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Introduction.

A subset A of a Banach space X is called limited, if every weak * null sequence (p n ) n in X * converges uniformly on A, that is,

lim n→+∞ sup x∈A | p n , x | = 0.
We know that every relatively compact subset of X is limited, but the converse is false in general. A bounded linear operator T : Y -→ X between Banach spaces Y and X is called limited, if T takes the closed unit ball B Y of Y to a limited subset of X. It is easy to see that T : Y -→ X is limited if and only if, the adjoint operator T * : X * -→ Y * takes weak * null sequence to norm null sequence. For useful properties of limited sets and limited operators we refer to [START_REF] Th | Limited sets in Banach spaces[END_REF], [START_REF] Bourgain | Limited operators and strict cosingularity[END_REF], [START_REF] Carrión | Banach spaces whose bounded sets are bounding in the bidual[END_REF] and [START_REF] Andrews | Dunford-Pettis sets in the space of Bochner integrable functions[END_REF].

We know that in a finite dimensional Banach space, the notions of Gâteaux and Fréchet differentiability coincide for convex continuous functions. In [START_REF] Borwein | On convex functions having points of Gâteaux differentiability which are not points of Féchet-differentiability[END_REF], Borwein and Fabian proved that a Banach space Y is infinite dimensional if and only if, there exists on Y functions f having points at which f is Gâteaux but not Fréchet differentiable. They also pointed in the introduction of [START_REF] Borwein | On convex functions having points of Gâteaux differentiability which are not points of Féchet-differentiability[END_REF] the observation that if the sup-norm . ∞ on c 0 is Gâteaux differentiable at some point, then it is Fréchet differentiable there. In this article we observe that this phenomenon is not just related to the sup-norm but more generally, for each convex lower semicontinuous function g : l ∞ → R ∪ {+∞}, if g is Gâteaux differentiable at some point a ∈ c 0 which is in the interior of its domain, then the restriction of g to c 0 is Fréchet differentiable at a. This hold in particular when g = (f * ) * is the Fenchel biconjugate of a convex continuous function f : c 0 → R. In fact, this phenomenon is due, (see Corollary 1 in the Appendix and the comment just before), to the fact that the canonical embedding i : c 0 -→ l ∞ is a limited operator (see the reference [START_REF] Carrión | Banach spaces whose bounded sets are bounding in the bidual[END_REF]).

The goal of this paper, is to prove the following characterization of limited operators in terms of the coincidence of Gâteaux and Fréchet differentiability of convex continuous functions.

Theorem 1. Let Y and X be two Banach spaces and T : Y -→ X be a continuous linear operator. Then, T is a limited operator if and only if, for every convex continuous function f : X -→ R and every y ∈ Y , the function

f • T is Fréchet differentiable at y ∈ Y whenever f is Gâteaux differentiable at T (y) ∈ X.
As consequence we give, in Theorem 2 below, new characterizations of infinite dimensional Banach spaces, complementing a result of Borwein and Fabian in [ [START_REF] Borwein | On convex functions having points of Gâteaux differentiability which are not points of Féchet-differentiability[END_REF], Theorem 1.].

A real valued function f on a Banach space will be called a PGNF-function (see [START_REF] Borwein | On convex functions having points of Gâteaux differentiability which are not points of Féchet-differentiability[END_REF]) if there exists a point at which f is Gâteaux but not Fréchet differentiable. A JN-sequence (due to Josefson-Nissenzweig theorem, see [ [START_REF] Diestel | Sequences and series in Banach spaces[END_REF], Chapter XII]) is a sequence (p n ) n in a dual space Y * that is weak * null and inf n p n > 0. We say that a function g on X * has a norm-strong minimum (resp. weak * -strong minimum) at p ∈ X * if g(p) = inf q∈X * g(q) and (p n ) n norm converges (resp. weak * converges) to p whenever g(p n ) -→ g(p). A norm-strong minimum and weak * -strong minimum are in particular unique.

Theorem 2. Let Y be a Banach space. Then the following assertions are equivalent.

(1) Y is infinite dimensional.

(2) There exists a JN-sequence in Y * .

(3) There exists a convex norm separable and weak * compact metrizable subset K of Y * contaning 0 and a continuous seminorm h on X * which is weak * lower semicontinuous and weak * sequentially continuous, such that the restriction h |K has a weak * -strong minimum but not norm-strong minimum at 0.

