
HAL Id: hal-01185791
https://paris1.hal.science/hal-01185791v1

Submitted on 21 Aug 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

REFAS: A PLE Approach for Simulation of
Self-Adaptive Systems Requirements

Juan C Muñoz-Fernández, Gabriel Tamura, Irina Raicu, Raúl Mazo, Camille
Salinesi

To cite this version:
Juan C Muñoz-Fernández, Gabriel Tamura, Irina Raicu, Raúl Mazo, Camille Salinesi. REFAS: A PLE
Approach for Simulation of Self-Adaptive Systems Requirements. SPLC 2015, Vanderbilt University,
Jul 2015, Nashville, United States. pp.444, �10.1145/2791060.2791102�. �hal-01185791�

https://paris1.hal.science/hal-01185791v1
https://hal.archives-ouvertes.fr

REFAS: A PLE Approach for Simulation of

Self-Adaptive Systems Requirements

Juan C. Muñoz-Fernández
CRI, Université Paris 1 Panthéon

Sorbonne, Paris, France

Universidad Icesi,

Depto. de TIC, Cali, Colombia

jcmunoz@icesi.edu.co

Gabriel Tamura
I2T/DRISO Research Group

Universidad Icesi,

Depto. de TIC, Cali, Colombia

gtamura@icesi.edu.co

Irina Raicu
CRI, Université Paris 1 Panthéon

Sorbonne, Paris, France

Bucharest University of Economic

Studies, Bucharest, Romania

irina.raicu@malix.univ-paris1.fr

Raúl Mazo
CRI, Université Paris 1 Panthéon

Sorbonne, Paris, France

raul.mazo@univ-paris1.fr

Camille Salinesi
CRI, Université Paris 1 Panthéon

Sorbonne, Paris, France

camille.salinesi@univ-paris1.fr

ABSTRACT

Model simulation has demonstrated its usefulness in evaluation and

decision-making for improving preliminary versions of artefacts

before production. Particularly, one of the main goals of simulation

is to verify model properties based on data collected from its

execution. In this paper, we present the simulation capabilities of

our REFAS framework for specifying requirements models for

dynamic software products lines and self-adaptive systems. The

simulation is controlled by a feedback loop and a reasoning engine

that operates on the functional and non-functional requirements.

The paper contribution is threefold. First, REFAS allows

developers to evaluate and improve requirements models through

their simulation capabilities. Second, REFAS provides rich

feedback in its interactive simulations for the human modeller to

make informed decisions to improve her model. Third, REFAS

automates the generation of simulation scenarios required to verify

the model adequacy and correctness. We evaluate our contribution

by comparing the application of REFAS to a case study used in

other approaches.

General Terms

Algorithms, Documentation, Design, Languages

Keywords
Requirements engineering, dynamic software product lines,

dynamic adaptation, simulation, MAPE-K loops.

1. INTRODUCTION
Self-adaptive software (SAS) systems automatically adjust their

behaviour in response to changes in the surrounding context in

which they are executed. Dynamic software product line (DSPL)

[1] engineering intends to produce software that can be adapted at

runtime and in this sense they are a particular case of SAS.

Realizing this self-adaptive ability implies to cope with the inherent

uncertainty that execution contexts pose for this kind of systems,

which is certainly one of the most difficult aspects to specify and

control. For instance, different contexts may demand different

trade-offs in requirements, and unanticipated contexts may even

lead to entirely new requirements. Thus, verifying the adequacy of

these requirements, specified as a product line model, with respect

to context uncertainty constitutes a difficult and time-consuming

goal, as it implies to check its behaviour in several configurations

under changing contexts of execution. In this setting, interactive

simulation is a useful tool to explore the system's response and

determine incorrect or unexpected behaviour, by allowing the

modeller to expose the system to uncertainties actually discovered

by analysing the simulated status of the system.

Languages and frameworks for modelling requirements usually

focus on requirements specification and automated synthesis of a

corresponding configuration, offering little support for modelling

changes in the context of system execution. In a previous work, we

proposed a requirements engineering framework for SAS (REFAS)

and its corresponding modelling language [2]. This framework

aims to address context uncertainty and to be sufficiently

expressive for SAS requirements. However, as in other approaches,

after capturing the context-dependent requirements, their validation

is a critical next step not enforced to be performed systematically.

