N

N

Solving Stable Matching Problems via Cooperative
Parallel Local Search

Danny Munera

» To cite this version:

Danny Munera. Solving Stable Matching Problems via Cooperative Parallel Local Search. 16éme
conférence ROADEF Société Francaise de Recherche Opérationnelle et Aide & la Décision, Feb 2015,
Marseille, France. hal-01195525

HAL Id: hal-01195525
https://parisl.hal.science/hal-01195525

Submitted on 7 Sep 2015

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://paris1.hal.science/hal-01195525
https://hal.archives-ouvertes.fr

Abstract: Stable matching problems and its variants have several practical applications,
like the Hospital/Residents problem, stable roommates problem or bipartite market sharing.
An important generalization problem is the SMTI which allows for incompleteness and ties
in the user’s preference lists. Finding a maximal size stable matching for SMTT is compu-
tationally difficult. We developed a Local Search method to solve SMTI using the Adaptive
Search algorithm and present experimental evidence that this approach is much more efficient
than state-of-the-art exact and approximate methods (in terms of both computational effort
required and quality of solution). We also tried a parallel version of our algorithm. For this we
reused the Cooperative Parallel Local Search framework (CPLS) we designed. CPLS is a highly
parametric framework for the execution in parallel of local search solvers allowing them to co-
operate though communication. The cooperative parallel version of our local search algorithm
improves performance so much that very large and hard instances can be solved quickly.
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1 Introduction

Stable Marriage (SM) problem [2] is the problem to find a stable matching between a set
of n men and a set of n women, each of whom have ranked all members of the other set in
a strict order of preference. This match is stable if there is no man-woman pair where both
would rather marry each other than their current partner - such a pair is called a blocking
pair. A generalization of this problem is the Stable Marriage with Incomplete List and Ties
(SMTTI) [7]. In SMTI, the preference lists may include ties (to express indifference) and may
be incomplete (to express that some partners are unacceptable). The goal now is to find the
stable matching of maximal size (that is, with the smallest number of singles). This problem
is NP-hard [6].

Stable matching problems have many practical applications such as car-sharing or bipartite
market sharing, job markets and social networks. Another important application is the Hos-
pitals/Residents problem (HR) [7] which consists in assigning resident doctors to hospitals,
based on their preferences. For HR, there are nation-wide programmes in various countries like
the Scottish Foundation Allocation Scheme (SFAS), the Canadian Resident Matching Service
(CARMS) or the the National Resident Matching Program (NRMP) in the USA. Many of these
applications involve very large sets and it is thus a real challenge to design efficient algorithms
(in terms of ezecution time and/or solution quality).

We address the SMTI problem using Local Search (LS) and parallelism. For this, we first
proposed a Cooperative Parallel Local Search framework (CPLS) [9] which allows the user to
run several Local Search solvers in parallel with sophisticated forms of cooperation (through
communication). This framework is highly parametric and can be customized for different
situations (e.g. the user can modify the LS algorithm to use, the level of “intensification” and
“diversification” in the search, the communication topology). Due to space limitation, we do
not describe more the CPLS framework, the interested reader may refer to [9].

We then proposed a Local Search algorithm based on the Adaptive Search (AS) method [10].
For this, we showed how to model SMTI problems as permutation problems to limit the neigh-
bourhood to explore. Furthermore, we designed efficient heuristics based on the properties of
the blocking pairs to improve the current assignment. Other heuristics are also proposed to
escape local minima. The resulting algorithm (called AS-SMTT) can be implemented efficiently
with a compact data representation. We present experimental evidence that this sequential al-
gorithm is much more efficient than state-of-the-art exact and approximate methods. Moreover,
we developed a parallel implementation of the AS-SMTT using the CPLS framework (written
in the X10 language [1]). We show that the cooperative parallel version exhibits super-linear
speedup on average and behaves particularly well on hard instances.



2 A Local Search solver for SMTI

In AS-SMTTI, we model SMTT as a permutation problem : the sequence of n (X; ... X,,) takes
on as values permutations of the values 1...n (implementing an all-different constraint).
X; = j is interpreted as either (m;,w;) in a match M, or m; is single if w; is not on its
preference list. The AS-SMTI algorithm starts from a random matching, then it explores a
limited neighbourhood based on a heuristic which selects the “worst” blocking-pair (BP) to
fix and/or a single man to marry. If a pair (m,w) forms a BP in M, the error associated to
this BP is the distance between the woman w and the current partner of m (X, = w’) in the
preference list of m. Thus, the further the assigned woman w’ is from w, the larger the error.
To fix the “worst” BP, AS-SMTI swaps the values of the BP variable X, = w’ and the variable
that contains the desired match, X; = w (i.e. two men exchange their partner).

The total cost function of a matching M measures both its stability (number of BPs) and its
quality (number of singles). Hence : cost(M) = #BP(M) x n+#Singles(M) where #BP(M)
is the number of BPs in M, and #Singles(M) is the number of singles in M. The number of
BPs is weighted with n to prioritize stable marriages over marriages with fewer singles.

Finally if a local minimum is reached, AS-SMTT executes a customized reset procedure which
basically tries to fix the 2 worst BPs and/or to assign a woman to a single man. This procedure
is stochastic; it will also fix the second worst variable with a probability p : good results are
obtained with a high value, e.g. p ~ 0.98.

The algorithm stops when a perfect solution (PS) is found (a stable matching with no singles)
or when a given timeout is reached (the best matching found so far is then returned).