(4) There exists a Banach space X and a linear continuous non-limited operator T : Y -→ X.

(5) There exists on Y a convex continuous PGNF-function.

In Section 2 we give some preliminary results, specially the key Lemma 2. In Section 3, we give the proof of Theorem 1 (divided into two part, Theorem 3 and Theorem 4) and the proof of Theorem 2. In Section 4 we give some complementary remarks.

Preliminaries.

We recall the following classical result. Lemma 1. Let T 1 and T 2 be topologies on a set K such that

(1) K is Hausdorff with respect T 1 , (2) K is compact with respect to T 2 , ( 3 
) T 1 ⊂ T 2 . Then T 1 = T 2 . Proof. Let F ⊂ K be a T 2 -closed set. It follows that F is T 2 -compact, since K is T 2 -compact.
Let {O i : i ∈ I} be any cover of F by T 1 -open sets. Since T 1 ⊂ T 2 , then each of these sets is also T 2 -open. Hence, there exist a finite subcollection that covers F . It follows that F is T 1 -compact and therefore is T 1 -closed since T 1 is Hausdorff. This implies that T 2 ⊂ T 1 . Consequently,

T 1 = T 2 .
Now, we establish the following useful lemma. If B is a subset of a dual Banach space X * , we denote by co w * (B) the weak * closed convex hull of B. Lemma 2. Let X be a Banach space and K be a subset of X * .

(1) Suppose that K is norm separable, then there exists a sequence (x n ) n in the unit sphere S X of X which separate the points of K i.e. for all p, p ′ ∈ K, if p, x n = p ′ , x n for all n ∈ N, then p = p ′ . Consequently, if K is a weak * compact and norm separable set of X * , then the weak * topology of X * restricted to K is metrizable.

(2) Let (p n ) n be a weak * null sequence in X * . Then, the set co w * {p n : n ∈ N} is convex weak * compact and norm separable.

Proof. (1) Since K is norm separable, then K -K := {ab/(a, b) ∈ K × K} is also norm separable and so there exists a sequence (q n ) n of K -K which is dense in K -K. According to the Bishop-Phelps theorem [START_REF] Bishop | A proof that every Banach space is subreflexive[END_REF], the set D = {r ∈ X * | r attains its supremum on the sphere S X } is norm-dense in the dual X * . Thus, for each n ∈ N, there exists r n ∈ D such that q nr n < 1 1+n . For each n ∈ N, let x n ∈ S X be such that r n = r n , x n . We claim that the sequence (x n ) n separate the points of K. Indeed, let q ∈ K -K and suppose that q, x n = 0, for all n ∈ N. There exists a subsequence (q

n k ) k ⊂ K -K such that q n k -q < 1
k for all k ∈ N * and so we have

r n k -q < 1 1+n k + 1 k . It follows that r n k = r n k , x n k = r n k , x n k -q, x n k ≤ r n k -q < 1 1 + n k + 1 k . Hence, for all k ∈ N * , q ≤ q -r n k + r n k < 2( 1 1+n k + 1 k )
, which implies that q = 0, and so that (x n ) n separate the points of K. Now, suppose that K is weak * compact subset of X * . We show that the weak * topology of X * restricted to K is metrizable. Indeed, each x ∈ X determines a seminorm ν x on X * given by

ν x (p) = | p, x |, p ∈ X * .
The family of seminorms (ν x ) x∈X induces the weak * topology σ(X * , X) on X * . The subfamily (ν xn ) n also induces a topology on X * , which we will call T . Since this is a smaller family of seminorms, we have T ⊆ σ(X * , X). Suppose that p, p ′ ∈ K and ν xn (pp ′ ) = 0 for all n ∈ N. Then we have p, x n = p ′ , x n for all n ∈ N and so we have that p = p ′ since (x n ) n separates the points of K. Consequently, K is Hausdorff with respect to the topology T |K (the restriction of T to K). Thus T |K is a Hausdorff topology on K induced from a countable family of seminorms, so this topology is metrizable. More precisely, T |K is induced from the metric

d(p, p ′ ) := +∞ n=0 2 -n ν xn (p -p ′ ) 1 + ν xn (p -p ′ ) .
Then we have that K is Hausdorff with respect to T |K , and is compact with respect to σ(X * , X)