Therefore, a first challenge is to address how to realize simulations

that can be performed based on different views used to represent

the variability of SAS requirements, each supporting different

kinds of information and addressing different concerns. A second

challenge is to enable the simulations to provide feedback in

intermediate execution states and contextual information for the

modeller to evaluate, correct, and complete the requirements

model, before continuing with the development phase. Finally, a

third challenge is to provide the simulation framework with

automated tools for specifying and generating relevant scenarios to

help verify the model adequacy and correctness of SAS

requirements represented as a product line model.

In this paper, we present the simulation capabilities for our SAS

and DSPL requirements framework as a means for validating them.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post
on servers or to redistribute to lists, requires prior specific permission and/or

a fee. Request permissions from Permissions@acm.org.

SPLC 2015, July 20 - 24, 2015, Nashville, TN, USA
© 2015 ACM. ISBN 978-1-4503-3613-0/15/07…$15.00

 DOI: http://dx.doi.org/10.1145/2791060.2791102

mailto:Permissions@acm.org
http://dx.doi.org/10.1145/2791060.2791102

For the simulation, the framework includes a language for

specifying an inventory of assets in the form of software

components, and a reasoning engine to compose them in order to

satisfy the changing requirements. We describe a prototype

implementation of our simulation approach, and illustrate our

contribution by comparing the application of our framework to a

previously published case study.

The remainder of this paper is organized as follows. In Section 2

we present the motivation. In Section 3 we summarize the REFAS

framework and its simulation capabilities. In Section 4 we present

the evaluation results. In Section 5 we discuss related work, and we

conclude and discuss future work in Section 6.

2. MOTIVATION

2.1 RUNNING EXAMPLE
In this paper, we use the GridStix case study, which has been used

previously in other approaches (e.g., [4] [5] [6]). GridStix describes

the problem of a river highly prone to flood the lands on a remote

rural area. Alerts about probable floods help to mitigate human and

material losses. Nonetheless, false alerts imply critical but

unnecessary costs of transportation and other life- and value-

preserving activities. Therefore, the accuracy of alerts is a critical

factor for solving this problem. GridStix requires a network of

wireless sensors monitoring the river flood, connected to very small

data processors. These processors compute the flooding probability

based on historic information and sends respective alerts through

wireless protocols. Of course, this battery-operated infrastructure,

located in a remote rural area, requires energy optimization to

prolong its operation, under changing conditions of execution,

while preserving the accuracy of alerts.

Context conditions of execution, such as weather and season, imply

critical variables to consider given their effect in different system

aspects, such as battery-life and flooding probability. Different

context conditions imply different system configurations in terms

of software components, which in turn imply different levels of

power and memory consumption. All of the aforementioned

requirements are characteristic of dynamically reconfigurable (i.e.,

self-adaptive) software systems. In this paper, however, we focus

on three factors of context dynamism also included in other

approaches. First, communication between data processors can use

Wi-Fi or Bluetooth. For remote monitoring and alert notification,

another option is GPRS/GSM. Wi-Fi offers lower latency and is

more robust than Bluetooth at the expense of higher power

consumption [4]. Second, for data transmission between data

processors, two strategies of routing can be used: shortest path and

fewest hops. The first consumes less power but offers less

performance than the second [4]. Third, for performing preliminary

analysis on the speed of flood water, data processors can process

images of the river using centralized or distributed algorithms [6].

Distributed algorithms can improve the analysis results at the

expense of higher power consumption [4].

2.2 Simulation of Dynamically Changing

Software Requirements
SAS requirements models must consider not only context-

dependent variables and conditions (e.g., weather, season and

geographical location), but also constraints imposed by the problem

for its solution (e.g., technical and geographical limitations on the

power sources), in addition to the usual functional and non-

functional requirements. Thus, to preserve the satisfaction of

changing requirements, the running system must reconfigure itself

at execution time. However, languages and frameworks for

modelling requirements usually focus on requirements

specification and automated synthesis of a corresponding solution,

but not on simulation. Therefore, a first challenge to address is to

realize simulations that can be performed based on different types

of views supporting different kinds of information for different

concerns and perspectives. These different types of views, ideally

defined by the user herself, would provide complementary

information for the simulations to be more accurate, and for the

modeller to make better-informed decisions to improve the whole

requirements model.

