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Abstract. Given Banach spaces Y and X and a linear continuous operator T : Y −→
X, we prove that T is a limited operator if and only if, for every convex continuous
function f : X −→ R and every point y ∈ Y , f ◦ T is Fréchet-differentiable at y ∈ Y
whenever f is Gâteaux-differentiable at T (y) ∈ X. Some consequences will be given.
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1 Introduction.

A subset A of a Banach space X is called limited, if every weak∗ null sequence (pn)n in
X∗ converges uniformly on A, that is,

lim
n→+∞

sup
x∈A

|〈pn, x〉| = 0.

We know that every relatively compact subset of X is limited, but the converse is false
in general. A bounded linear operator T : Y −→ X between Banach spaces Y and X is
called limited, if T takes the closed unit ball BY of Y to a limited subset of X. It is easy
to see that T : Y −→ X is limited if and only if, the adjoint operator T ∗ : X∗ −→ Y ∗

takes weak∗ null sequence to norm null sequence. For some useful properties of limited
sets and limited operators we refer to [6], [8] and [1].

We know that in finite dimensional Banach space, the notion of Gâteaux and Fréchet
differentiability coincide for convex continuous functions. In [7], Borwein and Fabian
proved that a Banach space Y is infinite dimensional if and only if, there exists on
Y functions f having points at which f is Gateaux but not Fréchet differentiable (see
Theorem 2 below). They also pointed in the introduction of [7] the observation that
if the sup-norm ‖.‖∞ on c0 is Gâteaux-differentiable at some point, then it is Fréchet-
differentiable there. We observe in this article, that this phenomenon is not just about
the sup-norm but more generally, for each convex continuos function f : c0 → R, if the
Fenchel biconjugate (f∗)∗ : l∞ −→ R is Gâteaux-differentiable at some point a ∈ c0
which is in the interior of its domain, then f is Fréchet-differentiable at a. In fact,
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this phenomenon is due, as we will prove it, to the fact that the canonical embedding
i : c0 −→ l∞ is a limited operator (see corollary 1 and the comment just before). The
goal of this paper, is to prove the following characterization of limited operators in
terms of the coincidence of Gâteaux and Fréchet differentiability of convex continuous
functions.

Theorem 1. Let Y and X be two Banach spaces and T : Y −→ X be a continuous
linear operator. Then, T is a limited operator if and only if, for all convex continuous
function f : X −→ R and all y ∈ Y , f ◦ T is Fréchet-differentiable at y ∈ Y whenever
f is Gâteaux-differentiable at T (y) ∈ X.

Some consequences will be deducted from this theorem. In particular, we complete
the result of Borwein and Fabian in [7] by adding the part (2) in Theorem 2.

A real valued function f on a Banach space will be called a PGNF-function if there
exists a point at which f is Gâteaux but not Fréchet differentiable. A JN-sequence (due
to Josefson-Nissenzweig theorem) is a sequence (pn)n in a dual space Y ∗ that is weak∗

null and infn ‖pn‖ > 0.

Theorem 2. Let Y be a Banach space. Then the following assertions are equivalent.
(1) There exists on Y a convex continuous PGNF-function.
(2) There exists a Banach space X and a linear continuous nonlimited operator

T : Y −→ X.
(3) There exists a linear continuous noncompact operator T : Y −→ c0.
(4) There exists on Y ∗ an equivalent dual norm which is not weak* Kadec.
(5) There exists a JN-sequence in Y ∗.
(6) There exists on Y an equivalent PGNF-norm.
(7) Y is infinite dimensional.

2 Limited operators and differentiability.

The proof of Theorem 1 is juste the combinaison of Theorem 3 and Theorem 4 which
are given after two lemmas. The proof of Theorem 2 is given after Theorem 4.

Recall that the domain of a function f : X −→ R ∪ {+∞}, is the set

dom(f) := {x ∈ X/f(x) < +∞}.

For a function f with dom(f) 6= ∅, the Fenchel-Moreau transform of f is defined on the
dual space for all p ∈ X∗ by

f∗(p) := sup
x∈X

{〈p, x〉 − f(x)}.