|K . Lemma 1 implies that T |K = σ(X * , X) |K . Hence σ(X * , X) |K is metrizable. (2) Let (p n ) n be a weak * null sequence in X * and set K = co w * {p n : n ∈ N}.
Clearly K is a convex and weak * compact subset of X * . According to Haydon's theorem [ [START_REF] Haydon | An extreme point criterion for separability of a dual Banach space, and a new proof of a theorem of Corson[END_REF], Theorem 3.3] the weak * compact convex set K is the norm closed convex hull of its extreme points whenever ex(K) (the set of extreme points of K) is norm separable. By the Milman theorem [[10], p.9] ex(K) ⊂ {p n : n ∈ N} w * = {p n : n ∈ N} ∪ {0} so that ex(K) is norm separable and, hence, by Haydon's theorem, K itself is weak * compact, convex, and norm separable.

The following proposition will be used in the proof of Theorem 3. Proposition 1. Let X be a Banach space and K be a weak * compact and norm separable subset of X * containing 0. Then, there exists a continuous seminorm h on X * satisfying (1) h is weak * lower semicontinuous and sequentially weak * continuous, (2) the restriction h |K of h to K has a weak * -strong minimum at 0.

Proof. Using Lemma 2, there exists a sequence (x k ) k ⊂ S X which separate the points of K. Define the function h : X * -→ R as follows:

h(x * ) = ( k≥0 2 -k ( x * , x k ) 2 ) 1 2 , ∀x * ∈ X * .
It is clear that h is a seminorm, and since h(x * ) ≤ x * for all x * ∈ X * , it is also continuous. Since h is the supremum of a sequence of weak * continuous functions, it is weak * lower semicontinuous. On the other hand, since the series k≥0 2 -k ( x * , x k ) 2 uniformly converges on bounded sets of X * and since the maps xk : x * → x * , x k are weak * continuous for all k ∈ N, then h is sequentially weak * continuous. If p ∈ K and h(p) = 0, then p, x k = 0 for all k ∈ N which implies that p = 0, since the sequence (x k ) k separate the points of K. Hence, the restriction of h to K has a unique minimum at 0. This minimum is necessarily a weak * -strong minimum since K is weak * metrizable by Lemma 2, this follows from a general fact which say that for every lower semicontinuous function on a compact metric space (K, d), a unique minimum is necessarily a strong minimum for the metric d in question.

3 Limited operators and differentiability.

Recall that the domain of a function f : X -→ R ∪ {+∞}, is the set

dom(f ) := {x ∈ X/f (x) < +∞}.
For a function f with dom(f ) = ∅, the Fenchel transform of f is defined on the dual space for all p ∈ X * by f * (p) := sup

x∈X { p, x -f (x)}.
The second transform (f * ) * is defined on the bidual X * * by the same formula. We denote by f * * , the restriction of (f * ) * to X, where X is identified to a subspace of X * * by the canonical embedding. Recall that the Fenchel theorem state that f = f * * if and only if f is convex lower semicontinuous on X.

The "if" part of Theorem 1 is given by the following theorem.

Theorem 3. Let Y and X be Banach spaces and let T : Y -→ X be a linear continuous operator. Suppose that f • T is Fréchet differentiable at y ∈ Y whenever f : X -→ R is convex continuous and Gâteaux differentiable at T (y) ∈ Y . Then T is a limited operator.

Proof. Let (p n ) n be a weak * null sequence in X * . We want to prove that

T * (p n ) Y * → 0. Set K = co w * {p n : n ∈ N}.
According to Lemma 2, K is convex weak * compact and norm separable. Using Proposition 1, there exists a continuous seminorm which is weak * lower semicontinuous and sequentially weak * continuous h : X * -→ R such that the restriction h |K of h to K has a weak * -strong minimum at 0 and in particular min K h = h(0) = 0. Since the sequence (p n ) n weak * converges to 0, it follows that lim n h(p n ) = h(0) = min K h. Thus, (p n ) n is a minimizing sequence for h |K . Set g = h + δ K , where δ K denotes the indicator function, which is equal to 0 on K and equal to +∞ otherwise. Since K is convex, weak * -closed and norm bounded, then g is a convex and weak * lower semicontinuous function with a norm bounded domain dom(g) = K. Moreover we have, (1) g(p) > 0 = g(0) = min X * (g) for all p ∈ X * \ {0}.

