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Abstrat. In this artile, we bring a new light on the onept of the inf-onvolution operation

⊕ and provides additional informations to the work started in [1℄ and [2℄. It is shown that any

internal law of group metri invariant (even quasigroup) an be onsidered as an inf-onvolution.

Consequently, the operation of the inf-onvolution of funtions on a group metri invariant is in

reality an extension of the internal law of X to spaes of funtions on X . We give an example of

monoid (S(X),⊕) for the inf-onvolution struture, (whih is dense in the set of all 1-Lipshitz
bounded from bellow funtions) for whih, the map argmin : (S(X),⊕) → (X, .) is a (single

valued) monoid morphism. It is also proved that, given a group omplete metri invariant

(X, d), the omplete metri spae (K(X), d∞) of all Katetov maps from X to R equiped with

the inf-onvolution has a natural monoid struture whih provides the following fat: the group

of all isometri automorphisms AutIso(K(X)) of the monoid K(X), is isomorphi to the group

of all isometri automorphisms AutIso(X) of the group X . On the other hand, we prove that

the subset KC(X) of K(X) of onvex funtions on a Banah spae X , an be endowed with a

onvex one struture in whih X embeds isometrially as Banah spae.

Keyword, phrase: Inf-onvolution; group and monoid struture; Katetov funtions.
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1 Introdution.

This artile brings some additional informations to the study of the inf-onvolution struture

developed in [1℄ and [2℄. Given a set X , a map α : X ×X → X and two real valued funtions

f and g de�ned on X . The inf-onvolution of f and g with respet the map α is de�ned as

follows

f ⊕
︸︷︷︸

α

g(x) := inf
y,z∈X/α(y,z)=x

{f(y) + g(z)} ; ∀x ∈ X. (1)

Historially, the inf-onvolution appeared as a tool of funtional analysis and optimization

and starts with the works of Ma Shane [10℄, Fenhel, Moreau and Rokafellar; see [9℄ for refer-

enes, see also the book of J.-B. Hiriart-Urruty and C. Lemarehal [5℄. We proved in [1℄ and [2℄,

that the inf-onvolution also enjoys a remarkable algebrai properties. For example, we proved

that the set (Lip1+(X),⊕) of all no negative and 1-Lipshitz funtions de�ned on a omplete

metri invariant group (X, d), is a monoid and its group of unit is isometrially isomorphi to

X . This result means that the monoid struture of (Lip1+(X),⊕) ompletely determines the

group struture of X whenever X is an group metri invariant.

In this paper, we give additional lighting to the understanding of the inf-onvolution op-

eration. Indeed, it seems that the inf-onvolution is not an �external� operation to the spae

X ating on it, but is in reality a anonial extension of the internal law of X to the spae

Lip1+(X), whenever X is a group metri invariant. In oder words, any internal law of metri

invariant group (even quasigroup) is an inf-onvolution. This approah is motivated by Propo-

sition 1 and Theorem 1 below.

A metri spae (X, ., d) equipped with an internal law . : (y, z) 7→ y.z de�ned from X ×X
into X is said to be metri invariant, if

d(x.y, x.z) = d(y.x, z.x) = d(y, z) ∀x, y, z ∈ X.

Note that every group is metri invariant for the disreet metri. For examples of not trivial

group metri invariant, see [2℄ (For informations on group omplete metri invariant see [7℄).

Let us denote by γ : x ∈ X 7→ δx the Kuratowski operator, where δx : t ∈ X 7→ d(x, t). We

denote by X̂ the image of X under the Kuratowski operator, X̂ := γ(X). The set X̂ is endowed

with the sup-metri

d∞(γ(a), γ(b)) := sup
x∈X

|γ(a)(x)− γ(b)(x)|.

It is well known and easy to see that the Kuratowski operator γ is an isometry: for all a, b ∈ X

d∞(γ(a), γ(b)) = d(a, b).

We de�ne the inf-onvolution on X̂ as in the formula (1). For two element γ(a), γ(b) ∈ X̂,

(γ(a)⊕ γ(b)) (x) := inf
y,z∈X/y.z=x

{γ(a)(y) + γ(b)(z)} .

We obtain the following result whih say that (X, .) and (X̂,⊕) has in general the same

algebrai struture. Reall that a quasigroup is a nonempty magma (X, .) suh that for eah

pair (a, b) the equation a.x = b has a unique solution on x and the equation y.a = b has a unique
solution on y. A loop is an quasigroup with an identity element and a group is an assoiative

loop.

Proposition 1 Let (X, ., d) be a metri invariant spae. Then, the following assertions are

equivalent.

(1) (X, .) is a quasigroup (respetively, loop, group, ommutative group)
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(2) (X̂,⊕) is a quasigroup (respetively, loop, group, ommutative group).

In this ase, the Kuratowski operator γ : (X, ., d) → (X̂,⊕, d∞) is an isometri isomorphism

of quasigroups (respetively, loops, groups, ommutative groups).

We then ask whether the operation ⊕ of (X̂,⊕) naturally extends to the whole spae

(Lip1+(X),⊕). An answer is given by the following result. The part (1) ⇒ (2) was estab-

lished in [1℄ for Banah spaes in onvex setting and in [2℄ in the group framework (as well as

the desription of the group of unit of (Lip1+(X),⊕)).

Theorem 1 Let (X, ., d) be a omplete metri invariant quasigroup. Then the following asser-

tions are equivalent.

(1) (X, .) is a (ommutative) group.

(2) (Lip1+(X),⊕) is a (ommutative) monoid.

In this ase, the identity element of (Lip1+(X),⊕) is γ(e) where e is the identity element of

X and its group of unit is X̂ whih is isometrially isomorphi to X.

The Proposition 1 and Theorem 1 are in our opinion the arguments showing that the monoid

struture of (Lip1+(X),⊕) is in reality a natural extension of the group struture of (X, .) to
the set Lip1+(X).

We use the following result in the proof of Theorem 1. This result is the key of this algebrai

theory of the inf-onvolution. The part I) ⇒ II) was proved in [2℄. The part II) ⇒ I) is new.
A more general form in metri spae framework not neessarily group is given in setion 2.

Theorem 2 Let (X, ., d) be a group omplete metri invariant and let a ∈ X. Let f and g be

two lower semi ontinuous funtions on (X, d). Then, the following assertions are equivalent

I) the map x 7→ f ⊕ g(x) has a strong minimum at a

II) there exists (ỹ, z̃) ∈ X ×X suh that ỹ z̃ = a and : f has a strong minimum at ỹ and g
has at strong minimum a z̃.

Theorem 2 also gives the following orollary. Consider the following submonoid of Lip1(X)

S(X) :=
{
f ∈ Lip1(X)/ f has a strong minimum

}

and the metri ρ de�ned for f, g ∈ Lip1(X) by

ρ(f, g) = sup
x∈X

|f(x)− g(x)|

1 + |f(x)− g(x)|

For a real-valued funtion f with domain X , argmin(f) is the set of elements in X that realize

the global minimum in X ,

argmin(f) = {x ∈ X : f(x) = inf
y∈X

f(y)}.

For the lass of funtions f ∈ S(X), argmin(f) = {xf} is a singleton, where xf is the strong

minimum of f . We identify the singleton {x} with the element x.

