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Abstract. We give some reasonable and usable conditions on a sequence of norm
one in a dual banach space under which the sequence does not converges to the origin
in the w∗-topology. These requirements help to ensure that the Lagrange multipliers
are nontrivial, when we are interested for example on the in�nite dimensional in�nite-
horizon Pontryagin Principles for discrete-time problems.
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1 Introduction.

Let Z be a Banach space and Z∗ its topological dual. It is well known that in in�nite
dimensional separable Banach space, it is always true that the origin in Z∗ is the w∗-
limit of a sequence from the unit sphere SZ∗ as it is in its w∗-closure. In this paper, we
look about reasonable and usable conditions on a sequence of norm one in Z∗ such that
this sequence does not converge to the origin in the w∗-topology. This situation has
the interest, when we are looking for a nontrivial Lagrange multiplier for optimization
problems, and was encountered several times in the literature. See for example [1] and
[3]. To guarantee that the multiplier are nontrivial at the limit, the authors in [3] used
the following lemma from [[2], pp. 142, 135].

De�nition 1. A subset Q of a Banach space Z is said to be of �nite codimension in
Z if there exists a point z0 in the closed convex hull of Q such that the closed vector
space generated by Q−z0 := {q − z0| q ∈ Q} is of �nite codimension in Z and the closed
convex hull of Q− z0 has a no empty interior in this vector space.
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Lemma 1. ([2], pp. 142, 135) Let Q ⊂ Z be a subset of �nite codimension in Z. Let
(fk)k ⊂ Z∗ and εk ≥ 0 and εk → 0 such that

i) ‖fk‖ ≥ δ > 0, for all k ∈ N and fk
w∗
→ f .

ii) for all z ∈ Q, and for all k ∈ N, fk(z) ≥ −εk.

Then, f 6= 0.

Note that, this is not the most general situation. Indeed, one can meet as in [1], a
situation where the part ii) of the above lemma is not uniform on z ∈ Z, and depends
on other parameter as follows: for all z ∈ co(Q), there exists Cz ∈ R such that for all
k ∈ N, fk(z) ≥ −εkCz. The principal Lemma 4 that we propose in this paper, will
permit to include this very useful situation. This lemma is based on the Baire category
theorem.

2 Preliminary Lemmas.

We need the following classical lemma. We denote by Int(A) the topological interior of
a set A.

Lemma 2. Let C be a convex subset of a normed vector space. Let x0 ∈ Int(C) and
x1 ∈ C. Then, for all α ∈]0, 1], we have αx0 + (1− α)x1 ∈ Int(C).

We deduce the following lemma.

Lemma 3. Let (F, ‖.‖F ) be a Banach space and C be a closed convex subset of F with
non empty interior. Suppose that D ⊂ C is a closed subset of C with no empty interior
in (C, ‖.‖F ) (for the topology induced by C). Then, the interior of D is non empty in
(F, ‖.‖F ).

Proof. On one hand, there exists x0 such that x0 ∈ Int(C). On the other hand,
since D has no empty interior in (C, ‖.‖F ), there exists x1 ∈ D and ε1 > 0 such that
BF (x1, ε1)∩C ⊂ D. By using Lemma 2, ∀α ∈]0, 1], we have αx0 +(1−α)x1 ∈ Int(C).
Since αx0+(1−α)x1 → x1 when α→ 0, then there exist some small α0 and an integer
number N ∈ N∗ such that BF (α0x0+(1−α0)x1,

1
N ) ⊂ B(x1, ε1)∩C ⊂ D. Thus D has

a non empty interior in F .

3 The principal Lemma.

We give now our principlal lemma. We denote by co(X) the closed convex hull of X.

Lemma 4. Let Z be a Banach space. Let (pn)n be a sequence of subadditive and
continuous map on Z and (λn)n ⊂ R+ be a sequence of nonegative real number such
that λn → 0. Let A be a non empty subset of Z, a ∈ co(A) and F := span(A− a) the
closed vector space generated by A. Suppose that co(A− a) has no empty interior in F
and that

(1) for all z ∈ co(A), there exists Cz ∈ R such that for all n ∈ N:

pn(z) ≤ Czλn.

2



(2) for all z ∈ F , lim supn pn(z) ≤ 0.

Then, for all bounded subset B of F , we have

lim sup
n

(
sup
h∈B

pn(h)

)
≤ 0.

Proof. For each m ∈ N, we set

Fm := {z ∈ co(A) : pn(z) ≤ mλn, ∀n ∈ N} .