(2) lim n→+∞ g(p n ) = min X * (g).

Hence, there exists a convex and Lipschitz continuous function f : X -→ R such that g = f * (we can take f = g * |X ). The function f is Gâteaux differentiable at 0 with Gâteaux derivative ∇f (0) = 0, this is due to the fact that f * = g has a weak * -strong minimum at 0 (we can see [Corollary 1. [START_REF] Asplund | Gradients of convex functions[END_REF]]). Thus, from our hypothesis, f • T is Fréchet differentiable at 0 with Fréchet derivative equal to 0. It follows that (f • T ) * has a norm-strong minimum at 0 (see [Corollary 2. [START_REF] Asplund | Gradients of convex functions[END_REF]]). Now, we prove that (T * (p n )) n is a minimizing sequence for (f • T ) * , which will implies that T * (p n ) Y * → 0. Indeed, on one hand, we have 0 = min X * (g) = -g * (0) = -f (0). On the other hand we have

0 = -f (0) ≤ sup y∈Y {-f • T (y)} := (f • T ) * (0) ≤ sup x∈X {-f (x)} = f * (0) = g(0) = 0.
It follows that (f • T ) * (0) = 0. Hence, since (f • T ) * has a minimum at 0, we obtain

0 = (f • T ) * (0) ≤ (f • T ) * (T * (p n )) := sup y∈Y { T * (p n ), y -f • T (y)} = sup y∈Y { p n , T (y) -f (T (y))} ≤ sup x∈X { p n , x -f (x)} = f * (p n ) = g(p n ).
Since, g(p n ) → 0, it follows that (f • T ) * (T * (p n )) → 0 = (f • T ) * (0). In other words, (T * (p n )) n is a minimizing sequence for (f • T ) * . Since (f • T ) * has a norm-strong minimum at 0, we obtain that T * (p n ) Y * → 0, which implies that T is a limited operator.

The "only if" part of Theorem 1 is given by the following theorem.

Theorem 4. Let Y and X be two Banach spaces and T : Y -→ X be a limited operator. Let f : X -→ R ∪ {+∞}, be a convex lower semicontinuous function and let a ∈ Y such that T (a) belongs to the interior of dom(f ). Then,

f • T is Fréchet differentiable at a ∈ Y with Fréchet-derivative T * (Q) ∈ Y * , whenever f is Gâteaux differentiable at T (a) ∈ X with Gâteaux-derivative Q ∈ X * .
Proof. Since f is convexe lower semicontinuous and T (a) is in the interior of dom(f ), there exists r a > 0 and L a > 0 such that f is L a -Lipschitz continuous on the closed ball B X (T (a), r y ). It is well known that there exists a convex L a -Lipschitz continuous function fa on X such that fa = f on B X (T (a), r a ) (See for instance Lemma 2.31 [START_REF] Phelps | Convex Functions, Monotone Operators and Differentiability[END_REF]). It follows that fa

• T = f • T on B Y (a, ra T ), since T (B X (a, ra T )
) is a subset of B X (T (a), r a ) (we can assume that T = 0). Replacing f by 1 La fa , we can assume without loss of generality that f is convexe 1-Lipschitz continuous on X. It follows that dom(f * ) ⊂ B X * (the closed unit ball of X * ).

Claim. Suppose that f is Gâteaux differentiable at T (a) ∈ X with Gâteaux-derivative Q ∈ X * , then the function q → f * (q)q, T (a) has a weak * -strong minimum on B X * at Q.

Proof of the claim. See [Corollary 1. [START_REF] Asplund | Gradients of convex functions[END_REF]]. Now, suppose by contradiction that T * (Q) is not the the Fréchet derivative of f • T at a. There exist ε > 0, t n -→ 0 + and h n ∈ Y , h n Y = 1 such that for all n ∈ N * ,

f • T (a + t n h n ) -f • T (a) -T * (Q), t n h n > εt n . ( 1 
)
Let r n = t n /n for all n ∈ N * and choose p n ∈ B X * such that

f * (p n ) -p n , T (a + t n h n ) < inf p∈B X * {f * (p) -p, T (a + t n h n ) } + r n . (2) 
From ( 2) we get

f * (p n ) -p n , T (a) < inf p∈B X * {f * (p) -p, T (a) } + 2t n T + r n .
This implies that the sequence (p n ) n minimize the function q → f * (q)q, T (a) on B X * . Using the claim, the function q → f * (q)q, T (a) has a weak * -strong minimum on B X * at Q, it follows that (p n ) n weak * converges to Q and so (since T is limited) we have