Corollary 1 Let (X, ., d) be a group omplete metri invariant having e as identity element.

Then, (S(X), ρ) is a dense subset of Lip1(X) and for all f, g ∈ S(X) we have

argmin (f ⊕ g) = argmin (f).argmin (g).
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In other words, the map argmin : (S(X),⊕, ρ) → (X, ., d) is ontinuous monoid morphism and

onto. We have the following ommutative diagram, where I denotes the identity map on X and

γ the Kuratowski operator

(X, .)
γ
//

I
%%❑

❑

❑

❑

❑

❑

❑

❑

❑

(S(X),⊕)

argmin

��

(X, .)

We are also interested on the monoid struture of the set K(X) of Katetov funtions. There
are lot of literature on the metri and the topologial struture of this spae (See for instane

[3℄, [6℄ and [8℄). We give in this setion some results about the monoid struture of K(X) when
X is a group, and the onvex one struture of the subset KC(X) of K(X) (of onvex funtions)
when X is a Banah spae. Let (X, d) be a metri spae; we say that f : X → R is a Katetov

map if

|f(x)− f(y)| ≤ d(x, y) ≤ f(x) + f(y); ∀x, y ∈ X. (2)

These maps orrespond to one-point metri extensions of X . We denote by K(X) the set of
all Katetov maps on X ; we endow it with the sup-metri

d∞ (f, g) := sup
x∈X

|f(x)− g(x)| < +∞

whih turns it into a omplete metri spae. Reall that X isometrially embeds in K(X) via
the Kuratowski embedding γ : x → δx, where δx(y) := d(x, y), and that one has, for any

f ∈ K(X), that d∞(f, γ(x)) = f(x). It is shown in Setion 7 that (K(X),⊕) has a monoid

struture and KC(X) has a onvex one struture. We obtain the following analogous to the

Banah-Stone theorem whih say that the metri monoid (K(X),⊕, d∞), ompletely determine

the omplete metri invariant group (X, d). Note that in the following result, any monoid

isometri isomorphism has the anonial form. We do not know if this is the ase for other

monoids as the set of all onvex 1-Lipshitz bounded from bellow funtions de�ned on Banah

spae (See Problem 2. in [1℄).

Theorem 3 Let (X, d) and (Y, d′) be two omplete metri invariant groups. Then, a map

Φ : (K(X),⊕, d∞) → (K(Y ),⊕, d∞) is a monoid isometri isomorphism if, and only if there

exists a group isometri isomorphism T : (X, d) → (Y, d′) suh that Φ(f) = f ◦ T−1
for

all f ∈ K(X). Consequently, AutIso(K(X)) (the group of all isometri automorphism of the

monoid K(X)) is isomorphi as group to AutIso(X) (the group of all isometri automorphism

of the group X).

2 The inf-onvolution on omplete metri spae.

The main theorem of this setion (Theorem 4) extend [Theorem 3, [2℄℄ and [Corollary 3, [2℄℄

to omplete metri invariant spae. In [Theorem 3, [2℄℄ and [Corollary 3, [2℄℄, only the part

I) ⇒ II) was proved in the group ontext. Here, we give a neessarily and su�ient ondition

in the more general metri ontext.

We need some notations and de�nitions. Let X be a set and α : X ×X → X be a map.

Given x ∈ X we denote by ∆α(x) the following set depending on α

∆α(x) := {(y, z) ∈ X ×X : α(y, z) = x} ⊂ X ×X.

Note that ∆α(α(s, t)) 6= ∅ for all s, t ∈ X . We also denote by ∆1,α(x) (respetively, ∆2,α(x))
the projetion of ∆α(x) on the �rst (respetively, the seond) oordinate:

∆1,α(x) := {y ∈ X/∃zy ∈ X : α(y, zy) = x} ⊂ X.
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∆2,α(x) := {z ∈ X/∃yz ∈ X : α(yz, z) = x} ⊂ X.

De�nition 1 Let (X, d) be metri spae and α : X × X → X, be a map. We say that α is

d-invariant at x ∈ X, if ∆α(x) 6= ∅ and there exists L1, L2, L
′
1, L

′
2 > 0 suh that

L2d(y1, y2) ≤ d(α(y1, z), α(y2, z)) ≤ L1d(y1, y2); ∀y1, y2 ∈ ∆1,α(x); z ∈ ∆2,α(x).

and

L′
2d(z1, z2) ≤ d(α(y, z1), α(y, z2)) ≤ L′

1d(z1, z2); ∀z1, z2 ∈ ∆2,α(x); y ∈ ∆1,α(x).

The set ∆α(x) is endowed with the metri indued by the produt metri topology of X ×X
i.e d̃ ((y, z), (y′, z′)) := d(y, y′) + d(z, z′) for all (y, z), (y′, z′) ∈ X ×X .

Proposition 2 Let (X, d) be metri spae and α : X ×X → X be a map. Suppose that α is

d-invariant at x ∈ X. Then the restrition of α to the set ∆α(x) is ontinuous.

Proof. Let (y, z), (y0, z0) ∈ ∆α(x). Then,

d(α(y, z), α(y0, z0)) ≤ d(α(y, z), α(y, z0)) + d(α(y, z0), α(y0, z0))

≤ L′
1d(z, z0) + L1d(y, y0)

≤ max(L′
1, L1) (d(z, z0) + d(y, y0))

This inequality shows that the restrition of α to the set ∆α(x) is ontinuous.

For two funtions f and g on X , we de�ne the map ηf,g depending on f and g by

ηf,g : X ×X → R ∪ {+∞}

(y, z) 7→ f(y) + g(z)

Note that the inf onvolution of f and g at x ∈ X , with respet to the law α, oinide with
the in�nimum of ηf,g on ∆α(x)

f ⊕
︸︷︷︸

α

g(x) := inf
y,z∈X/α(y,z)=x

{f(y) + g(z)} := inf
(y,z)∈∆α(x)

ηf,g(y, z).

Exemples 1 The De�nition 1 is satis�ed in the following ases.

1) Let (X, ‖.‖) be a vetor normed spae and α : X ×X → X be the map de�ned by α(y, z) :=
y+z. In this ase, the inf-onvolution orrespond to the lassial de�nition of the inf-onvolution

on vetor spae and we have ∆1,α(x) = ∆2,α(x) = X for all x ∈ X and α satis�es

‖α(y, x)− α(z, x)‖ = ‖α(x, y)− α(x, z)‖ = ‖y − z‖; ∀x, y, z ∈ X.

2) Let (C, ‖.‖) be a onvex subset of a vetor normed spae (X, ‖.‖) and let λ ∈]0, 1[ be a �xed

real number. Let α : C × C → C be the map de�ned by α(y, z) := λy + (1 − λ)z. Then,

{(x, x)} ⊂ ∆α(x) and ∆α(x) = {(x, x)} if, and only if x is an extreme point of C and we have

‖α(y, x)− α(z, x)‖ = λ‖y − z‖; ∀x, y, z ∈ C.

and

‖α(x, y)− α(x, z)‖ = (1− λ)‖y − z‖; ∀x, y, z ∈ C.