The second transform (f∗)∗ is defined on the bidual X∗∗ by the same formula. We
denote by f∗∗, the restriction of (f∗)∗ to X, where X is identified to a subspace of X∗∗

by the canonical embedding. Recall that the Fenchel theorem state that f = f∗∗ if and
only if f is convex lower semicontinuous on X.
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Definition 1. Let X be a Banach space and g : X∗ −→ R ∪ {+∞} be a function such
that dom(g) 6= ∅.

(1) We say that g has a strong minimum at p ∈ X∗ if g(p) = infq∈X∗ g(q) and (pn)n
norm converge to p whenever g(pn) −→ g(p).

(2) We say that g has a weak∗-strong minimum at p ∈ X∗ if g(p) = infq∈X∗ g(q)
and (pn)n weak∗ converge to p whenever g(pn) −→ g(p).

A strong (resp. weak∗-strong) minimum is in particular unique.

Lemma 1. Let X be a Banach space and (pn)n be a weak∗ null sequence in X∗. Then,
there exists a sequence (xn)n in the sphere SX of X such that, for all p ∈ cow

∗

{pn : n ∈
N} \ {0} there exists n ∈ N such that 〈p, xn〉 6= 0.

Proof. Since (pn)n weak∗ converge to 0 it is norm bounded by the Banach-Steinauss
theorem. Thus, by setting K = cow

∗

{pn : n ∈ N}, clearly K is a weak∗ compact
subset of X∗. According to Haydon’s theorem [[13], Theorem 3.3] the weak∗ compact
convex set K is the norm closed convex hull of its extreme points whenever ex(K)
(the set of extreme points of K) is norm separable. By the Milman theorem [[15], p.9]

ex(K) ⊂ {pn : n ∈ N}
w∗

= {pn : n ∈ N} ∪ {0} so that ex(K) is norm separable and,
hence, by Haydon’s theorem, K itself is weak∗ compact, convex, and norm separable. It

follows that there exists a sequence (qn)n of K such that K = {qn : n ∈ N}
‖.‖

. According
to the Bishop-Phelps theorem [5], the set

D = {r ∈ X∗ | r attains its supremum on the sphere SX}

is norm-dense in the dual X∗. Thus, for each n ∈ N, there exists rn ∈ D such that
‖qn − rn‖ < 1

n+1
. For each n ∈ N, let xn ∈ SX be such that ‖rn‖ = 〈rn, xn〉. We

claim that the sequence (xn)n satisfies our goal. Indeed, let p ∈ K = {qn : n ∈ N} and
suppose that 〈p, xn〉 = 0, for all n ∈ N. For all k ∈ N∗, there exists qnk

such that
‖p− qnk

‖ < 1

k
and so ‖p− rnk

‖ < 1

k
+ 1

nk
. It follows that

‖rnk
‖ = 〈rnk

, xnk
〉

= 〈rnk
, xnk

〉 − 〈p, xnk
〉

≤ ‖p − rnk
‖

<
1

k
+

1

nk

.

Hence, for all k ∈ N∗, ‖p‖ ≤ ‖p−rnk
‖+‖rnk

‖ < 2( 1
k
+ 1

nk
), which implies that p = 0.

Remark 1. We can deduce from the above lemma an analogous for weak null sequence
(xn)n in a Banach space X. It suffices to consider (xn)n as a sequence of the bidual
X∗∗ and use Lemma 1.

