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Abstract

This article proposes to improve Apache Hadoop scheduling through the usage of context-awareness. Apache Hadoop is the

most popular implementation of the MapReduce paradigm for distributed computing, but its design doesn’t adapt automatically

to computing nodes’ context and capabilities. By introducing context-awareness into Hadoop, we intent to dynamically adapt its

scheduling to the execution environment. This is a necessary feature in the context of pervasive grids, which are heterogeneous,

dynamic and shared environments. The solution has been incorporated into Hadoop and evaluated through controlled experi-

ments. The experiments demonstrate that context-awareness provides comparative performance gains, especially when part of the

resources disappear during execution.
c© 2015 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the Conference Program Chairs.
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1. Introduction

Apache Hadoop is a framework for distributed and parallel computing, implementing the MapReduce program-

ming paradigm, which aims at processing big data sets1. Hadoop is designed to scale up from a single server to

thousands of machines, each offering local computation and storage.

Without specific configuration by the administrator, Apache Hadoop supposes the use of dedicated homogeneous

clusters for executing MapReduce applications. As the overall performance depends on the task scheduling, Hadoop

performance may be seriously impacted when running on heterogeneous and dynamic environments, for which it was

not designed for.
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This is an especial concern when deploying Hadoop over pervasive grids. Pervasive grids are an interesting alterna-

tive to costly dedicated clusters, as the acquisition and maintenance of a dedicated cluster remain high and dissuasive

for many organizations. According to Parashar and Pierson2, pervasive grids represent the extreme generalization

of the grid concept, in which the resources are pervasive. Pervasive grids propose using resources embedded in

pervasive environments in order to perform computing tasks in a distributed way. Concretely, they can be seen as

computing grids formed by existing resources (desktop machines, spare servers, etc.) that occasionally contribute to

the computing grid power. These resources are inherently heterogeneous and potentially mobiles, coming in and out

the grid dynamically. Knowing that, in essence, pervasive grids are heterogeneous, dynamic, shared and distributed

environments, its efficient management becomes a very complex task3. Task scheduling is thus severely affected by

the management of the environment complexity.

Many works have proposed to improve the adaptability of the Hadoop framework on environments that diverge

from the initial supposition, each having their own proposal and objectives4,5,6,7. The PER-MARE project8, in which

this work was developed, aims at adapting Hadoop to pervasive environments9.

Indeed, Hadoop is based on static configuration files and the current versions do not adapt well to resources vari-

ations over the time. In addition, the installation procedures force the administrator to manually define the charac-

teristics of each potential resource, such as the memory and the number of cores of each machine, which is a hard

task in a heterogeneous environment. All these factors prevent deploying Hadoop on more volatile environments.

The PER-MARE project aims at the improvement of Hadoop so that it could adapt itself to the execution context and

therefore be deployed over pervasive grids.

In order to adapt Hadoop to a pervasive grid environment, supporting context-awareness is essential. Context-

aware is the capacity of an application or software to detect and respond to environment changes10. A context-aware

system is able to adapt its operations to current state without human intervention, therefore improving the system’s

usability and efficiency11. In pervasive grids, the scheduling is a task that may be benefited in context-aware systems,

collecting data about the grid resources and making decisions based on the data collected.

This work focuses on our developments to introduce context-awareness capabilities on Hadoop task scheduling

mechanisms. Through a context collection procedure and minimal changes on Hadoop’s resource manager, we are

able to update the information about the availability of resources in each node of the grid and then influence the

scheduler tasks assignments.

The rest of the paper is organized as follows: Section 2 presents Apache Hadoop architecture and scheduling

mechanisms. Section 3 discusses related work, focusing on context-awareness and on other works that try to im-

prove Hadoop schedulers. Section 4 presents our proposal of context-aware scheduling, while Section 5 presents the

experiments conducted and the achieved results. We finally conclude this paper in Section 6.

2. About Hadoop Scheduling

The Apache Hadoop framework is organized in a master and slave architecture, with two main services: storage

(HDFS) and processing (YARN). Both services have their own master and slave components, as presented on Fig.

1. It is possible to see the NameNode and ResourceManager services, which are the masters of the HDFS and

YARN respectively, and their slave counterparts, the DataNode and NodeManager. It is also possible to note the

ApplicationMaster, the component responsible for internal application (job) management, or simply task scheduling.

While ResourceManager is the component responsible for job scheduling. Each node also runs a set of Containers,

where the execution of Map and Reduce tasks takes place.