3) If (X, ., d) is a metri group, (. is the law of internal omposition of X) and α : (y, z) 7→ y.z,
then ∆1,α(x) = ∆2,α(x) = X for all x ∈ X . Moreover, α is d-invariant at x for eah x ∈ X if

and only if, (X, ., d) is metri invariant. We reall that a metri group is said to be metri in-

variant, if d(y.x, z.x) = d(x.y, x.z) = d(y, z) for all x, y, z ∈ X . Every group is metri invariant

for the disreet metri. We an �nd examples of group metri invariant in [2℄.
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4) However, there exists examples of metri monoids (M,d) with a law . whih is not metri

invariant but suh that . is d-invariant at eah element of the group of unit ofM (See Proposition

5 and Remark 1).

De�nition 2 Let (X, d) be a metri spae, we say that a funtion f has a strong minimum at

x0 ∈ X, if infX f = f(x0) and for all ǫ > 0, there exists δ > 0 suh that

0 ≤ f(x)− f(x0) ≤ δ ⇒ d(x, x0) ≤ ǫ.

A strong minimum is in partiular unique. By dom(f) we denote the domain of f , de�ned by

dom(f) := {x ∈ X : f(x) < +∞}. All funtions in the artile are supposed suh that dom(f) 6=
∅.

In what follows, an element α(y, z) ∈ X will simply be noted by yz and the inf-onvolution

of two funtions f and g will simply be denoted by

f ⊕ g(x) := inf
yz=x

{f(y) + g(z)} .

For a ∈ X , we say that f ⊕ g(a) is strongly attained at (y0, z0), if the restrition of ηf,g to the

set ∆α(a) has a strong minimum at (y0, z0) ∈ ∆α(a).

Theorem 4 Let (X, d) be a omplete metri spaes. Let α : X×X → X, be a map (α(y, z) :=
yz for all y, z ∈ X ×X). Let f and g be two lower semi ontinuous funtions on (X, d). Let

a ∈ X and suppose that the map α is d-invariant at a. Then, the following assertions are

equivalent.

I) the map x 7→ f ⊕ g(x) has a strong minimum at a ∈ X

II) there exists (ỹ, z̃) ∈ ∆α(a) i.e ỹ z̃ = a, suh that : f has a strong minimum at ỹ and g has

at strong minimum a z̃.

Moreover, in this ase, we have

(1) the restrited map ηf,g : ∆α(a) → R ∪ {+∞} has a strong minimum at (ỹ, z̃) ∈ ∆α(a) i.e
f ⊕ g(a) is strongly attained at (ỹ, z̃).

(2) f(x)− f(ỹ) ≥ f ⊕ g(xz̃)− f ⊕ g(a) and g(x)− g(z̃) ≥ f ⊕ g(ỹx)− f ⊕ g(a) for all x ∈ X.

Proof. First, from the de�nition of the inf-onvolution, for all y, y′, z, z′ ∈ X ,

f ⊕ g(yz′) ≤ f(y) + g(z′) (3)

f ⊕ g(y′z) ≤ f(y′) + g(z). (4)

By adding both inequalilies (3) and (4) above we obtain

f ⊕ g(yz′) + f ⊕ g(y′z) ≤ (f(y) + g(z)) + (f(y′) + g(z′)) . (5)

I) ⇒ II). Replaing f by f − 1
2f ⊕ g(a) and g by g − 1

2f ⊕ g(a), we an assume without loss

of generality that f ⊕ g has a strong minimum at a and f ⊕ g(a) = 0. Let (yn)n; (zn)n ⊂ X be

suh that for all n ∈ N∗
, ynzn = a and

0 = f ⊕ g(a) ≤ f(yn) + g(zn) < f ⊕ g(a) +
1

n
.

in other words

0 ≤ f(yn) + g(zn) <
1

n
. (6)

By appllaying (5) with y = yn; z = zn; y
′ = yp and z

′ = zp we have

f ⊕ g(ynzp) + f ⊕ g(ypzn) ≤ (f(yn) + g(zn)) + (f(yp) + g(zp))
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Using the above inequality and (6) we obtain

0 = 2(f ⊕ g(a)) ≤ f ⊕ g(ynzp) + f ⊕ g(ypzn) ≤
1

n
+

1

p
. (7)

Sine x 7→ f ⊕ g has a strong minimum at a, then d(x, a) → 0 whenever f ⊕ g(x) → 0. On the

other hand, f ⊕ g(x) ≥ f ⊕ g(a) = 0 for all x ∈ X . Thus from (7), we get that f ⊕ g(ynzp) → 0
and f ⊕ g(ypzn) → 0 when n, p → +∞. We dedue that d(ynzp, a) → 0, when n, p → +∞.

Sine ypzp = a for all p ∈ N and α is d-invariant at a, then d(yn, yp) ≤ 1
L2

d(ynzp, ypzp) =
1
L2

d(ynzp, a) → 0, when n, p → +∞. Hene (yn)n is a Cauhy sequene and so onverges to

some point ỹ ∈ X sine (X, d) is omplete metri spae. Similarly, we prove that (zn)n on-

verges to some point z̃ ∈ X . By the ontinuity of the map α : (y, z) 7→ yz (See Proposition 2),

we dedue that ỹ z̃ = limn (ynzn) = limn (a) = a.

Using the lower semi-ontinuity of f and g and the formulas (6) we get

f(ỹ) + g(z̃) ≤ lim inf
n→+∞

f(yn) + lim inf
n→+∞

g(zn)

≤ lim inf
n→+∞

(f(yn) + g(zn)) ≤ 0 = f ⊕ g(a).

On the other hand, it is always true that f ⊕ g(a) ≤ f(ỹ) + g(z̃) sine ỹz̃ = a. Thus

f(ỹ) + g(z̃) = f ⊕ g(a) = 0. (8)

Using (8) we obtain

f ⊕ g(ỹx) ≤ f(ỹ) + g(x) = g(x)− g(z̃). (9)

and

f ⊕ g(xz̃) ≤ f(x) + g(z̃) = f(x)− f(ỹ). (10)

Using (10) and the fat that f ⊕ g has a strong minimum at a, we have that f(x) − f(ỹ) ≥ 0
and if f(yn)− f(ỹ) → 0, then f ⊕ g(ynz̃) → 0 whih implies that d(ynz̃, a) → 0 sine f ⊕ g has
a strong minimum at a. On the other hand we have d(yn, ỹ) ≤

1
L2

d(ynz̃, ỹ z̃) =
1
L2

d(ynz̃, a) by
the d-invariane of α at a. Thus d(yn, ỹ) → 0 and so f has a strong minimum at ỹ. The same

argument, by using (9), shows that g has a strong minimum at z̃

II) ⇒ I). We �rst prove that f ⊕ g has a minimum at ỹ z̃ = a and that f(ỹ) + g(z̃) = f ⊕ g(a).
Indeed, sine f(y) ≥ f(ỹ) and g(z) ≥ g(z̃) for all y, z ∈ X , then we get

f ⊕ g(a) := inf
yz=a

{f(y) + g(z)} ≥ f(ỹ) + g(z̃)

On the other hand, f ⊕ g(a) ≤ f(ỹ) + g(z̃) sine ỹ z̃ = a. Thus, f ⊕ g(a) = f(ỹ) + g(z̃). On the

other hand, using again the fat that f(y) ≥ f(ỹ) and g(z) ≥ g(z̃) for all y, z ∈ X , we obtain

for all x ∈ X ,

f ⊕ g(x) := inf
yz=x

{f(y) + g(z)} ≥ f(ỹ) + g(z̃) = f ⊕ g(a).