Lemma 2. Let X be a Banach space and (pn)n be a weak∗ null sequence in X∗. Set
K = cow

∗

{pn : n ∈ N}. Then, there exists a convex and weak∗ lower semicontinuous
function g : X∗ −→ R ∪ {+∞} with a norm bounded domain dom(g) = K, such that

(1) g(p) > 0 = g(0) = minX∗(g) for all p ∈ X∗ \ {0}.
(2) limn→+∞ g(pn) = minX∗(g).
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Proof. From Lemme 1, there exists a sequence (xn)n of X such that ‖xn‖ = 1 for all
n ∈ N, satisfying, for all p ∈ K \ {0} there exists n ∈ N such that 〈p, xn〉 6= 0. Set

g(p) =
∑

k≥0

2−k(〈p, xk〉)
2 + δK ,

where δK denotes the indicator function, which is equal to 0 on K and equal to +∞
otherwise. The function g is well defined, non-negative convex and weak∗ lower semi-
continuous with dom(g) = K. If g(p) = 0, then 〈p, xk〉 = 0 for all k ∈ N which implies
that p = 0. Hence, g has a unique minimum at 0. On the other hand, since the series∑

k≥0
2−k(〈p, xk〉)

2 converge uniformly on the closed ball BX∗ ⊇ K and since (pn)n
weak∗ converge to 0, it follows that limn→+∞ g(pn) = 0 = minX∗(g)..

Remark 2. Analogously to the lemma 2, using Remark 1, for each weak nul sequence
(xn)n in a Banach space X, there exists a convex lower semicontinuous function f :
X −→ R ∪ {+∞} with domain dom(f) = cow{xn : n ∈ N} = co‖.‖{xn : n ∈ N} (by
Mazur’s lemma) such that f has a unique minimum at 0 and (xn)n minimize f .

The "if" part of Theorem 1 is given by the following theorem.

Theorem 3. Let Y and X be Banach spaces and let T : Y −→ X be a linear continuous
operator. Suppose that f ◦ T is Fréchet-differentiable at y ∈ Y whenever f : X −→ R

is convex continuous and f ◦ T is Gâteaux-differentiable at y ∈ Y . Then T is a limited
operator.

Proof. Let (pn)n be a weak∗ null sequence in X∗. We want to prove that ‖T ∗(pn)‖Y ∗ →
0. This is trivial if pn = 0 for all n ∈ N. Suppose that there exists n ∈ N such that
pn 6= 0, in this case we have

K := cow
∗

{pn : n ∈ N} ! {0}.

From Lemma 2, there exists a convex and weak∗ lower semicontinuous function g with
a norm bounded domain K, such that

(1) g(p) > 0 = g(0) = minX∗(g) for all p ∈ X∗ \ {0}.
(2) limn→+∞ g(pn) = minX∗(g).
Thus, there exists a convex and Lipschitz continuous function f : X −→ R such

that g = f∗ (we can take f = g∗|X). Moreover, the function f is Gâteaux-differentiable

at 0 with derivative ∇f(0) = 0, this is due to the fact that f∗ = g has a unique
minimum at 0. Thus, from our hypothesis, f ◦ T is Fréchet-differentiable at 0 with
Fréchet derivative equal to 0. Thus, (f ◦T )∗ has a strong minimum at 0 (see [Corollary
2. [2]]). Now, we prove that (T ∗(pn))n minimize (f ◦T )∗. Indeed, on one hand, we have
0 = minX∗(g) = −g∗(0) = −f∗∗(0) = −f(0). On the other hand we have

0 = −f(0) ≤ sup
y∈Y

{−f ◦ T (y)} := (f ◦ T )∗(0)

≤ sup
x∈X

{−f(x)}

= f∗(0)

= g(0)

= 0.
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It follows that (f ◦ T )∗(0) = 0. On the other hand

0 = (f ◦ T )∗(0) ≤ (f ◦ T )∗(T ∗(pn)) := sup
y∈Y

{〈T ∗(pn), y〉 − f ◦ T (y)}

= sup
y∈Y

{〈pn, T (y)〉 − f(T (y))}

≤ sup
x∈X

{〈pn, x〉 − f(x)}

= f∗(pn)

= g(pn).

Since, g(pn) → 0, it follows that (f ◦ T )∗(T ∗(pn)) → 0 = (f ◦ T )∗(0). In other words,
the sequence (T ∗(pn))n minimize (f ◦ T )∗. Since (f ◦ T )∗ has a strong minimum at 0,
it follows that ‖T ∗(pn)‖Y ∗ → 0, which implies that T is a limited operator.