2.1. Hadoop Schedulers

Concerning job scheduling, Hadoop offers several options. The simplest scheduler, called Hadoop Internal Sched-

uler, processes all jobs in arrival order (FIFO). This scheduler has a good performance in dedicated clusters where the

competition for resources is not a problem. Another scheduler available is the Fair Scheduler, mainly used to compute

batches of small jobs. It uses a two level scheduling to fairly distribute the resources12.

The third scheduler available is the Capacity Scheduler. The CapacityScheduler is designed to run Hadoop MapRe-

duce as a shared, multi-tenant cluster in an operator-friendly manner while maximizing the throughput and the uti-
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Fig. 1. General Apache Hadoop architecture

lization of the cluster while running Map-Reduce applications. The CapacityScheduler is designed to allow sharing

a large cluster while giving each organization a minimum capacity guarantee. The central idea is that the available

resources in the Hadoop MapReduce cluster are partitioned among multiple organizations that collectively fund the

cluster based on computing needs. There is an added benefit that an organization can access any excess capacity not

being used by the others users. This provides elasticity for the organizations in a cost-effective manner12.

The existence of these schedulers allows a flexible management of the framework. Despite that, the available

schedulers neither detect nor react to the dynamicity and heterogeneity of the computing environment, a typical

concern on pervasive grids.

3. Related Work

Over the years, different works proposed improvements to the scheduler mechanisms from Hadoop in order to

respond to specific needs. These contributions may be divided as proposals of new scheduling methods or proposals

of improvement for the resource distribution.

Works like4,13 and6 assume that most applications are periodic and demand similar resources regarding CPU,

memory, network and hard disk load. These assumptions allow the applications and nodes to be analyzed regarding

the CPU and I/O potential, enabling the optimization of execution through matching of nodes and applications with

the same characteristics. Another work that focuses on a new scheduling method is14, where the authors propose the

usage of a capacity-demand graph that assists the calculation of optimal scheduling based on an overall cost function.

While previously works focus on performance improvement using static information about resources and applica-

tions, other works sought to incorporate task specific information on their proposals. For example, works like5 and15

attempted to better distribute the tasks of an application as a way to reduce its response time large clusters. The authors

of5 use heuristics to infer the estimated task progress and to make a decision about the launching of speculative tasks.

Speculative tasks are copies of tasks launched when there is a possibility that the original task is on a faulty or too

slow node. Another work15 proposes the usage of historical execution data to improve decision making.

The final result of both methods – new scheduling mechanics and improvement of resource distribution – is a

load rebalancing, forcing faster nodes to process more data and slower nodes to process less data. The work7 tries

to achieve that through a system based on resource supply and demand, allowing each user to directly influence

scheduling through spending rates. The main objective is to allow a dynamic resource sharing based on preferences

set by each user.

There are also works like16, which attempt to provide a performance boost in jobs through better data placement,

mainly using data location as information to decision making. The performance gain is achieved through data rebal-
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ancing on nodes, raising the load on faster nodes. This proposal reduces the number of speculative tasks and data

transfers through the network.

The work17 uses a P2P structure to arrange the cluster. On this approach, nodes can change their function (mas-

ter/slave) over time and can have both functions at the same time, since the functions are tied to applications and not

the cluster. The objective of this work was the adaptation of MapReduce paradigm to a P2P environment, which given

the natural volatility of P2P environments, would offer support to pervasive grids. However, this proposal focuses on

providing a resilient infrastructure and does not explore the scheduling of jobs and tasks.

Indeed, most of previously cited works does not actually consider current state of the available resources. Resources

are described, not observed. However, context-aware computing11 has demonstrated that this observation is possible

and that the execution environment may influence application behavior. A question then raises: can we improve

MapReduce scheduling by observing current execution environment? Next sections will try to answer this question.

4. Context-Aware Scheduling

The main goal of this work is to improve the scheduling of Hadoop by adding support to dynamic changes in the

availability of resources, like those occurring in a pervasive environment. Similar to works on Section 3 we try to

improve the resource distribution, since faster and more robust nodes would have more data to process. Different

from these works, we opted to modify the Hadoop code through insertion of dynamic context information using, as

far as possible, an existing scheduler (Capacity Scheduler). In order to detect dynamic changes, the scheduler must

collect context information that, in this case, refers to available resources on the nodes. Slaves must communicate

periodically with the master in order to keep information updated and let the scheduler adapt to the new context. On

the following section we present a more detailed explanation of the changes implemented in Apache Hadoop.