The sets Fm are closed subsets of Z. Indeed,

Fm =

(⋂
n∈N

p−1n (]−∞,mλn])

)
∩ (co(A))

where, for each n ∈ N, p−1n (] −∞,mλn]) is a closed subset of Z by the continuity of
pn. On the other hand, we have co(A) =

⋃
m∈N Fm. Indeed, let z ∈ co(A), there exists

Cz ∈ R such that pn(z) ≤ Czλn for all n ∈ N. If Cz ≤ 0, then z ∈ F0. If Cz > 0, it
su�ces to take m1 := [Cz] + 1 where [Cz] denotes the �oor of Cz to have that z ∈ Fm1 .
We deduce then that Fm − a are closed and that co(A) − a =

⋃
m∈N (Fm − a). Using

the Baire Theorem on the complete metric space (co(A) − a, ‖.‖F ), we get an m0 ∈ N
such that Fm0 − a has no empty interior in (co(A) − a, ‖.‖F ). Since by hypothesis
co(A) − a has no empty interior in F , using Lemma 3 to obtain that Fm0 − a has no
empty interior in F . So there exists z0 ∈ Fm0 − a and some integer number N ∈ N∗
such that BF (z0,

1
N ) ⊂ Fm0 − a. In other words, for all z ∈ BF (b,

1
N ) ⊂ Fm0 (with

b := a+ z0 ∈ Fm0 ⊂ F ) and all n ∈ N, we have:

pn(z) ≤ m0λn. (1)

Let now B a bounded subset of F , there exists an integer number KB ∈ N∗ such that
B ⊂ BF (0,KB). On the other hand, for all h ∈ B, there exists zh ∈ BF (b, 1

N ) such
that h = KB.N(zh − b). So using (1) and the subadditivity of pn, we obtain that, for
all n ∈ N:

pn(h) = pn(KBN(zh − b)) ≤ KBNpn(zh − b)
≤ KBN(pn(zh) + pn(−b))
≤ KBNm0λn +KBNpn(−b).

On passing to the supremum on B, we obtain for all n ∈ N,

sup
h∈B

pn(h) ≤ KBNm0λn +KBNpn(−b).

Since λn −→ 0, we have

lim sup
n

(
sup
h∈B

pn(h)

)
≤ KBN lim sup

n
pn(−b) ≤ 0.

This concludes the proof.
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As an immediat consequence, we obtain the following corollary.

Corollary 1. Let Z be a Banach space. Let (fn)n ⊂ Z∗ be a sequence of linear and
continuous functionnals on Z and let (λn)n ⊂ R+ such that λn → 0. Let A be a no
empty subset of Z, a ∈ co(A) and F := span(A− a) the closed vector space generated
by A. Suppose that co(A− a) (= co(A)− a) has no empty interior in F and that

(1) for all z ∈ co(A), there exists a real number Cz such that, for all n ∈ N, we have

fn(z) ≤ Czλn.

(2) fn
w∗
→ 0.

Then, ‖(fn)|F ‖F ∗ → 0.

Proof. The proof follows Lemma 4 with the subadditive and continuous maps fn and
the bounded set B := SF ∗ .

In the following corollary, the inequality in ii) depends on z ∈ Z unlike in [2] where
the inequality is uniformly independent on z. Note also that if Cz does not depend on
z, the condition ii) is also true by replacing: for all z ∈ co(Q) by for all z ∈ Q.

Corollary 2. Let Q ⊂ Z be a subset of �nite codimension in Z. Let (fk)k ⊂ Z∗ and
εk ≥ 0 and εk → 0 such that

i) ‖fk‖ ≥ δ > 0, for all k ∈ N, and fk
w∗
→ f .

ii) for all z ∈ co(Q), there exists Cz ∈ R such that for all k ∈ N, fk(z) ≥ −εkCz.

Then, f 6= 0.

Proof. Suppose by contradiction that f = 0. By applying Corollary 1 to Q and −fk,
we obtain ‖(fk)|F ‖F ∗ → 0 where F := span(Q− z0). Since F is of �nite codimension
in Z, there exists a �nite-dimensional subspace E of Z, such that Z = F ⊕ E. Thus,
there exists L > 0 such that

‖fk‖Z ≤ L
(
‖(fk)|E‖E∗ + ‖(fk)|F ‖F ∗

)
.

Then, using i) we obtain limk ‖(fk)|E‖E∗ ≥ δ
L . Since the weak-star topology and the

norm topology coincids on E because of �nite dimension, we have that 0 = ‖(f)|E‖E∗ =

limk ‖(fk)|E‖E∗ ≥ δ
L > 0, which is a contradiction. Hence f 6= 0.
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