The "only if" part of Theorem 1 is given by the following theorem.

Theorem 4. Let Y and X be two Banach spaces and T : Y −→ X be a limited operator.
Let f : X −→ R ∪ {+∞}, be a convex lower semicontinuous function and let a ∈ Y
such that T (a) belongs to the interior of dom(f). Then, f ◦ T is Fréchet-differentiable
at a ∈ Y with Fréchet-derivative T ∗(Q) ∈ Y ∗, whenever f is Gâteaux-differentiable at
T (a) ∈ X with Gâteaux-derivative Q ∈ X∗.

Proof. Since f is convexe lower semicontinuous and T (a) is in the interior of dom(f),
there exists ra > 0 and La > 0 such that f is La-Lipschitz continuous on the closed
ball BX(T (a), ry). It is well known that there exists a convex La-Lipschitz continuous
function f̃a on X such that f̃a = f on BX(T (a), ra) (See for instance Lemma 2.31
[14]). It follows that f̃a ◦ T = f ◦ T on BY (a,

ra
‖T‖ ), since T (BX(a, ra

‖T‖ )) is a subset of

BX(T (a), ra). Replacing f by 1

La
f̃a, we can assume without loss of generality that f is

convexe 1-Lipschitz continuous on X. It follows that dom(f∗) ⊂ BX∗ .

Claim. The function q 7→ f∗(q)− 〈q, T (a)〉 has a weak∗-strong minimum at Q.

Proof of the claim. Let εn −→ 0+ and (pn)n ⊂ BX∗ such that

f∗(pn)− 〈pn, T (a)〉 < inf
p∈BX∗

{f∗(p)− 〈p, T (a)〉} + εn. (1)

From (1) and the fact that f(T (y)) = f∗∗(T (y)) for all y ∈ Y , we get for all n ∈ N and
all x ∈ X

f(T (a))− 〈pn, T (a)〉 = − inf
p∈BX∗

{f∗(p)− 〈p, T (a)〉} − 〈pn, T (a)〉 (2)

< −f∗(pn) + εn

≤ f(x)− 〈pn, x〉+ εn

We claim that (pn)n weak∗ converge to Q. Suppose that the contrary hold, there exist
h ∈ X such that (〈pn, h〉)n does not converge to 〈Q,h〉 in R. So for some subsequence
(pnk

)k and r > 0 we have, for all k ∈ N
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〈pnk
, h〉 − 〈Q,h〉 > r (3)

Let tnk
= 2εnk

/r, using (2) with x = T (a) + tnk
h and (3) we obtain,

f(T (a) + tnk
h)− f(T (a))− 〈Q, tnk

h〉 ≥ 〈pnk
, tnk

h〉 − 〈Q, tnk
h〉 − εn

> tnk
r − εn

= tnk
r/2.

Consequently, f is not Gâteaux-differentiable at T (a) which is a contradiction. Hence,
(pn)n weak∗ converge to Q. Since f∗ is weak∗ lower semicontinuous on X∗, using
(1) we obtain that the function q 7→ f∗(q) − 〈q, T (a)〉 has a minimum at Q ∈ BX∗ .
This minimum is a weak∗-strong minimum since each sequence (pn)n that minimize
q 7→ f∗(q)− 〈q, T (a)〉, weak∗ converge to Q. This end the proof of the claim.