A second challenge is to enable the simulations to provide rich

feedback in terms of simulation states and contextual information

for the human modeller to evaluate, correct, and complete the

requirements model, before continuing with the development

phase. This information should be discoverable at simulation time,

by direct interaction with, and inspection of the intermediate

simulation states. Finally, a third challenge is to provide the

simulation framework with tools for specifying and automatically

generating relevant scenarios to help verify the model adequacy and

correctness. These scenarios, usually hand-coded in time-

consuming and error-prone tasks, must capture the diversity of

context situations the system can face at execution time.

3. REFAS: Simulation of SAS

Requirements Models
In this section, we present our Requirements Engineering For

(Self)-Adaptive Systems (REFAS) framework and its capabilities

for simulating requirements models. Nonetheless, we need to

introduce first how we define requirements models with REFAS.

3.1 REFAS Concepts and Views
To realize simulations based on different types of views supporting

different concerns and perspectives, addressing our first challenge,

we designed a generic requirements meta-modelling language [2].

This language defines basic concepts and relations for defining

requirements and allows the modeller to define arbitrary types of

views by combining these concepts and relations. These arbitrary

types of views specify different concerns of the requirements model

and provide complementary information that can be used for

providing more accurate simulations.

REFAS provides nine concepts for building requirements models.

Goals represent high-level functional purposes that the system must

achieve, whereas soft goals (SG) represent non-functional

requirements (e.g., QoS levels) that the system should satisfy

according to context conditions of execution. A (goal)

operationalization represents a way to satisfy a goal (e.g., through

a software component). However, this satisfaction is conditioned to

the validity of assumptions. That is, an assumption represents the

conditions under which an operationalization confidently satisfies

a goal. A claim express the SG expected level of satisficing by a

given operationalization. A Variable represents the current value of

a particular variable of interest of the system's execution state.

Variables can be grouped in a ConcernLevel. A soft dependency

specifies the required level of a soft goal satisficing, under a given

context situation. Finally, we adopt Features exactly in the sense of

feature models (FM).

Our modelling language specifies five views:

The soft goals view supports the soft goals definition and the

relations between them. For our running example, GridStix, the soft

goals are FaultTolerance (Fig. 3-label A), EnergyEfficiency (Fig.

3-label B) and PredictionAccuracy (Fig. 3-label C).

The goal/operationalization variability view represents the

variability and their inter-relations. This view optionally includes

restrictions on the variability satisfaction in terms of assumptions.

The variability view can also support the use of features instead of

goals and operationalizations. Figure 1 presents goals defined for

GridStix. Three of the goals have two operationalizations each. The

operationalizations are mutually exclusive, and all the goals are

required. For instance, GridStix specifies two possible but mutual

exclusive operationalizations for the goal CalculateFlowRate.

Figure 1 Goal/Operationalization Variability View of GridStix

The Context view defines the relevant context variables on which

possible system adaptations depend upon. The values of these

variables may require different levels of satisfaction for soft goals.

Figure 2 presents the context view of GridStix with two Boolean

variables (FloodPredicted and HighFlow) and one enumeration

variable (BatteryState) with two valid values (low, high).

Figure 2 Context View of GridStix

The soft goals satisficing view represents the conditional relations

between the goal/operationalization variability view, the soft goals

view and the context view. They are expressed with soft

dependencies, and claims added with constraints. The constraints

can combine numeric and Boolean expressions to define their

conditions of activation for both types of conditional relations.

Figure 3 presents the soft goals satisficing view with seven claims

(cf. CL in the figure) and four soft dependencies (cf. SD in the

figure). We explain a conditional relation as follows. CL4

constrains the expected level of the EnergyEfficiency soft goal to 4

if the system uses the Bluetooth and SingleNodeProcessing.

The assets view represents the implementation components of the

system. This view defines the assets, their relations and maps each

operationalization (or adaptation features) to software components.

3.2 The Simulation Control Loop

Our requirements model attempts to capture as completely as

possible the variability of SASs by means of soft goals, foreseeable

context conditions and required corresponding system adaptations,

constraints and their inter-dependencies. In this section, we

complete the core semantics with the behavioural semantics, that

is, the meaning of the requirements model at simulation time.

Figure 3 Soft Goal Satisficing View of GridStix

We define a simulation as a sequence of scenarios where a scenario

is the definition of a partial mapping of the model’s context

variables to corresponding values. Thus, running a simulation

means to execute the constraint program (i.e., the core semantics of

the requirements model) with each of the simulation scenarios (i.e.,

a constraint-satisfaction problem to find a configuration to satisfy

the context-dependent requirements) in an interactive sequence.

