
HAL Id: hal-01164797
https://paris1.hal.science/hal-01164797

Preprint submitted on 17 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The inf-convolution between algebra and optimization.
Applications to the Banach-Stone theorem.

Mohammed Bachir

To cite this version:
Mohammed Bachir. The inf-convolution between algebra and optimization. Applications to the
Banach-Stone theorem.. 2015. �hal-01164797�

https://paris1.hal.science/hal-01164797
https://hal.archives-ouvertes.fr


To cite this version:

Mohammed Bachir. The inf-convolution between algebra and optimization. Applications to
the Banach-Stone theorem.. 24 pages. 2014. <hal-01074025>

HAL Id: hal-01074025

http://hal.univ-paris1.fr/hal-01074025

Submitted on 12 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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1 Introdu
tion.

We proved re
ently in [2℄ a version of the Bana
h-Stone theorem for the inf-
onvolution

stru
ture. More pre
isely, if (X, ‖.‖) is a Bana
h spa
e and CL1(X) denotes the set of all
1-Lips
hitz 
onvex and bounded from below fun
tions, then (CL1(X),⊕) is a 
ommu-

tative monoid having e = ‖.‖ as identity element for the operation ⊕ of inf-
onvolution.

We proved that this monoid equipped with a natural metri
, 
ompletely determine the

Bana
h stru
ture of X. In [2℄ we used the Bana
h-Dieudonné theorem (See Theorem

9) whi
h applies only in this 
onvex framework.

In this arti
le we establish general results in the the group framework instead of

the Bana
h spa
es and we handle more general monoids. The tool used in this paper

is a new result of optimization. Our �rst motivation is to prove a new versions of the

Bana
h-Stone theorem for the inf-
onvolution stru
ture in the group framework. For

this purpose, we are going to study and give a 
omplete and expli
it des
ription of the

group of unit of general and abstra
t 
lass of monoids for the inf-
onvolution stru
ture.

Histori
ally, the inf-
onvolution appeared as tool of fun
tional analysis and optimiza-

tion (See for instan
e the work of [7℄, [10℄, [5℄, [12℄) but it turns out as we are going

to reveal it in this arti
le, that the inf-
onvolution also enjoys a remarkable algebrai


properties. Re
all that the Bana
h-Stone theorem asserts that the Bana
h stru
ture of

the spa
e (C(K), ‖.‖∞) of 
ontinuous fun
tions on a 
ompa
t spa
e K 
ompletely de-

termine the topologi
al stru
ture ofK. More pre
isely, the Bana
h spa
es (C(K), ‖.‖∞)
and (C(L), ‖.‖∞) are isometri
ally isomorphi
 if and only if the 
ompa
t spa
es K and

L are homeomorphi
. The Bana
h-Stone theorem has been extended on various dire
-

tions and other stru
ture are 
onsidered by authors like the Bana
h algebra stru
ture

or unital ve
tor latti
e stru
ture. The literature being very ri
h on this questions, we

send ba
k to the referen
e [3℄ for a more 
omplete history and examples of extensions

(See also [1℄ for the Bana
h-Stone theorem for the Bana
h stru
ture on abstra
t 
lass

of fun
tion spa
es).

In all this paper, we assume that (X, ., eX ) is a group (not ne
essarily abelian)

denoted multipli
atively and having the identity element eX . By F(X) we denote the

set of all maps de�ned from X into R and bounded fom below. The inf-
onvolution

operation on F(X) (See also Moreau [7℄, [8℄) is de�ned by

(f ⊕ g)(x) = inf
yz=x

{f(y) + g(z)} .

= inf
z∈X

{
f(xz−1) + g(z)

}
.

In general f ⊕ g 6= g ⊕ f if X is not assumed to be an abelian group.

Clearly, (F(X),⊕) is a semigroup. If moreover X is an abelian group then (F(X),⊕)
is a 
ommutative semigroup. The semigroup F(X) is equiped with the useful metri
 :

d(f, g) := sup
x∈X

|(f(x)− infX f)− (g(x) − infX g)|

1 + |(f(x)− infX)− (g(x)− infX g)|
+ | inf

X
f − inf

X
g|, ∀f, g ∈ F(X).

The following formulas is always true

inf
X
(f ⊕ g) = inf

X
f + inf

X
g; ∀f, g ∈ F(X).
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This guarantees in parti
ular that F0(X) := {f ∈ F(X) : infX f = 0} is a subsemigroup

of (F(X),⊕).

