
HAL Id: hal-01185815
https://paris1.hal.science/hal-01185815

Submitted on 21 Aug 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

VariaMos: an extensible tool for engineering (dynamic)
product lines

Raul Mazo, Juan C Muñoz-Fernández, Luisa Rincón-Perez, Camille Salinesi,
Gabriel Tamura

To cite this version:
Raul Mazo, Juan C Muñoz-Fernández, Luisa Rincón-Perez, Camille Salinesi, Gabriel Tamura. Vari-
aMos: an extensible tool for engineering (dynamic) product lines. SPLC 2015, Vanderbilt University,
Jul 2015, Nashville, United States. pp.374-379, �10.1145/2791060.2791103�. �hal-01185815�

https://paris1.hal.science/hal-01185815
https://hal.archives-ouvertes.fr


 

 

VariaMos: an extensible tool for  

engineering (dynamic) product lines 

Raúl Mazo 
CRI, Université Paris 1 Panthéon 

Sorbonne, Paris, France 
raul.mazo@univ-paris1.fr  

 

 
 

Juan C. Muñoz-Fernández 
Universidad Icesi, Facultad de Ingeniería 
Departamento de TICs, Cali, Colombia 

CRI, Université Paris 1 Panthéon 
Sorbonne - Paris, France 
jcmunoz@icesi.edu.co 

 

Luisa Rincón 
Fac. de Ingeniería - Pontificia 
Universidad Javeriana – Cali  

Cali, Colombia 
lfrincon@javerianacali.edu.co 

 

Camille Salinesi 
CRI, Université Paris 1 Panthéon 

Sorbonne, Paris, France 
camille.salinesi@univ-paris1.fr  

 

Gabriel Tamura 
Universidad Icesi, Facultad de Ingeniería 
Departamento de TICs, Cali, Colombia 

gtamura@icesi.edu.co 
 

ABSTRACT 

This paper presents the new release of VariaMos, a Java-based 

tool for defining variability modeling languages, modeling 

(dynamic) product lines and cyber-physical self-adaptive systems, 

and supporting automated verification, analysis, configuration and 

simulation of these models. In particular, we describe the 

characteristics of this new version regarding its first release: (1) 

the capability to create languages for modeling systems with 

variability, even with different views; (2) the capability to use the 

created language to model (dynamic) product lines; (3) the 

capability to analyze and configure these models according to the 

changing context and requirements; and (4) the capability to 

execute them over several simulation scenarios. Finally, we show 

how to use VariaMos with an example, and we compare it with 

other tools found in the literature.  

Keywords 

Variability, product line engineering, dynamic product line 

models, constraints, tool, simulation 

1. INTRODUCTION 

VariaMos is an acronym for Variability Models; these models are 

referred to the specification of the variability of (dynamic) 

product lines. Product lines where the products configured from 

the associated variability models can be re-configured or adapted 

(their architecture can be changed) at runtime are known as 

dynamic product lines. These variability models are usually 

represented by means of modeling languages such as FODA 

(Feature-Oriented Domain Analysis) [1], Orthogonal Variability 

Models (OVM) [2], DOPLER [3], Goals [4] and constraint 

networks [5]. To represent and reason on these models, several 

approaches and tools exist in the literature. However, there is yet a 

lack of methods and tools for both representing and simulating 

(dynamic) product lines. This lack is more accentuated when the 

model is composed of a collection of views representing different 

facets of the same product line. This paper presents a whole new 

version of the precedent VariaMos tool. In particular, the new 

VariaMos allows defining variability modeling languages, 

modeling (dynamic) product lines and cyber-physical self-

adaptive systems, and supporting automated verification, analysis, 

configuration and simulation of these models. The modification of 

the modeling language is partially supported at runtime but we are 

working to full support this capability in the near future. This 

runtime support makes the modification of the languages directly 

available to use in the models represented in that language. 