Therefore, to realize this interactive sequence we use a simulation

control loop implementing the Monitor-Analyser-Planner-

Executor-Knowledge base (MAPE-K) reference model [7].

Monitor. The monitor goal is to identify and report internal and

external context events. In REFAS, there are two monitored sources

of events. First, the requirements model defines the concepts, its

attributes, and relations. For example, an attribute identifies

whether the concept is in the model. Second, the requirements

model configuration that defines restrictions on the selection and

exclusion of concepts, and also the values for some of the variables.

Analyser. The analyser evaluates the events notified by the monitor

and the simulation's current configuration state, as specified by the

requirements model. The simulation's current configuration results

from the aggregation of the requirements model design and

configuration, and the simulation configuration. The analyser

invokes the planner if the configuration is not optimal or invalid.

Planner. The planner evaluates the current configuration state and

computes a new configuration by invoking the obtain solutions

method, logging the results to save the configuration. The planner

notifies the executor with the configuration plan (i.e., a

configuration solution) and the analytical execution information.

Executor. The executor formats the configuration and variable

values of the selected solution using JavaScript Object Notation

(JSON), writes the output files and triggers updates on the user

interface. The user interface includes the requirements model, the

dashboard, the statistical information, and alerts in case of error.

Knowledge base. The knowledge-base element is a data structure

storing the set of constraints automatically generated from the

concepts and relations between all the requirements model views.

This element also contains the constraints created with the values

of variables used in conditional expressions of soft dependencies

and claims. The constraints are used by the analyser and planner.

3.3 Simulation Controller and Generator
To provide appropriate and interactive feedback for the modeller,

thus addressing our second challenge, the simulator must deploy

appropriate controls, display useful results and be fed with correct

data inputs. The coordination of these actions is performed by the

simulation controller, according to the modeller's simulation needs.

The simulation’s controller interface provides a panel for

specifying and modifying all of the concepts comprising the user's

requirements models in addition to the complementary functions

including simulation log, among others. The simulation requires

two configuration files. First, the file which may include initial

values for concept attributes and variables. The variables are of two

types: external context and target system. Second, simulation

parameters defines the timing for simulation, the initial simulation

configuration, the type of concepts to consider in the simulation,

the folders for storing simulation files, and the type of simulation

constitutes the simulation parameters of this element.

The simulation controller and generator element automate the

generation of simulation scenarios. The inputs for this

configuration include random values for the requirements model's

concepts and variables. The user can combine the alternatives to

adjust the simulation inputs to the aspects she wants to evaluate.

A scenario defines a combination of values for external context and

target system variables that require a particular satisficing level

over at least one soft goal of the requirements model. The

combination of all those values is evaluated to generate the

scenarios. To reduce the explosion in the number of scenarios, the

soft goals, and other concepts satisfaction/selection may be

maximized/minimized in the requirements model.

3.4 Simulation Visualization
The simulation graphical user interface provides simulation process

feedback to address our second challenge. The GUI provides two

perspectives, one for the modelling, and one for simulation. The

first is used to define the concepts and views of the requirements

model, whereas the second is used entirely for performing its

simulation and providing useful information for the modeller to

evaluate the correctness and adequacy of the requirements model.

In the graph, elements selection is represented by a rectangle on top

of the element. The rectangle colour alternatives are: green for a

selected element; red for a not selectable element; and non-colour

for a selectable element. Moreover, in the configuration/simulation

perspective, the rectangle has three circles. Circles from left to right

represent the selection at design time, configuration time and

simulation time with the same colours as the rectangles.

The dashboard summarizes the selection of concepts to explore the

configuration's relevant concepts. SG and variables include its

value. A dashboard for GridStix is presented in Fig. 4-label (B).

The statistical information provides information about the number

of solutions, selected concepts, soft goals satisficed, and activated

claims and soft dependencies. Statistical information includes the

execution time of the last iteration, the solver, the compilation and

the total. Some execution times are illustrated in Fig. 4-label (C).

The simulation detects different situations during the simulation

and notifies the user accordingly. For example, it notifies about

problems with the requirements model design, the definition of

conditional expressions, or no solution found for a particular

combination of context variables.

4. EVALUATION
To evaluate our framework, we implemented the REFAS

framework in a software tool that we named VariaMos [8].