It follows that f⊕g has a minimum at a = ỹ z̃. Now, let (xn)n ⊂ X be a sequene that minimize

f ⊕ g. Let ǫn → 0+ suh that

f ⊕ g(a) ≤ f ⊕ g(xn) ≤ f ⊕ g(a) + ǫn (11)

From the de�nition of f ⊕ g(xn), for eah n ∈ N∗
, there exists sequenes (yn)n, (zn)n ⊂ X

satisfying ynzn = xn and
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f ⊕ g(xn)−
1

n
≤ f(yn) + g(zn) ≤ f ⊕ g(xn) +

1

n

Sine f(ỹ) + g(z̃) = f ⊕ g(a), it follows that

f ⊕ g(xn)− f ⊕ g(a)−
1

n
≤ (f(yn)− f(ỹ)) + (g(zn)− g(z̃)) ≤ f ⊕ g(xn)− f ⊕ g(a) +

1

n

Using the inequality (11) we get for all n ∈ N∗

−
1

n
≤ (f(yn)− f(ỹ)) + (g(zn)− g(z̃)) ≤ ǫn +

1

n

Sine (f(yn)− f(ỹ)) ≥ 0 and (g(zn)− g(z̃)) ≥ 0, we get that

0 ≤ f(yn)− f(ỹ) ≤ (f(yn)− f(ỹ)) + (g(zn)− g(z̃)) ≤ ǫn +
1

n

and

0 ≤ g(zn)− g(z̃) ≤ (f(yn)− f(ỹ)) + (g(zn)− g(z̃)) ≤ ǫn +
1

n

Sending n to +∞, we have limn→+∞ f(yn) = f(ỹ) and limn→+∞ g(zn) = g(z̃). Sine f
and g has respetively a strong minimum at ỹ and z̃, we dedue that limn→+∞ yn = y
and limn→+∞ zn = z. By the ontinuity of the map α : (y, z) 7→ yz on ∆α(a), we obtain

limn→+∞(ynzn) = ỹ z̃ = a. Sine ynzn = xn for all n ∈ N
∗
, we have limn→+∞ xn = a. Thus

f ⊕ g has a strong minimum at a

Moreover, we have the additional informations:

(1) f ⊕ g(a) is strongly attained at (ỹ, z̃) (We assume as in I) that f ⊕ g(a) = 0). We know

from (8) that f ⊕ g(a) is attained at (ỹ, z̃). To see that ηf,g has in fat a strong minimum at

(ỹ, z̃), let ((yn, zn))n ⊂ ∆α(a) be any sequene suh that

f(yn) + g(zn) := ηf,g(yn, zn) → inf
yz=a

{f(y) + g(z)} = ηf,g(ỹ, z̃) = 0. (12)

By applying (5) with y = ỹ, y′ = yn, z = z̃ and z′ = zn and the formulas (8) and (6), we obtain

0 ≤ f ⊕ g(ỹzn) + f ⊕ g(ynz̃) ≤ (f(ỹ) + g(z̃)) + (f(yn) + g(zn))

= (f(yn) + g(zn)) (13)

Thus f ⊕g(ỹzn) → 0 (and also f ⊕g(ynz̃) → 0) from (12) and (13) and the fat that f ⊕g(x) ≥
0 = f ⊕ g(a), for all x ∈ X . It follows that d(ỹzn, a) → 0 and d(ynz̃, a) → 0, sine f ⊕ g has a

strong minimum at a. Hene, d(yn, ỹ) → 0 sine d(yn, ỹ) ≤
1
L2

d(ynz̃, ỹ z̃) =
1
L2

d(ynz̃, a) by the

d-invariane of α at a, and the fat that ỹ z̃ = a . In a similar way we have d(zn, z̃) → 0. Thus
(ỹ, z̃) is a strong minimum of ηf,g.

(2) This part follows from (9) and (10) .

3 The monoids struture for the inf-onvolution.

The following orollary will permit to desribe the group of unit of submonoids, for the inf-

onvolution struture, of the set Lip1(X) of all 1-Lipshitz and bounded from below funtions.

Corollary 2 Let (X, ., d) be a group omplete metri invariant having e as identity element.

Let f and g be two 1-Lipshitz funtions on X. Then, the following assertions are equivalent.
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(1) f ⊕ g = d(e, .).

(2) there exists ỹ ∈ X and c ∈ R suh that

f(.) = d(ỹ, .) + c := γ(ỹ) + c

and

g(.) = d(ỹ−1, .)− c = γ(ỹ−1)− c.

Proof. (1) ⇒ (2). Sine the law . is in partiular d-invariant at e and the map d(e, .) has a strong
minimum at e, by applying Theorem 4, there exists ỹ, z̃ ∈ X suh that ỹz̃ = e, f(ỹ) + g(z̃) =
f ⊕ g(e) = 0 and f(x) − f(ỹ) ≥ d(e, xz̃) = d(ỹ, x) and g(x) − g(z̃) ≥ d(e, ỹx) = d(ỹ−1, x), for
all x ∈ X. On the other hand, sine f and g are 1-Lipshitz, we have f(x) − f(ỹ) ≤ d(ỹ, x)
and g(x) − g(z̃) ≤ d(z̃, x) = d(ỹ−1, x) , for all x ∈ X. Thus, f(x) − f(ỹ) = d(ỹ, x) and

g(x) − g(ỹ−1) = g(x) − g(z̃) = d(ỹ−1, x) , for all x ∈ X. In other words, f(.) = d(ỹ, .) + c :=
γ(ỹ) + c and g(.) = d(ỹ−1, .)− c = γ(ỹ−1)− c, with c = f(ỹ) = −g(z̃).

(2) ⇒ (1). Suppose that (2) hold, then f ⊕ g(x) =
(
γ(ỹ)⊕ γ(ỹ−1)

)
(x) for all x ∈ X. Sine

(X, ., d) is group omplete metri invariant, by using Proposition 1. we get f ⊕ g = γ(e) :=
d(e, .).

Lemma 1 Let (X, ., d) be a metri spae and . : (y, z) 7→ yz be a law of omposition of X.

1) Suppose that d(yx, zx) ≤ d(y, z) and d(xy, xz) ≤ d(y, z), for all x, y, z ∈ X. Then we have,

for all a, b ∈ X
γ(ab) ≤ γ(a)⊕ γ(b).

2) Suppose d(yx, zx) = d(xy, xz) = d(y, z), for all x, y, z ∈ X. Then, we have for all x ∈ X
and all a, b ∈ X

(γ(a)⊕ γ(b)) (xb) = γ(ab)(xb)

and

(γ(a)⊕ γ(b)) (ax) = γ(ab)(ax).

If moreover X is quasigroup, then we have for all a, b ∈ X

γ(a)⊕ γ(b) = γ(ab).

