to a strong minimum at k,
since K is compact metrizable. We can find a real number r such that −(ϕ + r) has
also a strong minimum at k and such that ϕ + r > 1 on K. Hence, the function 0×

coincides with ‖.‖∞ on an open neighborhood of ϕ+ r ∈ Aff(K). Since −(ϕ+ r) has
a strong minimum at k, [Theorem 2.8 [2]] asserts that 0× and so also ‖.‖∞ is Gâteaux
differentiable at ϕ+ r with Gâteaux derivative equal to δk. It follows from [Proposition
6.9., [11]], that δk is weak∗ exposed by ϕ + r. Thus δk ∈ w∗Exp(B(Aff(K))∗). By the
symmetry of B(Aff(K))∗ , we also have that −δk ∈ w∗Exp(B(Aff(K))∗).

Corollary 2. Let K be a compact metrizable convex subset of a l.c.t space X. Then,

w∗Exp(B(Aff(K))∗) = ±δ(AExp(K)),

and
B(Aff(K))∗ = convw∗

(±δ(AExp(K))),
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where ±δ(AExp(K)) := {±δk/k ∈ AExp(K)}.

Proof. The first part is given by Lemma 4. Now, since (Aff(K), ‖.‖∞) is separable, the
weak∗ compact set (B(Aff(K))∗ ,Weak∗) is metrizable. Thus, from Theorem 3 applied
to the convex compact metrizable set (B(Aff(K))∗ ,Weak∗), shows that

B(Aff(K))∗ = convw∗

(AExp(B(Aff(K))∗)).

Since AExp(B(Aff(K))∗) and w∗Exp(B(Aff(K))∗) coincides (See Example D) in Section
2), we obtain that

B(Aff(K))∗ = convw
∗

(w∗Exp(B(Aff(K))∗)) = convw∗

(±δ(AExp(K))).

This concludes the proof.

We obtain the following corollaries.

Corollary 3. Let E be a Banach space.
(1) Let K be a convex weak∗ compact metrizable subset of E∗, then

K = convWeak
∗

(AExp(K)).

(2) Let K be a convex weak compact metrizable subset of E, then

K = conv‖.‖(AExp(K)).

Proof. Since (E∗,Weak∗) and (E,Weak) are l.c.t spaces, the part (1) is a direct conse-
quence of Theorem 3. Also from Theorem 3 we get that K = convWeak(AExp(K)). The
part (2) follows then from Mazur’s lemma on the coincidence of weak and norm closure
for convex sets.

Recall that the class Ξ consists on all l.c.t space in which every compact subset is
metrizable. We obtain immediately from Theorem 3 the following corollary.

Corollary 4. Every space from the class Ξ, has the A.E.P.P.

Examples 1. Immediate examples.
(1) Every Fréchet space has the A.E.P.P.
(2) Every convex closed and bounded subset of a Fréchet-Montel space is the closed

convex hull of its affine exposed points (in Fréchet-Montel space, any closed bounded set
is compact metrizable).

A classical example of a Fréchet-Montel space is the space C∞(Ω) of smooth func-
tions on an open set Ω in Rn. For examples of not metrizable spaces which belongs to
the class Ξ, we have for example,

Proposition 2. Let E be a separable Banach space. Then (E∗,Weak∗) and (E,Weak)
belongs to the class Ξ, but are not metrizable.

11



Proof. It is well known that the whole spaces (E∗,Weak∗) and (E,Weak) are not metriz-
able. It is also well known that a Banach space E is separable iff every compact subset
of (E∗,Weak∗) is metrizable. Thus, (E∗,Weak∗) ∈ Ξ. For the space (E,Weak), let K
be a weak compact subset of E. Since E is separable, then K is also separable. Now,
consider K as a subset of E∗∗ by the canonical embedding, we get that K is norm
separable and weak∗ compact subset of E∗∗, which implies from [Lemma 2, [3]] that K
is weak∗ metrizable in E∗∗. In other words, K is weak metrizable. Thus (E,Weak) ∈ Ξ.

Several others not trivial examples of spaces from Ξ can be found in [5].
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