Figure 4 Model configuration/simulation perspective of

GridStix. VariaMos screenshot with dashboard

To illustrate the simulation of context changes, we explain an

adaptation with a specific context and configuration of the GridStix

requirements model. An initial GridStix model configuration

selects ShortestPathTopology, SingleNode Processing and

Bluetooth operationalizations and the variables FloodPredicted and

HighFlow in false as shown in Fig. 4-(B). A rise in the river flow is

simulated with a scenario setting the variable HighFlow to true. The

monitor identifies the change in this variable and calls the analyser;

the change has no valid configuration because FaultTolerance is

non-negotiable, and its required level cannot be satisfied. Then, the

planner tries to identify an alternative configuration. As a result, the

new configuration adapts from Bluetooth to Wi-Fi and from

SingleNodeProcessing to DistributedNodeProcessing.

REFAS with VariaMos satisfies our first challenge by supporting

different types of views and complementary information to obtain

more accurate simulations and help the modeller to make better-

informed decisions to improve the SAS requirements. Regarding

the second challenge, VariaMos provides feedback in terms of

execution state and contextual information for the human modeller.

The feedback helps to evaluate and correct the SAS requirements.

The user can modify the next iteration, according to the feedback

analysis. Finally, REFAS/VariaMos solves the third challenge by

avoiding the hand-coded development of scenarios. The simulation

framework automatically generates relevant scenarios to verify the

requirements adequacy and correctness. This generation represents

an improvement over other approaches, such as Genie [5].

We consider the simulation of SAS important due to the difficulty

of testing SAS in several configurations scenarios. The simulation

performed before or during development, and during the execution

provides different benefits. The former identifies errors or not

considered conditions of the definition of the system and perform

adjustments before the complete development. The latter supports

the system maintenance in terms of corrective, adaptive and

perfective maintenance.

5. RELATED WORK
The work presented in this paper has been influenced by other

approaches for simulation or execution of software systems.

Sawyer et al. [3] proposed a goal approach for requirements

modelling that requires the manual transformation of the resulting

model to a constraint program to execute in the first release of

VariaMos [9]. The new VariaMos [8] provides an automatic

calculation of core concepts, error verification, configuration and

simulation of the requirements models. Our approach also supports

complex Boolean and numerical expressions for soft dependencies

and claims. This increases the expressivity of the reasoning to

support the dynamic adaptation representation.

Genie [5] proposed a component-based approach to deal with

architectural adaptations. Genie defines the scenarios for variability

based on transition diagrams. We consider this well suited for small

systems. However, in the case of bigger self-adaptive systems,

scenarios should be derived from the constraints defined for the

system, including variable values and transition constraints.

Specification Animator [10] supports various agents interacting to

construct the behaviour of components of a system and their

environment. Our approach is centred on the designer, supporting

the modelling and the simulation of the requirements models. We

can evaluate the validity of the system according to scenarios but

not managing stakeholder decisions within the model.

CAMP [11] proposed an abstract layer architecture, integrating

concerns from context-aware and self-adapting systems. They

focus on the solution space, including the analysis and decisions

defined explicitly by rules on composites. We cover the problem

space (goals and operationalizations) and the solution space

(reusable domain components).

DiVA [12] supports four meta-models: DSPL, context, reasoning

and architecture. From the meta-models, DiVA offers testing for

early validation and simulation. The simulation does not include

system or adaptation interactions.

FUSION [13] supports adaptation of systems from feature models

and defines utility functions to measure the satisfaction of

functional and QoS objectives. FUSION focuses on the discovery

of relations between the features and the metrics implementing

learning algorithms. FUSION targets the execution of systems, not

the simulation. It also requires all the features to resolve issues to

be preconceived.

6. CONCLUSIONS AND FUTURE WORK
We have presented REFAS, our PLE approach supporting the

modelling, configuration and simulation of SAS integrating a

MAPE-K loop. The benefit of REFAS for simulation is threefold.

First, we support the designer in the modelling SAS requirements

with our graphical language. The requirements model is

automatically transformed into a constraint program and exploit for

simulation. Second, we provide feedback in terms of execution

state and contextual information for the designer. The feedback

functionality is integrated into VariaMos. From VariaMos, the

designer can simulate before the development or implementation of

the target system. Third, our approach avoids the hand-coded

development of scenarios, by automatically generating relevant

scenarios to verify the model adequacy and correctness.