In this paper, we use a simplified case of an Online Shopping 

Store. In particular, we considered 12 functionalities, related with 

payment and shipping requirements, represented with a feature 

model. 

The paper is structured as follows: Section 2 gives an overview of 

VariaMos and its functionalities. Section 3 compares VariaMos 

with related tools. Section 4 presents the work in progress, and 

finally, Section 5 concludes the paper and describes future works. 

2. VARIAMOS TOOL 

VariaMos supports different types of models and views by itself, 

but also offers the possibility of extending them. This possibility 

provides extensive generality and flexibility for the designer to 

accommodate the tool to her needs. From a point of view of 

interoperability, VariaMos allows to export XLS and JSON 

configuration files, to import JSON configuration files and 

save/load models to/from XML files. The VariaMos tool, its 

documentation, and a video tutorial are available online1. 

General Architecture 
VariaMos can be used both as a standalone graphical tool and as a 

Java library that can be executed on different operating systems 

(i.e., Windows, Mac OS and Linux). It was developed in Java and 

 

1  www.variamos.com 

 

Permission to make digital or hard copies of part or all of this work for 

personal or classroom use is granted without fee provided that copies are 

not made or distributed for profit or commercial advantage and that 

copies bear this notice and the full citation on the first page. Copyrights 

for third-party components of this work must be honored. For all other 

uses, contact the Owner/Author. Copyright is held by the owner/author(s). 

SPLC 2015, July 20-24, 2015, Nashville, TN, USA 

ACM 978-1-4503-3613-0/15/07. 

http://dx.doi.org/10.1145/2791060.2791103 

 

 

 

http://dx.doi.org/10.1145/2791060.2791103


 

 

it is an open source tool. Figure 1 shows its high-level 

architecture.  

VariaMos has two main layers, the front-end with the Graphical 

User Interface (GUI) and the back-end that actually implements 

all the required functionalities. Inside the back-end layer there are 

two types of modules: supporting modules and functional 

modules. Supporting modules (i.e., core, HLCL, and compiler) 

provide basic operations, whereas functional modules (i.e., 

PerspSupport, Configuration and DefectAnalyzer) implement the 

main functionalities.  

In detail, the Core module provides exceptions handling and 

utilities. The HLCL module implements a high-level constraint 

language, by means of Java objects, used to express models in an 

agnostic level [8], and the Compiler module has rules to convert 

high-level constraints into constraints expressed in a particular 

language.  

o  

Figure 1. High-level architecture of VariaMos 

The Solver module implements the operations for reasoning with 

each particular constraint language according with the solver at 

hand. Currently, VariaMos supports two solvers: SWI prolog and 

GNU prolog. Other solvers will be incorporated in the near future. 

PerspSupport module supports simulation operations, and 

adaptations according to external contexts and modeling using 

different views. This module will also provide extensibility hooks 

for defining new variability meta-models. Configurator module 

supports configuration operations such as partial configurations, 

complete configurations and propagation of decisions. Defect 

Analyzer module supports semantic verifications such as to 

identifiy if a model is void and to identify dead and false optional 

elements, redundancies, false product line, and (in)valid 

configurations [6]. In the near future, this module will also 

support explanations and corrections for identified defects in the 

(dynamic) product line model and configurations. 

Modeling Variability 
Our approach is language-independent and relies on meta-

modeling. In VariaMos, a meta-model defines the possible views 

of the systems to be modeled and defines the concepts of each 

view and the relations among them. For example, a view can 

represent the variability in terms of a feature model. Figure 2 

presents a screenshot of a simplified feature model represented in 

VariaMos. This feature model is about an Online Shopping Store, 

where features are represented with double ellipse ovals; however, 

in the current release of VariaMos, the symbols used to represent 

model elements can be personalized and changed in a 

configuration file. 

VariaMos supports expressions to define the constraints required 

by concepts and relations. VariaMos transforms, at runtime, the 

expressions into a constraint program. A constraint program is a 

collection of constraints without a particular order. The constraint 

program represents the system model and offers a richer view of 

the product line than individual views.  