4.1. Context collector

By default, Hadoop reads information about the nodes from XML configuration files. These files contain many

Hadoop configuration parameters, including the resource capacity of each node. Once loaded, the information will not

be updated until the next time the service is started. As pervasive environments may face performance changes during

the execution of an application, we need a mechanism that updates contextual information during runtime according

to the environmental conditions.

To solve this problem, we integrate a collector module into Hadoop, allowing the collection of contextual informa-

tion about the available resources. The collector was developed for the PER-MARE project8, and its class diagram is

presented in Fig. 2. The collector module is based on standard Java monitoring API18, which allows to easily access

the real characteristics of a node, with no additional libraries required. It allows collecting different context informa-

tion, such as the number of processors (cores) and the system memory, using a set of interface and abstract/concrete

classes that generalize the collecting process. Due to its design, it is easy to integrate new collectors and improve the

resources available for the scheduling process, providing data about the CPU load or disk usage, for example.

4.2. Communication

Gathering the context information required to feed the Hadoop scheduler requires transmitting this information

through the network from slave nodes (NodeManager) till master node (ResourceManager), which is responsible

for the scheduling. Instead of relying on a separate service, we chose to use the ZooKeeper API19, a tool initially

developed inside Hadoop that becomes a full project as its usage was extended to other applications. Zookeeper

provides efficient, reliable, and fault-tolerant tools for the coordination of distributed systems. In our case, we use

ZooKeeper services to distributed context information.

As illustrated in Fig. 3, all slaves (NodeManager) run an instance of the NodeStatusUpdater thread, that collect

data about the real resource availability of the node every 30 seconds. If the amount of available resources changes,

the DHT on ZooKeeper will be updated. Similarly, the master (ResourceManager) also creates a thread to watch

ZooKeeper. If the Zookeeper node detects a DHT change, the master will be notified and update the scheduler

information based on the new information. This solution extends a previous one we proposed in20 by offering a real
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time observation of available nodes. Indeed, our previous solution20 only updated information regarding the resources

on service initialization, replacing the XML configuration file, while this one updates resource information whenever

the availability changes. As a result, scheduling is performed based on the current resource state.

5. Experiments and Results

To facilitate understanding, the description of the experiments was divided into three subsections, a subsection on

the setting and environment preparation, other intended for results and another containing the analysis of the results.
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5.1. Preparations and configuration

In order to test the new behavior of the framework, we conducted experiments with the Grid’500021 in cluster

genepi. We configured a cluster with 4 slaves, each having the following configuration: 2 Intel(R) Xeon(R) CPU

E5420 @ 2.50 GHz (totalizing 8 cores per node) and 8 GB of RAM. All nodes run Ubuntu-x64-12.04, with JDK 1.7

installed, and the Hadoop distribution was the 2.5.1 YARN version.

As benchmark we used the application TeraSort in a data set of 15 GB. The resources considered in the experiments

were the memory and number of cores, which have a direct impact on the amount of tasks Map allocated. We had

due care to not run any other application that could influence the results. The information about containers’ execution

is obtained from the analysis of Hadoop logs. After the modification in scheduling was implemented, the following

scenarios have been configured for the experiments:

Scenario A: in this scenario we simulate a dedicated Hadoop cluster, so that the reported memory will always

correspond to the available memory. We consider reported memory as the information that the scheduler will use in

the scheduling process, while available memory is the free memory of the node or cluster. Using a direct notation, the

reported memory is 100 % and the available memory is also 100% all through the execution.

Scenario B: in this case, nodes can be used for other purposes than running Hadoop, so the reported memory

may, at some point, differ from the available memory initially configured for Hadoop usage. This case corresponds

to the default behavior of Hadoop, where memory resources are provided through a XML configuration property

yarn.nodemanager.resource.memory-mb. Using a direct notation, the reported memory is 100%, but the available

memory is 50%. To simulate this scenario we actually reduce the number of resources (by reducing the number of

nodes) while reporting the same amount of available memory from Scenario A.

Scenario C: here, nodes are also shared with other applications and, indeed, a new application starts running after

Hadoop has been launched, and the context awareness collector performs an information update every 30 seconds.

Hadoop is started after the first update has taken place, so the execution context corresponds to the real available

resources. Using a direct notation, the reported memory and the available memory correspond to 50% of the values

reported on Scenario A.