T * (p n -Q) Y * -→ 0. (3) 
On the other hand, since

f (T (a + t n h n )) = f * * (T (a + t n h n )) = -inf p∈B X * {f * (p) -p, T (a + t n h n ) }, using (2) we obtain for all y ∈ Y f • T (a + t n h n ) -p n , T (a + t n h n ) < -f * (p n ) + r n ≤ f • T (y) -p n , T (y) + r n .
Replacing y by a in the above inequality we obtain

f • T (a + t n h n ) -p n , T (t n h n ) ≤ f • T (a) + r n . (4) 
Combining ( 1) and ( 4) we get

ε < p n , T (h n ) -T * (Q), h n + r n /t n = T * (p n ), h n -T * (Q), h n + 1 n ≤ T * (p n -Q) Y * + 1 n which is a contradiction with (3). Thus f •T is Fréchet differentiable at a with Fréchet derivative T * (Q).
Now, we give the proof of Theorem 2.

Proof of Theorem 2. (2) =⇒ ( 1) is well known.

(2) =⇒ (3) Let (p n ) n be a weak * null sequence in Y * such that inf n p n > 0 and set K = co w * {p n : n ∈ N}. By Lemma 2, the set K is convex norm separable and weak * compact metrizable. On the other hand, from Proposition 1, there exists a continuous seminorm h which is weak * lower semicontinuous and weak * sequentially continuous on Y * such that the restriction of h to K has a weak * -strong minimum at 0. It remains to show that 0 is not a norm-strong minimum for h |K . Indeed, since (p n ) n is weak * null and h is weak * sequentially continuous, then lim n h(p n ) = h(0) = min K h. So (p n ) n is a minimizing sequence for h |K which not converges to 0 since inf n p n > 0. Hence, 0 is not a norm-strong minimum for h |K .

(3) =⇒ (2) Since 0 is not a norm-strong minimum for the restriction h |K , there exists a sequence (p n ) n that minimize h on K but p n 0. Since h |K has a weak * -strong minimum at 0, it follows that (p n ) n weak * converges to 0. Hence, (p n ) n weak * converges to 0 but p n 0. Thus, there exists a JN-sequence in Y * .

(2) =⇒ (4) This part is given by taking X = Y and T = I the identity map. Indeed, there exists a sequence (p n ) n which weak * converges to 0 but inf n I * (p n ) = inf n p n > 0. So I cannot be a limited operator.

(4) =⇒ [START_REF] Borwein | On convex functions having points of Gâteaux differentiability which are not points of Féchet-differentiability[END_REF]. Indeed, if there exists a Banach space X and a non-limited operator T : Y -→ X, by using Theorem 1, there exists a convex continuous function f :

X -→ R and a point y ∈ Y such that f is Gâteaux differentiable at T (y) ∈ X but f • T is not Fréchet differentiable at y. So f • T is Gâteaux but not Fréchet differentiable at y. Hence, f • T is a convex continuous PGNF-function on Y .
(5) =⇒ (2) Let f be a PGNF-function on Y . We can assume without loss of generality that f is Gâteaux differentiable at 0 with Gâteaux-derivative equal to 0, but f is not Fréchet differentiable at 0. It follows from classical duality result (see Corollary 1. and Corollary 2. in [START_REF] Asplund | Gradients of convex functions[END_REF]) that f * has a weak * -strong minimum but not norm-strong minimum at 0. Since 0 is not a norm-strong minimum for f * , there exists a sequence (p n ) n ∈ X * minimizing f * such that p n 0. On the other hand, since f * has a weak * -strong minimum at 0, and (p n ) n minimize f * , we have that (p n ) n weak * converges to 0. Thus, (p n ) n weak * converges to 0 but p n 0. Hence, there exists a JN-sequence.

Canonical construction of PGNF-function.