Currently, VariaMos supports two predefined meta-models. The 

meta-model for self-adaptive systems [7] and the meta-model 

for feature models (FM). Also, VariaMos partially supports the 

creation of new modeling languages and edition of the existing 

ones. The graphical interface is like the modeling interface 

presented in Fig 2. Main options in the graphical interface are:  

Simulation buttons: they control simulation operations like get 

first solution, get next solution and reset simulation. 

Views: they support the modeling of different concerns. 

According to the selected meta-model different views are 

available in the tool. For instance, with the REFAS [7] metamodel 

available views are: variability model, soft goals model, context 

model, soft goal satisficing model and assets model.  

Perspectives: they define the set of views and available options in 

VariaMos. For instance, in the meta-modeling perspective users 

can change the shapes to represent concepts, whereas in the 

modeling perspective users must use those predefined shapes for 

modeling variability.   

Status bar: it shows the time required by the last operation.  

 

Figure 2. The simulation perspective of the Online Shopping 

Store feature model. VariaMos screenshot 

Functionalities 
Some of the analysis, verification and configuration operations 

implemented in VariaMos are the typical ones found in literature, 

and other ones are inspired by the industrial projects with our 

partners. In particular, VariaMos implements functions inherited 

from the previous release (i.e., list of all valid products, checking 

validity of configurations, finding the elements that should always 

be used in any product and the ones that can never be used and 

configuring products), but considering inherent issues of dynamic 

product lines such as the context changes.  

Moreover, in this new version VariaMos shows the results in an 

interactive way. For instance, a configuration of the feature model 

presented in Figure 2 can have many steps and Figure 3 presents 



 

 

an example of one of those steps in which the designer has not 

selected any feature (cf. Figure 3(a)), the designer provisionally 

selects the SMS feature (cf. Figure 3(b)), and the designer accepts 

the selection of the SMS feature (cf. Figure 3(c)). 

In Figure 3, features have in the top of the oval a rectangle 

(henceforth named selection indicator). If the selection indicator is 

green for selected features, non-colored for selectable features or 

red for non-selectable features. The first circle is green for full-

mandatory features, the second circle is green for selected features 

during the configuration and the third circle is green for features 

chosen in the simulation. In addition, the first circle is red for dead 

features and the second circle is red for features non-selectable 

during the configuration. 

 

Figure 3. Configuration step for the SMS feature 

VariaMos also provides simulation operations like iterate over all 

solutions of a partial configuration (cf. Figure 2), visualize 

possible adaptations of the system, and evaluate the solution of a 

configuration and propose alternatives (cf. Figure 4). VariaMos 

allows the definition of external context, simulation of context 

change and configuration of target systems. The idea in these 

simulation operations is to support the designer in the testing of 

the models definition before the implementation of the system or 

for maintenance purposes. The simulation operation relies on a 

MAPE-K loop implementation [8] and have four objectives. First, 

to monitor changes in models, external variables and the 

configuration of the system. Second, to analyze if the system 

maintains a valid solution after those changes. Third, to plan the 

adaptation when a not valid solution is detected, and finally, to 

execute the adaptation, formatting the outputs and updating the 

user interface. A valid solution in VariaMos in the one that 

satisfies the constraints of the different views of the variability 

model, the context conditions and the constraints expressed by 

who is configuring new products. Some of these constraints are 

“soft” (e.g., claims and configuration constraints) in the sense that 

it may prove impossible to satisfy them for all possible situations 

and their satisfaction is maximized according to preference levels. 

To execute these operations, VariaMos represents the (dynamic) 

product lines models as a collection of constraints. These 

constraints are represented in a high-level constraint language [9] 

and then translated into the particular language of the solver in 

which these operations will be executed.  