Now, suppose by contradiction that T ∗(Q) is not the the Fréchet derivative of f ◦T
at a. There exist ε > 0, tn −→ 0+ and hn ∈ Y , ‖hn‖Y = 1 such that for all n ∈ N∗,

f ◦ T (a+ tnhn)− f ◦ T (a)− 〈T ∗(Q), tnhn〉 > εtn (4)

Let rn = tn/n for all n ∈ N∗ and choose pn ∈ BX∗ such that

f∗(pn)− 〈pn, T (a+ tnhn)〉 < inf
p∈BX∗

{f∗(p)− 〈p, T (a+ tnhn)〉} + rn (5)

From (5) we get

f∗(pn)− 〈pn, T (a)〉 < inf
p∈BX∗

{f∗(p)− 〈p, T (a)〉} + 2tn‖T‖+ rn

This implies that the sequence (pn)n minimize the function q 7→ f∗(q)−〈q, T (a)〉. Since
we proved in the claim that the function q 7→ f∗(q) − 〈q, T (a)〉 has a weak∗-strong
minimum on BX∗ at Q, it follows that (pn)n weak∗ converge to Q and so (since T is
limited) we have

‖T ∗(pn −Q)‖Y ∗ −→ 0. (6)

On the other hand, since f(T (a + tnhn)) = f∗∗(T (a + tnhn)) = − infp∈BX∗
{f∗(p) −

〈p, T (a+ tnhn)〉}, using (5) we obtain for all y ∈ Y

f ◦ T (a+ tnhn)− 〈pn, T (a+ tnhn)〉 < −f∗(pn) + rn

≤ f ◦ T (y)− 〈pn, T (y)〉 + rn.

Replacing y by a in the above inequality we obtain

f ◦ T (a+ tnhn)− 〈pn, T (tnhn)〉 ≤ f ◦ T (a) + rn. (7)
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Combining (4) and (7) we get

ε < 〈pn, T (hn)〉 − 〈T ∗(Q), hn〉+ rn/tn

= 〈T ∗(pn), hn〉 − 〈T ∗(Q), hn〉+
1

n

≤ ‖T ∗(pn −Q)‖Y ∗ +
1

n

which is a contradiction with (6). Thus f ◦T is Fréchet-differentiable at a with Fréchet
derivative T ∗(Q).

We give now the proof of Theorem 2.

Proof of Theorem 2. The equivalences (1) ⇔ (3) ⇔ (4) ⇔ (5) ⇔ (6) ⇔ (7) are given in
[7]. The part (5) =⇒ (2) is given by taking X = Y and T = I the identity map. Indeed,
there exists a sequence (pn)n that weak∗ converge to 0 but infn ‖I

∗(pn)‖ = infn ‖pn‖ >
0. So I cannot be a limited operator. Now we prove (2) =⇒ (1). Indeed, from Theorem
1, since T : Y −→ X is a non limited operator, there exists a convex continuous function
f : X −→ R and a point y ∈ Y such that f is Gâteaux-differentiable at T (y) ∈ X but
f ◦T is not Fréchet-differentiable at y. So f ◦T is Gâteaux but not Fréchet-differentiable
at y. Hence, f ◦ T is a convex continuous PGNF-function on Y .

There exists a class of Banach spaces (E, ‖.‖E) such that the canonical embedding
i : E −→ E∗∗ is a limited operator. This class contain in particular the space c0 and
any closed subspace F of c0 (This class is also stable by product and quotient. For
more informations see [8]). In this setting, Theorem 4 gives immediately the following
corollary.

Corollary 1. Suppose that the canonical embedding i : E −→ E∗∗ is a limited operator.
Let f : E −→ R ∪ {+∞} be a convex lower semicontinuous function. Suppose that
x ∈ E belongs to the interior of dom((f∗)∗) and that (f∗)∗ is Gâteaux-differentiable at
x (we use the identification i(x) = x), then f is Fréchet-differentiable at x.

Proposition 1. Let Y and X be Banach spaces and T : Y −→ X be a limited operator
with a dense range. Let f : X −→ R be a convex continuous function. Then f ◦ T is
Gâteaux-differentiable at a ∈ Y if and only if, f ◦ T is Fréchet-differentiable at a ∈ Y .

Proof. Suppose that f ◦ T is Gâteaux-differentiable at a ∈ Y . It follows that f is
Gâteaux-differentiable at T (a) with respect to the direction T (Y ) which is dense in
X. It follows (from a classical fact on locally Lipschitz continuous functions) that f is
Gâteaux-differentiable at T (a) on X. So by Theorem 4, f ◦ T is Fréchet-differentiable
at a ∈ Y . The converse is always true.