Proof. 1) Let a, b, x ∈ X , then we have

γ(a)⊕ γ(b)(x) := inf
yz=x

{d(a, y) + d(b, z)} ≥ inf
yz=x

{d(az, yz) + d(ab, az)}

≥ inf
yz=x

d(ab, yz)

= d(ab, x) := γ(ab)(x)

2) Using the metri invariane, we have for all x ∈ X and all a, b ∈ X

(γ(a)⊕ γ(b)) (xb) := inf
yz=xb

{d(a, y) + d(b, z)}

≤ d(a, x)

= d(ab, xb)

:= γ(ab)(xb)

Combining this inequality with the part 1), we get (γ(a)⊕ γ(b)) (xb) = γ(ab)(xb). In a similar

way, we prove (γ(a)⊕ γ(b)) (ax) = γ(ab)(ax). If moreover, X is a quasigroup, then for eah

t, b ∈ X , there exists x ∈ X suh that t = xb. So we obtain γ(a)⊕ γ(b) = γ(ab).

We give the proof of Proposition 1 mentioned in the introdution.
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Proof of Proposition 1. (1) ⇒ (2). Suppose that (X,α) is quasigroup. Using Lemma

1, we have that γ(a) ⊕ γ(b) = γ(ab), for all a, b ∈ X . Using this formula and the injetivity

of γ , it is lear that (γ(X),⊕) is quasigroup (respetively, loop, group, ommutative group)

whenever (X, .) is quasigroup (respetively, loop, group, ommutative group).

The last part of the theorem, follows from the formula γ(a)⊕ γ(b) = γ(ab) and the fat that γ
is isometri.

(1) ⇒ (2). Suppose that (γ(X),⊕) is a quasigroup. Let us prove that (X, .) is quasigroup.
First, we show that for all a, b ∈ X , we have that γ(a) ⊕ γ(b) = γ(ab). Indeed, let a, b ∈ X .

Sine ⊕ is an internal law of (γ(X),⊕), then there exists c ∈ X suh that γ(a) ⊕ γ(b) = γ(c).
Using Lemma 1, we obtain γ(ab) ≤ γ(c). Hene 0 ≤ d(ab, c) = γ(ab)(c) ≤ γ(c)(c) = 0. This

implies that c = ab. Finally we have γ(a) ⊕ γ(b) = γ(ab) for a, b ∈ X . From this formula and

the injetivity of γ, it is lear that (X, .) is quasigroup (respetively, loop, group, ommutative

group) whenever (γ(X),⊕) is quasigroup (respetively, loop, group, ommutative group).

The following Corollary is a partiular ase of the work established in [2℄.

Corollary 3 Let (X, ., d) be a group omplete metri invariant having e as identity element.

Then,

(1) the set Lip1(X) of all 1-Lipshitz and bounded from below funtions, is a monoid having

γ(e) := d(e, .) as identity element and its group of unit U(Lip1(X)) oinides with X̂ + R.

(2) the set Lip1+(X) of all 1-Lipshitz and positive funtions, is a monoid having γ(e) := d(e, .)

as identity element and its group of unit U(Lip1+(X)) oinides with X̂.

Proof. (1) The fat that Lip1(X) is a monoid having γ(e) := d(e, .) as identity element,

follows from Proposition 7. and Lemma 3. in [2℄. Using Proposition 1, we have that X̂ + R ⊂
U(Lip1(X)). The fat that U(Lip1(X)) ⊂ X̂+R, follows from Corollary 2. Thus U(Lip1(X)) =
X̂ + R.

(2) Sine the inf-onvolution of positive funtions is also positive and γ(e) := d(e, .) ∈ Lip1+(X),

then Lip1+(X) is a submonoid of Lip1(X). On the other hand, X̂ ⊂ U(Lip1+(X)) ⊂ U(Lip1(X)) =

X̂ + R. Sine the element of U(Lip1+(X)) are positive funtions we get U(Lip1+(X)) = X̂.

We give now the proof of Theorem 1 mentioned in the introdution.

Proof of Theorem 1. The part (1) ⇒ (2) an be dedued from [2℄ (See also [1℄). Let us prove

(2) ⇒ (1). Sine (Lip1+(X),⊕) is a monoid, there exists and identity element f0 ∈ Lip1+(X).
Sine f0 is the identity element, it satis�es in partiular: γ(a)⊕ f0 = γ(a) for all a ∈ X . Sine

γ(a) := d(a, .) has a strong minimum at a, applying Theorem 4 to the funtions γ(a) and f0,
there exists (ỹ, z̃) ∈ X ×X satisfying ỹ z̃ = a suh that γ(a) has a strong minimum at ỹ and f0
has a strong minimum at z̃. Sine a strong minimum is in partiular unique, then ỹ = a. So, we
have az̃ = a, for all a ∈ X . Thus e := z̃ is the identity element of X . From the assoiativity of

(Lip1+(X),⊕), we obtain in partiular the assoiativity of (X̂,⊕). Sine (X, .) is a quasigroup

(loop) then from Lemma 1, we have γ(a) ⊕ γ(b) = γ(ab) for all a, b ∈ X , so we dedue by

the injetivity of γ, that (X, .) is also assoiative. Hene, (X, .) is a group. The fat that, the

identity element of (Lip1+(X),⊕) is γ(e) where e is the identity element of X and its group of

unit is X̂ , follows from Corllary 3.

4 Metri properties and the density of S(X) in Lip1(X).

Let us onsider the following sets

S(X) :=
{
f ∈ Lip1(X)/ f has a strong minimum

}
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S+(X) :=
{
f ∈ Lip1+(X)/ f has a strong minimum

}

Corollary 4 Let (X, ., d) be a group omplete metri invariant having e as identity element.

Then, S(X) is a submonoid of (Lip1(X),⊕) and U(S(X)) = X̂+R. On the other hand S+(X)
is a submonoid of (Lip1+(X),⊕) and U(S+(X)) = X̂.

Proof. Sine (Lip1(X),⊕) is a monoid having γ(e) ∈ S(X) as identity element and sine S(X)
is a subset of (Lip1+(X),⊕), it su�es to show that ⊕ is an internal law of S(X) whih is the

ase thanks to Theorem 4. On the other hand, X̂ + R ⊂ U(S(X)) ⊂ U(Lip1(X)) = X̂ + R.

Hene U(S(X)) = X̂ + R. In a similar way we obtain the seond part of the Corollary.

Consider now the metris ρ and ρ̃ on Lip1(X) de�ned for f, g ∈ Lip1(X) by

ρ(f, g) = sup
x∈X

|f(x)− g(x)|

1 + |f(x)− g(x)|

ρ̃(f, g) = ρ(f − inf
X
f, g − inf

X
g) + | inf

X
f − inf

X
g|.

Proposition 3 Let (X, d) be a omplete metri spae. Then

(1) the sets (Lip1(X), ρ) and (Lip1(X), ρ̃) (respetively, (Lip1+(X), ρ) and (Lip1+(X), ρ̃)) are

omplete metri spaes.

(2) the set (S(X), ρ) is dense in (Lip1(X), ρ) and (S(X), ρ̃) is dense in (Lip1(X), ρ̃).

(3) the set (S+(X), ρ) is dense in (Lip1+(X), ρ) and (S+(X), ρ̃) is dense in (Lip1+(X), ρ̃).