3. COMPARISON WITH OTHER TOOLS 

There are several characteristics that differentiate VariaMos from 

the existing tools for managing (dynamic) product lines and self-

adaptive systems. For instance, from the point of view of 

modeling, there are tools like Feature Plugin 

(http://gp.uwaterloo.ca/fmp), XFeature (http://www.pnp-

software.com/XFeature), FeatureIDE (http://wwwiti.cs.uni-

magdeburg.de/iti_db/research/featureide/), Pure::variants 

(http://www.software-acumen.com/purevariants/) and Requiline 

[10]. Most of these tools were built to graphically construct 

feature models and to derive products from these models, not to 

create the own variability language and simulate the models built 

on that language. 

 

Figure 4. VariaMos simulation control dialog 

From the point of view of analysis and verification, most of the 

tools found in the literature are formalism-dependent, and they 

only focus on feature models. In addition, most of them 

concentrate on verifying the consistency of a combination of 

features (a feature configuration) against the feature model. Tools 

like FAMA (http://www.isa.us.es/fama) and SPLOT 

(http://www.splot-research.org) consider several verification 

operations for feature models. VariaMos supports the same 

verification operations but not only over feature models, but also 

over other models based in the meta-models defined by engineers 

in order to represent variability-based systems.  

There are also approaches that combine multiple variability 

models. For instance, the suite KumbangTools 

(http://www.soberit.hut.fi/KumbangTools/) combines feature and 

component-based models, and the tool Invar [11] provides the 

integration of heterogeneous variability models approaches such 

as DOPLER, feature model, and OVM. VariaMos is a language-

independent tool in the sense that it allows developing our own 

variability modeling language. VariaMos is also extensible 

because different solvers can be incorporated as components of 

the VariaMos architecture and used to execute the (dynamic) 

product line models.  

Regarding the relation between domain and application 

engineering, ISMT4SPL [12] offers traceability among the 

artifacts created from domain engineering and application 

engineering and provides automatic generation of variability 

models and source code. In the same line, LISA[13] toolkit 

presents an approach for integrating the variability management in 

architecture design and implementation to provide traceability and 

synchronization between models, architectures and 

implementations. VULCAN[14] is a CASE tool that provides 

verification of specifications, parameterization of product line 

architecture specifications, and source code generation: for 

generate products from assets. VariaMos focus mainly on domain 

engineering and therefore it primarily provides functionalities 

related to modeling, reasoning, and simulation on variability 

models written in any notation. These tools were compared to 

identify in them the main characteristics of VariaMos. These 



 

 

characteristics are: simulation and adaptation (Sim), verification 

operations (Verif) and configuration operations (Conf). Moreover, 

we also analyze the modeling languages (ML) supported by each 

tool. Table 1 shows the comparison results. In general, most of the 

analyzed tools have configuration operations while none of them 

provide simulation operations. Furthermore, the analyzed tools are 

language-dependent because they support particular notations 

instead of different variability modeling languages as VariaMos 

does by allowing engineers define their own variability languages.  

4. WORK IN PROGRESS 

In the current version, VariaMos creates the meta-model instances  

from an Object model. We are working to support functionalities 

for importing/exporting from/to external files of meta-models in a 

similar way as already implemented for the models. In addition, 

VariaMos will visually support the complete creation and edition 

of meta-models. In the current version, VariaMos creates the 

instances of semantic models from a set of fixed Java classes. We 

are exploring other alternatives for defining the semantic models 

dynamically. One alternative that we already implemented is the 

dynamical definition of conditional expressions for some 

concepts. We are working to extend this idea to link expressions 

to models, views, concepts and relations in the meta-model, and 

then, we will associate those expressions to the operations 

supported by VariaMos. 

Having models that correctly represent the domain of the product 

line is of paramount importance for product line engineering 

success. For this reason, we are working on a method that will 

point out the causes and possible corrections of various kinds of 

defects in product line models specified in different notations. 