We obtain the following corollary by combining Proposition 1 and a delicate result
due to Zajicek (see [Theorem 2; [17]]), which say that in a separable Banach space, the
set of the points where a convex continuous function is not Gâteaux-differentiable, can
be covered by countably many d.c (that is, delta-convex) hypersurface. Recall that
in a separable Banach space Y , each set A which can be coved by countably many d.c
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hypersurface is σ-lower porous, also σ-directionally porous; in particular it is both
Aronszajn (equivalent to Gauss) null and Γ-null. For details about this notions of small
sets we refer to [18] and references therein. Note that a limited set in a separable Banach
space is relatively compact [6].

Corollary 2. Let Y be a separable Banach space, X be a Banach spaces and T :
Y −→ X be a compact operator with a dense range. Let f : X −→ R, be a convex
and continuous function. Then, the set of all points at which f ◦ T is not Fréchet-
differentiable can be covred by countably many d.c hypersurface.

References

[1] K. T. Andrews, Dunford-Pettis sets in the space of Bochner integrable functions,
Math. Ann. 241, (1979), 35-41.

[2] E. Asplund and R. T. Rockafellar. Gradients of convex functions. Trans. Amer.
Math. Soc. , 139:443-467, 1969

[3] M. Bachir and G. Lancien, On the composition of differentiable functions, Cana-
dian Bull. of Math., 46(4), 2003, 481-494.

[4] M. Bachir, A non convexe analogue to Fenchel duality, J. Funct. Anal. 181, (2001)
300-312.

[5] E. Bishop and R. R. Phelps A proof that every Banach space is subreflexive, Bull.
Amer. Math. Soc. 67 (1961), 97-98 .

[6] J. Bourgain and J. Diestel,Limited operators and strict cosingularity, Math. Nachr.
119 (1984) 55-58.

[7] J. M. Borwein and M. Fabian, On convex functions having points of
Gâteaux-differentiability which are not points of Féchet-differentiability. Can. J.
Math.Vol.45 (6), 1993 pp. 1121-1134.

[8] H. Carrión, P. Galindo, and M.L Lourenco Banach spaces whose bounded sets are
bounding in the bidual Annales Academiae Scientiarum Fennicae Mathematica
Volumen 31, 2006, 61-70.

[9] R. Deville and G. Godefroy and V. Zizler, A smooth variational principle with
applications to Hamilton-Jacobi equations in infinite dimensions, J. Funct. Anal.
111, (1993) 197-212.

[10] R. Deville and G. Godefroy and V. Zizler, Smoothness and Renormings in Banach
Spaces, Pitman Monographs No. 64, London: Longman, 1993.

[11] Handbook of the Geometry of Banach spaces, Vol. 1. (eds., Johnson and Linden-
strauss), North Holland, 2001.

[12] P. Habala, P. Hàjek, V. Zizler, Introduction to Banach Spaces, Lect. Notes Math.,
Matfyzpress, Charles University, Prague, 1996.

8



[13] R. Haydon, An extreme point criterion for separability of a dual Banach space,
and a new proof of a theorem of Corson, Quart. J. Math. Oxford Ser. 27 (1976),
379-385.

[14] R. R. Phelps, Convex Functions, Monotone Operators and Differentiability. Lec-
ture Notes in Mathematics 1364, (1993). Springer-Verlag, Berlin.

[15] R. R. Phelps, Lectures on Chaquet’s theorem, Van Nostrand, Princeton, N. J.,
1966.

[16] Pitt, H.R.: A note on bilinear forms. J. London Math. Soc. 11, 174-180 (1936)

[17] L. Zajicek, On the differentiation of convex functions in finite and infinite dimen-
sional spaces, Czechoslovak Math. J. 29(104) (1979), no. 3, 340-348.

[18] L. Zajicek, On sigma-porous sets in abstract spaces, Abstract and Applied Anal-
ysis, vol. 2005, issue 5, pp. 509-534,

9