Proof. The part (1) is similar to Proposition 5. in [1℄ (See also Lemma 1. in [1℄). Let

us prove the part (2). Indeed, let f ∈ Lip1(X) and 0 < ǫ < 1. Consider the funtion

fǫ := (1 − ǫ)f . Clearly, fǫ is (1 − ǫ)-Lipshitz and ρ(fǫ, f) → 0 (respetively ρ̃(fǫ, f) →
0) when ǫ → 0. On the other hand, applying the variational priniple of Deville-Godefroy-

Zizler [4℄ to the (1− ǫ)-Lipshitz and bounded from below funtion fǫ, there exists a bounded

Lipshitz funtion ϕǫ on X suh that supx∈X |ϕǫ(x)| ≤ ǫ and supx,y∈X/x 6=y
|ϕǫ(x)−ϕǫ(y)|

|x−y| ≤ ǫ

and fǫ + ϕǫ has a strong minimum at some point. We have that fǫ + ϕǫ is 1-Lipshitz and

bounded from bellow funtion having a strong minimum, so fǫ+ϕǫ ∈ S(X). On the other hand,
ρ(fǫ + ϕǫ, f) ≤ ρ(fǫ + ϕǫ, fǫ) + ρ(fǫ, f) = ρ(ϕǫ, 0) + ρ(fǫ, f). It follows that ρ(fǫ + ϕǫ, f) → 0
when ǫ → 0 (respetively ρ̃(fǫ + ϕǫ, f) → 0). Thus (S(X), ρ) and (S(X), ρ̃) are respetively

dense in (Lip1(X), ρ) and (Lip1(X), ρ̃).

(3) Let f ∈ Lip1+(X), from (2), there exists fǫ ∈ S(X) suh that ρ(fǫ, f) → 0 when ǫ → 0.
In partiular, infX fǫ → infX f . If infX f > 0, then for very small ǫ we have fǫ > 0 and

so fǫ ∈ S+(X). If infX f = 0, sine infX fǫ → infX f = 0 then ρ(fǫ − infX fǫ, f) ≤ ρ(fǫ −
infX fǫ, fǫ) + ρ(fǫ, f) → 0 when ǫ → 0 and (fǫ − infX fǫ) ∈ S+(X). Thus, (S+(X), ρ) is dense
in (Lip1+(X), ρ). We dedue then that (S+(X), ρ̃) is also dense in (Lip1+(X), ρ̃).

5 The map argmin(.) as monoid morphism.

For a real-valued funtion f with domain X , argmin(f) is the set of elements in X that realize

the global minimum in X ,

argmin(f) = {x ∈ X : f(x) = inf
y∈X

f(y)}.

For the lass of funtions f ∈ S(X), argmin(f) = {xf} is a singleton, where xf is the strong

minimum of f . In what follows, we identify the singleton {x} with the element x. We have the

following proposition.
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Corollary 5 Let (X, ., d) be a group omplete metri invariant having e as identity element.

Then, the map,

argmin : (S(X),⊕, ρ) → (X, ., d)

is surjetive and ontinuous monoid morphism. We have the following ommutative diagram,

where I denotes the identity map on X and γ the Kuratowski operator

(X, .)
γ
//

I
%%❑

❑

❑

❑

❑

❑

❑

❑

❑

(S(X),⊕)

argmin

��

(X, .)

Proof. Let f, g ∈ S(X), then there exists xf , xg ∈ X suh that f has a strong minimum

at xf = argmin(f) and g has a strong minimum at xg = argmin(g). Using Theorem 4,

f ⊕ g has a strong minimum at xfxg = (argmin(f)) (argmin(g)). Thus argmin(f ⊕ g) =
(argmin(f)) (argmin(g)). On the other hand, the map argmin send the identity element d(e, .)
of S(X) to the identity element e ofX , sine the strong minimum of d(e, .) is e. Hene, argmin is
a monoid morphism. For eah x ∈ X , γ(x) ∈ X̂ ⊂ S(X) and argmin (γ(x)) = x. Thus, argmin
is surjetive. Let us prove now the ontinuity of argmin. First, note that for all f, g ∈ Lip1(X)
and all 0 < α < 1,

ρ (f, g) ≤ α⇒ sup
x∈X

|f(x)− g(x)| ≤
α

1− α
. (14)

and in onsequene, we also have

| inf
X
f − inf

X
g| ≤

α

1− α
. (15)

Let (fn)n ⊂ S(X) and f ∈ S(X). Let xn := argmin(fn) and xf = argmin(f). Sine f has a

strong minimum at xf , for all ǫ > 0, there exists δ > 0 suh that for all x ∈ X ,

|f(x)− f(xf )| ≤ δ ⇒ d(x, xf ) ≤ ǫ.

Suppose that ρ (fn, f) ≤ δ
2+δ . Using the triangular inequality and the inequations (14) and

(15) with α = δ
2+δ < 1, we have

|f(xn)− f(xf )| ≤ |f(xn)− fn(xn)|+ |fn(xn)− f(xf )|

= |f(xn)− fn(xn)|+ | inf
X
fn − inf

X
f |

≤
2α

1− α
= δ

whih implies that d(argmin(fn), argmin(f)) := d(xn, xf ) ≤ ǫ. This implies the ontinuity of

argmin on S(X).

Note that, the map ξ : (Lip1(X),⊕, ρ) → R de�ned by ξ : f 7→ infX f , is ontinuous monoid

morphism. The following proposition whih is a onsequene of the above orollary, says that,

in the ase of (S(X),⊕, ρ) there are several ontinuous monoid morphism from (S(X),⊕) into
K with K = R or C.

Proposition 4 Let (X, ., d) be a group omplete metri invariant and χ : (X, ., d) → K be a

ontinuous group morphism. Then, χ ◦ argmin : (S(X),⊕, ρ) → K is a ontinuous monoid

morphism.
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6 Examples of inf-onvolution monoid in the disrete ase.

Let X be a group with the identity element e. We equip X with the disrete metri dis. So

(X, dis) is group metri invariant and Lip1+(X) onsist in this ase on all positive funtions

suh that |f(x)−f(y)| ≤ 1 for all x, y ∈ X . The Kuratowski operator γ : x 7→ δx is here de�ned
by δx(y) = 1 if y 6= x and δx(x) = 0, for all x, y ∈ X . We treat below the ases of X = Z and

X = Z/pZ.

6.1 The inf-onvolution monoid (l∞
dis
(Z),⊕).

Let X = Z equipped with the disrete metri dis whih is invariant. Let l∞dis(Z) the set of

all sequenes (xn)n of real positive numbers suh that |xn − xm| ≤ 1 for all n,m ∈ Z. For

u = (un)n and v = (un)n in l∞dis(Z), we de�ne the sequene

(u⊕ v)n := inf
k∈Z

(un−k + vk); ∀n ∈ Z.

The set (l∞dis(Z),⊕) is a ommutative monoid having the element δe as identity element and its

group of unit U(l∞dis(Z)) is isomorphi to Z by the isomorphism I : Z → U(l∞dis(Z)), k 7→ δk.