Moreover, we are also interested in proposing some criteria to 

help the designer to make the best correction choice. 

Table 1. Characteristics supported by some modeling tools 

Tool Sim ML Verif Config 

VariaMos ● 
Language-

independent 
● ● 

Feature Plugin  FM  ● 

XFeature  FM  ● 

FeatureIDE  FM ● ● 

Pure::Variants  FM ● ● 

Requiline  FM ● ● 

FAMA  FM ● ● 

SPLOT  FM ● ● 

KumbangTools  FM   

INVAR  OVM,FM,DOPLER   

LISA toolkit  OVM   

ISMT4SPL  OVM  ● 

VULCAN  FM   

5. CONCLUSIONS 

In this paper, we presented the second release of VariaMos. We 

introduced the functionalities of the tool, and we exposed some of 

the most relevant design and implementation details. Finally, we 

showed the differences between VariaMos and other tools found 

in literature and we concluded that VariaMos has its place among 

existing applications. Although VariaMos is not a mature tool yet, 

its promising capabilities of extensibility, interoperability, 

expressiveness, scalability and efficiency (the last two, inherited 

from the first release) will allow the tool to become accepted and 

used by the academic and industrial community in the future. 

Several challenges remain for our future work. On the one hand, 

the implementation of more reasoning functions according to the 

modeling language at hand. For instance, verification against a 

meta-model defined by users, incorporation of a guided process 

allowing correcting anomalies, support incorporation for 

incremental verification and the implementation of connections 

with other solvers; e.g., SAT (SATisfiability), BDDs (Binary 

Decision Diagrams) and SMTs (Satisfiability Modulo Theories) 

are envisaged for future releases in order to improve the efficiency 

of certain reasoning operations. 

6. ACKNOWLEDGMENTS 

Special thanks to Diego Quiroz, Sebastian Monsalve, Jose Ignacio 

Lopez, León Jaramillo, Andrés Posada and Beatriz Melo for their 

collaboration in technical and operative aspects related to the tool. 

7. REFERENCES 

[1] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and S. P. 

Peterson, “Feasibility Study Feature-Oriented Domain Analysis 

(FODA). Technical Report,” 1990. 

[2] K. Pohl, G. Böckle, and F. J. van Der Linden, Software Product 

Line Engineering: Foundations, Principles and Techniques. Springer-

Verlag New York, Inc., 2005. 

[3] D. Dhungana, P. Grünbacher, and R. Rabiser, “The DOPLER 

Meta-tool for Decision-oriented Variability Modeling: A Multiple 

Case Study,” Autom. Softw. Engg., vol. 18, no. 1, 2011. 

[4] B. Gonzales-Baixauli, J. C. S. Prado Leite, and J. Mylopoulos, 

“Visual variability analysis for goal models,” in Requirements 

Engineering(RE) Conference, 2004. 

[5] R. Mazo, C. Salinesi, D. Diaz, O. Djebbi, and A. Michiels, 

“Constraints: the Heart of Domain and Application Engineering in the 

Product Lines Engineering Strategy,” Int. Journal on Information 

System Modeling and Design (IJISMD), vol. 3, no. 2, 2011. 

[6] C. Salinesi and R. Mazo, “Defects in Product Line Models and 

how to identify them,” in Software Product Line - Advanced Topic, A. 

Elfaki, Ed. InTech, 2012, pp. 97–122. 

[7] J. C. Munoz-Fernandez, G. Tamura, R. Mazo, and C. Salinesi, 

“Towards a requirements specification multi-view framework for self-

adaptive systems,” in XL CLEI Conference, 2014 . 

[8] J. O. Kephart and D. M. Chess, “The vision of autonomic 

computing,” Computer (Long. Beach. Calif)., vol. 36, no. 1, 2003. 

[9] R. Mazo, C. Salinesi, and D. Diaz, “Abstract Constraints: A 

General Framework for Solver-Independent Reasoning on Product-

Line Models,” J. Int. Counc. Syst. Eng., vol. 14, no. 4, 2011. 