2.1 Performance Evaluation

We compared our AS-SMTI algorithm to other approaches both from the point of view of so-
lution quality and of pure performance. For this comparison we selected three different methods :
another Local Search method (the LTIU algorithm of [3]), a very efficient 3/2-approximation
algorithm (the McDermid’s method [8]) and a SAT approach (using the encoding proposed
in [5]). For this evaluation, we used the random problem generator described in [4] which takes
three parameters : the size (n), the probability of incompleteness (pl) and the probability of
ties (p2). We generated problems of size n = 100, with pl ranging over [0.1,0.9] and p2 over
[0, 1], with step 0.1. We used an X10 [1] implementation of AS-SMTI, running sequentially on
an AMD Opteron 6376 clocked at 2.3 GHz, i.e. using only one core.

Regarding solution quality, we measured the percentage of perfect solutions (PS) reached
by all algorithms. In most of the cases, the solutions returned by AS-SMTTI are better than
solutions returned by its opponents. On average, AS-SMTTI is slightly better than LTTU. Ho-
wever, LTIU reports a dramatic lost of performance when p2 = 1 obtaining less than 60% of
PS while AS-SMTTI reaches 100%. For McDermid (MD), the percentage of PS found by AS-
SMTT is considerably higher than this obtained by MD, in particular using a probability of ties
p2 € [0.1..0.7]. The reference SAT encoding was restricted to the decision problem : is there
a stable matching of size n ? which we answer by actually finding a perfect stable matching.
AS-SMTT always found a PS for the tested cases.

Regarding the performance (which measures the computational effort), Figure 1 compares
AS-SMTTI with its opponents. AS-SMTTI is much faster that LTIU and SAT (thus the log Y
scale) : the LTTU method averages over 30s on a similar machine while AS-SMTT is two orders
of magnitude faster (when p2 increases, the lead extends even further). Similarly, AS-SMTI
outperforms the SAT version by a factor of about 50. From the raw performance point of
view, the comparison with McDermid is particularly significant. Recall that an approximation
algorithm gives priority to the speed (running in linear time) at the expense of the quality.
Surprisingly, in many cases, AS-SMTT is up to an order of magnitude faster than MD. However,
when the probability of incompleteness is very high (e.g. pl = 0.9) MD outperforms AS-
SMTIL. It is worth noticing that MD always returns the same, single and (sub)optimal solution,
while AS-SMTT will yield more than one solution, with observably better quality. Moreover,



a solution quality vs. performance trade-off is always possible in AS-SMTI, by tweaking the
timeout parameter.
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FIG. 1 — Execution time comparing AS-SMTI to LTIU, MD and SAT (times in s)

3 Parallel Evaluation

We also experimented with a parallel version of AS-SMTI. For this, we used the Cooperative
Parallel Local Search (CPLS) framework we previously proposed [9]. Due to space limitation
we do not detail how we instantiated and tuned CPLS for the SMTI case (see [10]). We attacked
problems of size 1000 generated with pl = 0.95 and p2 = 0.8. These problems involve a large
number of variables, a huge search space (1000! ~ 10%%7) and are difficult to solve due to
the high level of incompleteness in the preference lists. All selected problem admit a perfect
solution. We generated two different sets of problems. The first set, called normal, is composed
by 10 random SMTI problems of size n = 1000. The second set, called hard, was generated
from 100 random problems of size n = 1000, we ran them sequentially and selected the 10
hardest instances.

Each problem was executed 50 times (the results are averaged), varying the number of cores
from 1 (sequential) to 128 and using an unlimited timeout to force the solver to discover the
perfect solution. The used architecture is a cluster of 4 machines, each with 4 x 16-core AMD
Opteron 6376 CPUs running at 2.3 GHz and 128 GB of RAM.
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Regarding the hard problems, the difficulty of the instances is clear from the sequential
time : in the normal experiment, a problem was solved in about 44s while about 285s are
needed for the hardest instances. Using the cooperative search, execution times are drastically
improved and the best speedup is 492 with 128 cores which corresponds to a reduction of the
execution time from 284.5s to 0.579s. It is worth noticing that this time is very similar to the
best time (0.5195) obtained on the normal set. From a practical point of view, it appears that
parallelism with cooperation neutralizes the relative difficulty of problems, as instances which
are originally about 6 times harder get solved in approximately the same time. Of course, the
problem retains its worst-case NP-hard complexity, and parallel search cannot change this.
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4 Conclusion and Work in progress

We proposed the AS-SMTI algorithm which models SMTIs as permutation problems and
solves them using a local search approach based on Adaptive Search. AS-SMTI outperforms
state-of-the-art solvers for SMTIs. Moreover, the cooperative parallel version shows super-
linear speedup and performs exceptionally well, particularly on very hard instances. We plan
to experiment with very large instances on a massively parallel machine to test the scaling
limitations. We also plan to study which features of the stable matching problem make it so
suitable for cooperation.

Currently we are attacking the Hospital /Resident problem with Ties (HRT). We have already
developed a solution based on model transformation : an HRT problem is transformed into
SMTT which is handled by our AS-SMTT solver (slightly modified). The preliminary results
on a sequential machine are very encouraging : execution times are much faster than the best
Integer Programming approach while obtained solution are very close to the optimum . We
are now experimenting with parallelism on HRT. We also plan to improve the core solver to
optimize features appearing when transforming HRT to SMTI (such optimizations will also
benefit to other SMTI problems).
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1. We have submitted an article to the MATCHUP 2015 (a workshop dedicated to stable matching).