6.2 The inf-onvolution monoid (l∞
dis
(Z/pZ),⊕).

Let p ∈ N
∗
and X = Z/pZ equipped with the disrete metri dis whih is invariant. We

denote by l∞dis(Z/pZ) the set of all p-periodi sequenes (xn)n of real positive numbers suh

that |xn− xm| ≤ 1 for all n,m ∈ {0, ..., p− 1}. We identify a sequene (xn)n ∈ l∞dis(Z/pZ) with
(x0, ..., xp−1). For u = (un)n and v = (un)n in l∞dis(Z/pZ), we de�ne the sequene

(u⊕ v)n := min
k∈{0,...,p−1}

(un−k + vk); ∀n ∈ {0, ..., p− 1} .

The set (l∞dis(Z/pZ),⊕) is a ommutative monoid having the element δe as identity element

and its group of unit U(l∞dis(Z/pZ)) is isomorphi to Z/pZ by the isomorphism I : Z/pZ →
U(l∞dis(Z/pZ)), k̄ 7→ δk.

7 The set of Katetov funtions.

We give in this setion some results about the monoid struture of K(X) when X is a group,

and the onvex one struture of the subset KC(X) of K(X) (of onvex funtions) when X is

a Banah spae. If M is a monoid, by U(M) we denote the group of unit of M .

7.1 The monoid struture of K(X).

Proposition 5 Let (X, d) be a (ommutative) group metri invariant having e as identity ele-

ment. Then, the metri spae (K(X),⊕, d∞) is also a (ommutative) monoid having γ(e) = δe
as identity element and satisfying:

(a) d∞(f ⊕ g, h⊕ g) ≤ d∞(f, h) and d∞(g ⊕ f, g ⊕ h) ≤ d∞(f, h), for all f, g, h ∈ K(X)

(b) d∞(δx ⊕ f, δx ⊕ h) = d∞(f ⊕ δx, h⊕ δx) = d∞(f, h), for all f, h ∈ K(X).

Proof. Sine K(X) is a subset of the (ommutative) monoid Lip1(X) of 1-Lipshitz and

bounded from below funtions, whih have δe as identity element (See [2℄), it su�es to prove

that, for all f, g ∈ K(X) and all x1, x2 ∈ X , we have

d(x1, x2) ≤ f ⊕ g(x1) + f ⊕ g(x2)
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Indeed, it follows easily from the de�nition of the in�nimum, the formula (1) and the metri

invariane that, for all n ∈ N∗
, there exists yn, zn, y

′
n, z

′
n ∈ X suh that ynzn = x1 and y

′
nz

′
n = x2

s.t

f ⊕ g(x1) + f ⊕ g(x2) ≥

(

f(yn) + g(zn) +
1

n

)

+

(

f(y′n) + g(z′n) +
1

n

)

= (f(yn) + f(y′n)) + (g(zn) + g(z′n)) +
2

n

≥ d(yn, y
′
n) + d(zn, z

′
n) +

2

n

= d(ynzn, y
′
nzn) + d(y′nzn, y

′
nz

′
n) +

2

n

= d(x1, y
′
nzn) + d(y′nzn, x2) +

2

n

≥ d(x1, x2) +
2

n

Thus f ⊕ g(x1) + f ⊕ g(x2) ≥ d(x1, x2) by sending n to +∞. Hene (K(X),⊕) is a monoid

having δe as identity element.

We prove now that d∞(f ⊕ g, h ⊕ g) ≤ d∞(f, h). Let f, g, h ∈ K(X) and x ∈ X , there exists

yn, zn suh that ynzn = x and h⊕ g(x) > h(yn) + g(zn)−
1
n . Hene, for all n ∈ N∗

f ⊕ g(x)− h⊕ g(x) ≤ (f(yn) + g(zn)) +

(

−h(yn)− g(zn) +
1

n

)

= f(yn)− h(yn) +
1

n

≤ d∞(f, h) +
1

n

Hene, d∞(f ⊕ g, h ⊕ g) ≤ d∞(f, h) by sending n to +∞. In a similar way we prove that

d∞(g ⊕ f, g ⊕ h) ≤ d∞(f, h). For the part (b), it su�es to prove that f ⊕ δa(.) = f(.a−1)
and δa ⊕ f(.) = f(a−1.) for all a ∈ X , sine the map x 7→ ax and x 7→ xa are one to one and

onto from X to X whenever a is invertible. Indeed, f ⊕ δa(x) = infyz=x {f(y) + d(z, a)} =
inf(ya−1)(az)=x

{
f(ya−1) + d(az, a)

}
. Using the metri invariane, we have for all x ∈ X ,

f ⊕ δa(x) = infyz=x
{
f(ya−1) + d(z, e)

}
:= f(.a−1) ⊕ δe(x) = f(.a−1)(x), sine δe is the i-

dentity element. Similarly we prove that δa ⊕ f(.) = f(a−1.). This onlude the proof of the

proposition.

Remark 1 In general, one an not get equality in the part (a) of Proposition 5 sine the inf-

onvolution does not have the anellation property in general (See [11℄).

If Y ⊂ X and f ∈ K(Y ), de�ne f : X → R (the Katetov extension of f) by f(x) =
infy∈Y {f(y) + d(x, y)}. It is well known that f is the greatest 1-Lipshitz map on X whih is

equal to f on Y ; that f ∈ K(X) and χ : f 7→ f is an isometri embedding of K(Y ) into K(X)
(see for instane [6℄). Thanks to the following lemma (we an �nd a more general form in [2℄)

we an assume without loss of generality that X is a omplete metri spae.

Lemma 2 Let (X, d) be a group whih is metri invariant and (X, d) its group ompletion.

Then, (K(X),⊕, d∞) and (K(X),⊕, d∞) are isometrially isomorphi as monoids. More pre-

isely, the map

χ : (K(X),⊕, d∞) → (K(X),⊕, d∞)

f 7→ f :=

[

x ∈ X 7→ inf
y∈X

{
f(y) + d(y, x)

}
]

(16)

is an isometri isomorphism of monoids.
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Proof. It su�es to shows that χ is a surjetive morphism of monoids. The surjetivity is lear,

sine if F ∈ K(X), we take f = F|X , then f = F on X and so f = F on X by ontinuity. Let

us show that χ is a monoid morphism. Indeed, let f, g ∈ K(X). Using the ontinuity of f , g
and y 7→ y−1

and the density of X in X , we have for all x ∈ X ,

f ⊕ g(x) = inf
ỹ z̃=x

{
f(ỹ) + g(z̃))

}

= inf
ỹ∈X

{
f(ỹ) + g(ỹ−1x)

}

= inf
y∈X

{
f(y) + g(y−1x)

}
.

= f ⊕ g(x)

Thus f ⊕ g oinide with f ⊕ g = f ⊕ g on X . Hene f ⊕ g = f ⊕ g.

The following theorem shows that, up to an isometri isomorphism of groups, the group of

unit of K(X) and the group of unit of X are the same.

Proposition 6 Let (X, d) be a group whih is omplete metri invariant. Then, the group of

unit U(K(X)) and X̂ (whih is isometrially isomorphi to X) oinides.

Proof. Sine (X, d) be a omplete metri invariant group, from Proposition 1 we get that

X̂ ⊂ U(K(X)). On the other hand, U(K(X)) ⊂ U(Lip1+(X)) = X̂.

We dedue the following analogous to the Banah-Stone theorem.