There exist different way to build a PGNFfunction in infinite dimentional Banach spaces. We can find examples of such constructions in [START_REF] Borwein | On convex functions having points of Gâteaux differentiability which are not points of Féchet-differentiability[END_REF]. We present below a different method for constructing a PGNF-function on a Banach space X canonically from a JN-sequence. Given a JN-sequence (p n ) n ⊂ X * , we set K = co w * {p n : n ∈ N}. Using Lemma 2, there exists a sequence (x n ) n ∈ S X which separates the points of K, and as in the proof of Proposition 1, there exist a continuous seminorm h which is weak * lower semicontinuous and weak * sequentially continuous such that h |K has a weak * -strong minimum at 0. The function h is given explicitly as follows

h(x * ) = ( n≥0 2 -n ( x * , x n ) 2 ) 1 2 , ∀x * ∈ X * .
Since (p n ) n weak * converges to 0, it follows that (p n ) is a minimizing sequence for h |K . Since (p n ) n is a JN-sequence, it follows that 0 is not a norm-strong minimum for h |K . Define the function f by f

(x) = (h + δ K ) * (x), ∀x ∈ X,
where δ K denotes the indicator function, which is equal to 0 on K and equal to +∞ otherwise and where for each x ∈ X, we denote by x ∈ X * * the linear map x * → x * , x for all x * ∈ X * . Then f is convex Lipschitz continuous, Gâteaux differentiable at 0 (since h + δ K has a weak *strong minimum) but not Fréchet differentiable at 0 (because 0 is not a norm-strong minimum for h + δ K ).

4 Appendix.

There exists a class of Banach spaces (E, . E ) such that the canonical embedding i : E -→ E * * is a limited operator. This class contains in particular the space c 0 and any closed subspace F of c 0 (This class is also stable by product and quotient. For more information see [START_REF] Carrión | Banach spaces whose bounded sets are bounding in the bidual[END_REF]). In this setting, Theorem 4 gives immediately the following corollary.

Corollary 1. Suppose that the canonical embedding i : E -→ E * * is a limited operator. Let g : E * * -→ R ∪ {+∞} be a convex lower semicontinuous function. Suppose that x ∈ E belongs to the interior of dom(g) and that g is Gâteaux differentiable at x ∈ E (we use the identification i(x) = x), then the restriction of g to E is Fréchet differentiable at x. In particular, if f : E -→ R ∪ {+∞} is convex lower semicontinuous function, x ∈ E belongs to the interior of dom((f * ) * ) and (f * ) * is Gâteaux differentiable at x, then f is Fréchet differentiable at x.

We obtain the following corollary by combining Proposition 2 and a delicate result due to Zajicek (see [Theorem 2; [START_REF] Zajicek | On the differentiation of convex functions in finite and infinite dimensional spaces[END_REF]]), which say that in a separable Banach space, the set of the points where a convex continuous function is not Gâteaux differentiable, can be covered by countably many d.c (that is, delta-convex) hypersurf ace. Recall that in a separable Banach space Y , each set A which can be covered by countably many d.c hypersurf ace is σ-lower porous, also σ-directionally porous; in particular it is both Aronszajn (equivalent to Gauss) null and Γ-null. For details about this notions of small sets we refer to [START_REF] Zajicek | On sigma-porous sets in abstract spaces[END_REF] and references therein. Note that a limited set in a separable Banach space is relatively compact [START_REF] Bourgain | Limited operators and strict cosingularity[END_REF].

Proposition 2. Let Y and X be Banach spaces and T : Y -→ X be a limited operator with a dense range. Let f : X -→ R be a convex continuous function. Then f • T is Gâteaux differentiable at a ∈ Y if and only if, f • T is Fréchet differentiable at a ∈ Y .

Proof. Suppose that f • T is Gâteaux differentiable at a ∈ Y . It follows that f is Gâteaux differentiable at T (a) with respect to the direction T (Y ) which is dense in X. It follows (from a classical fact on locally Lipschitz continuous functions) that f is Gâteaux differentiable at T (a) on X. So by Theorem 4, f • T is Fréchet differentiable at a ∈ Y . The converse is always true.

Corollary 2. Let Y be a separable Banach space, X be a Banach spaces and T : Y -→ X be a compact operator with a dense range. Let f : X -→ R, be a convex and continuous function. Then, the set of all points at which f • T is not Fréchet differentiable can be covered by countably many d.c hypersurf ace.

( 1 )

 1 =⇒ (2) is the deeper Josefson-Nissenzweig theorem [[7], Chapter XII].