We are interested in extending our framework in three main

directions. First, to implement the DYNAMICO [14] reference

model to support the adaptation at the goal and context levels.

DYNAMICO proposes a clear way to separate the three levels of

dynamics of context-driven self-adaptive systems. Second, to

support multiple instances of the dynamic adaptation level. We plan

to experiment with the decentralized reasoning of those multiple

instances adapting the VariaMos implementation. Third, we will

incorporate temporal logic and transition support. We are working

to support actions for each transition.

7. ACKNOWLEDGMENTS
This work was supported in part by grant 0369-2013 (project

SHIFT 2117-569-33721) from the Colombian Administrative

Department of Science, Technology and Innovation (Colciencias).

8. REFERENCES
[1] S. Hallsteinsen, M. Hinchey, P. Sooyong, and K. Schmid,

“Dynamic Software Product Lines,” IEEE Computer, 41 (4),

pp. 93-95. 2008

[2] J. C. Munoz-Fernandez, G. Tamura, R. Mazo, and C. Salinesi,

"Towards a requirements specification multi-view framework

for self-adaptive systems," Computing Conference (CLEI),

2014 XL Latin American , pp.1-12, 2014

[3] P. Sawyer, R. Mazo, D. Diaz, C. Salinesi, and D. Hughes,

“Using constraint programming to manage configurations in

self-adaptive systems," IEEE Computer, vol. 45, no. 10, pp.

56-63, 2012.

[4] P. Grace, D. Hughes, B. Porter, G. S. Blair, G. Coulson, and

F. Taiani, “Experiences with open overlays: a middleware

approach to network heterogeneity,” Procs. 3rd ACM

SIGOPS/European Conf. on Comput. Syst. 2008, 2008.

[5] N. Bencomo, P. Grace, C. Flores-Cortes, D. Hughes, and G.

S. Blair, “Genie: supporting the model driven development of

reflective, component-based adaptive systems,” in Procs. 30th

Intl. Conf. on Softw. Eng., ACM, 2008, pp. 811-814.

[6] D. Hughes, P. Greenwood, G. Coulson, and G. Blair,

“GridStix : Supporting Flood Prediction using Embedded

Hardware and Next Generation Grid Middleware,” in World

of Wireless, Intl. Symp. on Mobile and Multimedia Networks,

2006, pp.6 pp.626

[7] J. O. Kephart and D. M. Chess, “The Vision of Autonomic

Computing,” IEEE Computer Society, no., pp. 41–50, 2003.

[8] R. Mazo, J. C. Muñoz-Fernández, L. Rincón, C. Salinesi, G.

Tamura. VariaMos: an extensible tool for engineering

(dynamic) product lines. 19th International Softw. Product

Line Conf. (SPLC), Nashville-USA, 2015.

[9] R. Mazo, C. Salinesi, and D. Diaz. VariaMos: a Tool for

Product Line Driven Systems Engineering with a Constraint

Based Approach. 24th Intl. Conf. on Advanced Information

Systems Engineering, pp. 1-8, 2012.

[10] P. Heymans, “The Albert II Specification Animator,”

Technical Report CREWS 97-13, Cooperative Requirements

Engineering with Scenarios, 1997

[11] M. Hussein, J. Han, A. Colman, and J. Yu, “An architecture-

based approach to developing context-aware adaptive

systems,” Proc. - 2012 IEEE 19th Int. Conf. Work. Eng.

Comput. Syst. ECBS 2012, pp. 154–163, 2012.

[12] B. Morin, O. Barais, and J. Jézéquel. Models@ run.time to

support dynamic adaptation. Computer, pp. 46–53. 2009

[13] N. Esfahani, A. Elkhodary, and S. Malek, “A Learning-Based

Framework for Engineering Feature-Oriented Self-Adaptive

Software Systems,” IEEE Trans. Softw. Eng., vol. 39, no. 11,

pp. 1467–1493, 2013.

[14] N. M. Villegas, G. Tamura, H. A. Müller, L. Duchien, and R.

Casallas, “DYNAMICO: A reference model for governing

control objectives and context relevance in self-adaptive

software systems,” in Software Engineering for Self-Adaptive

Systems II, vol. 7475 LNCS, pp. 265–293, 2013.

tel:0369-2013
tel:2117-569-33721