Theorem 5 Let (X, d) and (Y, d′) be two omplete metri invariant groups. Then, a map

Φ : (K(X),⊕, d∞) → (K(Y ),⊕, d∞) is a monoid isometri isomorphism if, and only if there

exists a group isometri isomorphism T : (X, d) → (Y, d′) suh that Φ(f) = f ◦ T−1
for all

f ∈ K(X). Consequently, AutIso(K(X)) is isomorphi as group to AutIso(X).

Proof. If T : (X, d) → (Y, d′) is an group isometri isomorphism, learly Φ(f) := f ◦T−1
gives

an monoid isometri isomorphism from (K(X),⊕, d∞) onto (K(Y ),⊕, d∞). For the onverse,

let Φ be monoid isometri isomorphism from (K(X), d∞) onto (K(Y ), d∞), then Φ maps iso-

metrially the group of unit of K(X) onto the group of unit of K(Y ). Using Proposition 6, Φ
maps isometrially the group X̂ onto Ŷ . Then, the map

T := γ−1 ◦ Φ|X̂ ◦ γ

gives an isometri group isomorphism from X onto Y by Proposition 1, where Φ|X̂ denotes the

restrition of Φ to X̂. Sine Φ is isometri we have for all f ∈ K(X) and all x ∈ X

f(x) = d∞
(
f, δx) = d∞ (Φ(f),Φ(δx)) = d∞

(
Φ(f), δT (x)

)
= Φ(f) (T (x))

whih onlude the proof.

Lemma 3 Let (M,d) be a metri monoid, U(M) its group of unit. Suppose that d(xu, yu) ≤
d(x, y) and d(ux, uy) ≤ d(x, y) for all x, y, u ∈ M , and d(xu, yu) = d(ux, uy) = d(x, y) for all

x, y ∈ M and all u ∈ U(M). Then, for all x ∈ X and all a, b ∈ U(X), we have the following

formula

d(x, ab) = inf
yz=x

{d(y, a) + d(z, b)} .

Proof. Let a, b ∈ U(M) and x ∈M , we have

inf
yz=x

{d(y, a) + d(z, b)} ≤ d(xb−1, a) (with y = xb−1; z = b)

= d(x, ab)
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On the other hand,

inf
yz=x

{d(y, a) + d(z, b)} ≥ inf
yz=x

{d(yz, az) + d(az, ab)}

≥ inf
yz=x

d(yz, ab) (by using the triangular inequality)

= d(x, ab).

Thus, d(x, ab) = infyz=x {d(y, a) + d(z, b)}.

We obtain the following formula.

Corollary 6 Let (X, d) be a group whih is metri invariant. Let f ∈ K(X) and a, b ∈ X.

Then

f(ab) = inf
ϕ⊕ψ=f

{ϕ(a) + ψ(b)} .

Proof. Sine the monoid (K(X),⊕, d∞) satisfy the Proposition 5, by applying Lemma 3 to the

monoid M = (K(X),⊕, d∞) and using the fat that X̂ ⊂ U(K(X))(= X̂) and d∞(g, γ(x)) =
g(x) for all x ∈ X and all g ∈ K(X), we obtain for all f ∈ K(X) and all a, b ∈ X :

f(ab) = d∞(f, γ(ab)) = d∞(f, γ(a)⊕ γ(b)) = inf
ϕ⊕ψ=f

{d∞(ϕ, γ(a)) + d∞(ψ, γ(b))}

= inf
ϕ⊕ψ=f

{ϕ(a) + ψ(b))} .

7.2 The onvex one struture of KC(X).

Let (X, ‖.‖) be a Banah spae. We reall that KC(X) := {f ∈ K(X) : f onvex} . Sine the

inf-onvolution of onvex funtions is onvex, the set (KC(X),⊕) is a omplete metri spae

and ommutative submonoid of (K(X),⊕). We equip KC(X) with the external law ⋆ de�ned

as follows: for all f ∈ KC(X) and all λ ∈ R+
by

λ ⋆ f (x) := λf
(x

λ

)

; ∀x ∈ X if λ > 0

0 ⋆ f := γ(0) := ‖.‖.

We reall below the de�nition of a onvex one.

De�nition 3 A ommutative monoid (C,⊕) equipped with a salar multipliation map

⋆ : R+ × C → C

(λ, c) 7→ λ ⋆ c

a suh that

1) 1 ⋆ c = c and 0 ⋆ c = eC, for all c ∈ C where eC denotes the identity element of (C,⊕).

2) (α+ β) ⋆ c = (α ⋆ c)⊕ (β ⋆ c) for all α, β ∈ R+
and all c ∈ C.

3) λ ⋆ (c⊕ c′) = (λ ⋆ c)⊕ (λ ⋆ c′) for all λ ∈ R+
and all c, c′ ∈ C.

is said to be a onvex one.

The following proposition is easily veri�ed.

Proposition 7 The spae (KC(X),⊕, ⋆, d∞) is a omplete metri onvex one with the identity

element γ(0).

The omplete metri onvex one struture of (KC(X),⊕, ⋆, d∞) indue a struture of Banah

spae on X̂ by setting λ ⋆ γ(x) := (−λ) ⋆ γ(−x), if λ < 0 and taking the norm |||γ(x)||| :=
d∞ (γ(x), γ(0)) for all x ∈ X . In fat, we an also say that the Banah spae X extend its

struture anonially to some onvex one struture on KC(X).
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Proposition 8 The Kuratowski operator γ : (X,+, ., ‖.‖) →
(

X̂,⊕, ⋆, |||.|||
)

is an isometri

isomorphism of Banah spaes.

Proof. Using Proposition 1, it just remains to prove that γ(λx) = λ ⋆ γ(x) for all x ∈ X and

λ ∈ R. Indeeed, let x ∈ X and λ ∈ R∗+
, by de�nition γ(λx) : y 7→ δλx(y) = ‖y − λx‖ =

λ‖ yλ − x‖ := λ ⋆ δx(y). So, γ(λx) = λ ⋆ γ(x). If λ = 0, then by de�nition 0 ⋆ γ(x) = γ(0). If
λ < 0, γ(λx) = γ((−λ)(−x)) = (−λ) ⋆ γ(−x) := λ ⋆ γ(x).

Theorem 6 Let X and Y two Banah spaes. Then (KC(X),⊕, ⋆, d∞) and (KC(Y ),⊕, ⋆, d∞)
are isometrially isomorphi as onvex one if, and only if, X and Y are isometrially isomor-

phi as Banah spaes.

Proof. Similar to the proof of Theorem 5.

Using the �xed point Theorem, we obtain the following proposition.

Proposition 9 Let X be a Banah spae, g ∈ KC(X) and λ ∈ (0, 1). Then, there exists a

unique funtion f0 ∈ KC(X) suh that (λ ⋆ f0)⊕ g = f0.

Proof. Let us onsider the map L : KC(X) → KC(X) de�ned by L(f) = (λ ⋆ f) ⊕ g. Using

Proposition 5 we have for all f, f ′ ∈ KC(X),

d∞(L(f), L(f ′)) ≤ d∞(λ ⋆ f, λ ⋆ f ′) = λd∞(f, f ′).

Sine λ ∈ (0, 1), then L is ontrative map. So by the �xed point Theorem, there exists a

unique funtion f0 ∈ KC(X) suh that L(f0) = f0.
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