[10] T. von der Massen and H. Lichter, “RequiLine: A Requirements 

Engineering Tool for Software Product Lines,” in Proceedings of the 

Fifth Int. Workshop on Product Family Engineering, 2003. 

[11] K. Park, D. Ryu, and J. Baik, “An Integrated Software 

Management Tool for Adopting Software Product Lines,” Comput. 

Inf. Sci. (ICIS), 2012 IEEE/ACIS 11th Int. Conf., 2012. 

[12] D. Dhungana, R. Rabiser, P. Grunbacher, D. Seichter, G. 

Botterweck, D. Benavides, J. Galindo, “Integrating heterogeneous 

variability modeling approaches with Invar,” VaMos, 2013. 

[13] I. Groher and R. Weinreich, “Supporting Variability 

Management in Architecture Design and Implementation,” 2013 46th 

Hawaii Int. Conf. Syst. Sci., 2013. 

[14] H. Lee, J. Yang, and K. C. Kang, “VULCAN: architecture-

model-based workbench for product line engineering.,” SPLC, vol. II, 

2012.  

 



 

 

APPENDIX A: Presentation of VariaMos 

 

VariaMos Key Functionalities 
1. Support for Model creation, edition and verification: 

o Multi-Model support – REFAS language support and 

the possibility to use other languages. Variability 

defined using goals or features models 

 

 
o Explain the states of concepts at design time according 

to the figure: 

 

Design States

Is Core and
 Is Required marked

Is Core but 
Not Required marked

Dead ElementNot Core And
Not Required Marked

 
 

2. OSS modeling demo: 

o Present the definition of concepts and relations 

(instantiation and edition) in VariaMos for an Online 

Shopping Store (OSS). 

 

 
 

 
 

3. Introduce the operations supported in VariaMos. 

o Explain calculation of core concepts operation. 

o Explain verification of feature models operation: 

 Single Root 

 All features have parents 

 Dead features 

 False optional features 

 

 
 

4. OSS verification operations demo: 

o Show the core calculation and verification operations. 

o Show the Meta-Model visualization (abstract and 

concrete syntax). 

o Show the Semantic Model visualization (Model 

supporting the Meta-Model). 

 

 
 

5. Model Configuration: 

o Selected and excluded concepts from a configuration 

o Evaluation of a configuration implications 

o Propagation of configuration implications 

o Explain the states at configuration and simulation time: 

 



 

 

Configuration States

Is Core (from design)

Not Selected (Configuration)

Is Selected (configuration)

Not defined (free)

 
 

  Explain the states during a configuration step: 

   

 
 

6. OSS configuration functionality demo: 

o The configuration of concepts as selected with 

implications.  

 

 
 

 
 

7. Model basic simulation with a Dashboard: 

o Visualization a solution based on model definition and 

current configuration. 

o Iteration over available solutions of a configuration. 

o Iteration from different context and system 

configurations, evaluating solutions and alternatives. 

8. OSS simulation functionality: 

o Show simulation of solutions for a context. 

o Show iteration of solutions for a context. 

o Show the scenarios for an optimal solution of the 

system. 

 

 
 

 
 

Work in Progress 
o Full support of meta-models load/save from/to external files. 

o Full support of meta-models creation/edition. Define the 

semantic models dynamically.  

o Point out the causes and possible corrections of various kinds 

of defects in product line models specified in different 

notations.  

o Propose some criteria to help the designer to make the best 

correction choice. 

Conclusions 
o VariaMos has its place among existing applications. 

o Although VariaMos is not a mature tool yet, its promising 

capabilities of extensibility, interoperability, expressiveness, 

scalability and efficiency will allow the tool to become 

accepted and used by the academic and industrial community 

in the future. 

 
 

Configuration testing States

Not Selected (Configuration)Is Selected (configuration)