Scenario D: finally, this scenario presents an extension of Scenario C where Hadoop is started before the occur-

rence of the update, so the scheduler starts with wrong available resource information and must adapt during the

execution with the help of the context collector. Using a direct notation, the reported memory at the beginning of the

execution is 100% of the resources from Scenario A (wrong information), but at runtime this information is updated

to 50%.

5.2. Results

The results of the experiments are resumed on Table 1 and Fig. 4. On Table 1, the first column represents the

scenarios explained above. The second column represents the total time used by all map tasks. The third column

represents the average execution time of map tasks. The fourth column represents the standard deviation on average

time for each case. The last column represents the number of speculative tasks launched.

As stated before, every task is processed on Containers, and some containers are not affected by scheduling, as

the ApplicationMaster or the Reduce tasks. For this reason we ignore these tasks and concentrate the analysis on the

elements that can be affected by the context-aware scheduling.

Table 1. Resume of results expressed in seconds.

Case Total Map Time (s) Average Map Time (s) Map tasks Standard Deviation Number of speculative tasks

A 149 39.47 15.73% 2

B 788 222.97 59.86% 1

C 348 38.38 18.09% 3

D 477 68.42 29.91% 1
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In addition, we generated Gantt diagrams for all scenarios, illustrated in Fig. 4, in which each case presents a line

for each node in the cluster. As stated in the description of the scenarios, Scenarios B, C and D run on half of the

nodes from Scenario A to simulate a reduced amount of resources.

Each line portraits the resources consolidated by that node represented on a color scale, where the darker the

tone, the more containers are executing simultaneously. White means no container executing, and black means 16

containers. Additionally, the lines are segmented along the chart to indicate that a container has either finished or

started at that moment. The chart is scaled in seconds, and all charts go from 0 to 780 seconds.

Fig. 4. Gantt charts of the experiments

By analyzing Table 1, it is possible to note that cases A and C, where the real resources were known before the

start of the job, had the smallest average map time and standard deviation. This is due to the fact that the nodes were

never overloaded since the scheduler had the right information. This can also be seen on charts, where cases A and

C have similar tones. Indeed, case C had half the resources of case A and took twice the time to complete, which

is the expected behavior. Table 1 also indicates that the amount of speculative tasks launched were among 1 to 3 on

all cases, which might be contrary to expected on cases B and D. However speculative tasks are launched based on a

progress scale from 0 to 1, this progress is then compared to all other tasks, which would also be very slow.

On the other hand, both cases B and D have a dark tone at the beginning, meaning that 16 containers are executing

(twice the real capacity). Also, the first containers took about 20 seconds to execute in cases A and C (cf. the first

segment line), while on case B it requires about 70 seconds, evidencing an overload on the nodes. Although both

(B and D) had the same initial conditions (50% available resources and 100% reported resources), case D took less

time to complete. The reason for this is that the context collector updates the reported resources on D, allowing

the scheduler to reorganize tasks after the first container set completes. Indeed, case D had high concentration of

executing containers only in the first moments, unlike case B where nodes keep overloaded until the end due to the

absence of updated information. Although the scheduler does not preempt excess containers, it is possible to note an

improvement on performance of around 40% based solely on the fact that the scheduler avoids overloading the nodes.

Scenarios C and D show that regular context updates contribute to reduce the execution time on a dynamic Hadoop

cluster. We showed that even when starting with the same circumstances of the worst case (Scenario B), updating

the information helps the scheduler to minimize the execution time. Our solution contributes both to provide correct

information before the execution starts (Scenario C) or to adapt the execution to resources changes (Scenario D).

6. Conclusion

On this work, we aimed at developing the ability of detecting and adapting to resource availability changes on the

environment of Apache Hadoop Capacity Scheduler. The improvements were implemented with a lightweight context

collector and communication provided by Apache ZooKeeper. These improvements go further our previous work20

by considering a continuous observation of node capabilities. The results show that the solution can positively impact

the performance, especially in the situations where the available resources drop after the beginning of the execution.
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While Hadoop does not perform preemption/migration of tasks, the association of a context-aware scheduler and

speculative tasks may contribute to circumvent the bottlenecks caused by the resources variability. Our future works

will concentrate on modifying the scheduler algorithms, in order to consider a wider collection of context information

than the current parameters (memory and cores). We believe that additional parameters such as CPU speed, network

speed and even battery capacity are essential parameters on a pervasive grid. Finally, we intend to evaluate our

proposal on a real pervasive grid environment, composed of heterogeneous off-the-shelf volunteer computers, in order

to measure the impact of context observation on high dynamic environments.
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