1.1 Motivation and example.

The proposition bellow is the kind of results that we wish to show in this arti
le.

De�nition 1 Let (X,m) be a metri
 group. We say that (X,m) is a metri
 invariant

group if the metri
 m is invariant i.e

m(x, y) = m(ax, ay) = m(xa, ya) ∀x, y, a ∈ X.

If moreover (X,m) is 
omplete we say that (X,m) is 
omplete metri
 invariant group.

Remark 1 Every Fré
het spa
e is a 
omplete metri
 invariant group. For example of

a non abelian 
omplete metri
 invariant group see Example 2.

We denote by (Lip0(X),⊕) the semigroup of all Lips
hitz and bounded from below

fun
tions f de�ned on (X,m) su
h that infX f = 0 and Lip10(X) the monoid in
luded

in Lip0(X) of all 1-Lips
hitz map. the monoid Lip10(X) has the map ϕm : x 7→ m(x, eX)
as identity element. The symbol

∼= denotes �isometri
ally isomorphi
�.

We obtain the following version of the Bana
h-Stone theorem for the inf-
onvolution

stru
ture whi
h say that the monoid (Lip10(X),⊕) 
ompletely determine the 
omplete

metri
 invariant group (X,m).

Proposition 1 Let (X,m) and (Y,m′) be 
omplete metri
 invariant group. Then the

following assertion are equivalent.

(1) (X,m) ∼= (Y,m′) as groups.

(2) (Lip10(X), d) ∼= (Lip10(Y ), d) as monoids.

(3) There exits a semigroup isomorphism isometri
 Φ : (Lip0(X), d) → (Lip0(Y ), d)
su
h that Φ(ϕm) = ϕm′

.

The proof of this result is based on the following two arguments ( and follows from the

more general Theorem ??):

(1) An isomorphism of monoids send the group of unit U(Lip10(X)) of Lip10(X) on the

group of unit U(Lip10(Y )) of Lip10(Y ).

(2) The group of unit U(Lip10(X)) equipped with the metri
 d is isometri
ally isomorphi


to (X, m
1+m

). This is also equivalent to the fa
t that U(Lip10(X)) equiped with the metri


d∞ is isometri
ally isomorphi
 to (X,m), where d∞(f, g) := supx∈X {|f(x)− g(x)|} <
+∞ for all f, g ∈ U(Lip10(X)).

1.2 The main algebrai
 results for the inf-
onvolution.

The study of abstra
t subsemigroups or submonoids of F(X) follows from the study of

subsemigroups or submonoids of F0(X).

Proposition 2 (F(X),⊕, d) ∼= (F0(X)×R,⊕, d1) as semigroups. Where (f, t)⊕(g, s) :=
(f ⊕ g, t+ s) and d1((f, t); (g, s)) := d(f, g) + |t− s| for all (f, t), (g, s) ∈ F0(X) × R.
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Our result in this paper also applies for general monoids in
luded in F0(X). Let

M0,ϕ(X) be an abstra
t monoid of F0(X) and having ϕ as identity element, then ϕ is in

parti
ular an idempotent element i.e ϕ⊕ϕ = ϕ. We wonder then if the result obtained in

Proposition 1 hold for the abstra
t 
lass of monoid M0,ϕ(X). The answer is a�rmative

for idempotent element ϕ satisfying the 
ondition : ϕ(x) = ϕ(x−1) = 0 ⇔ x = eX .
This motivates the following de�nition. Note that every monoid M0,ϕ(X) having ϕ as

identity element is a submonoid of the following formal monoid

F0,ϕ(X) := {f ∈ F0(X) : f ⊕ ϕ = ϕ⊕ f = f} .

Let us remark that sin
e infX(f ⊕ g) = infX f + infX g; ∀f, g ∈ F(X), then every

idempotent element of F(X) belongs ne
essarily to F0(X) i.e ϕ ⊕ ϕ = ϕ ⇒ ϕ ≥ 0 =
infX ϕ.

De�nition 2 Let ϕ ∈ F(X). We say that ϕ is a remarkable idempotent if ϕ is an

idempotent element and satisfy the following two properties:

(1) ϕ(xy) = ϕ(yx) pour tout x, y ∈ X (Always true if X is 
ommutative).

(2) ϕ(x) = ϕ(x−1) = 0 ⇔ x = eX .

We have the following more expli
it 
hara
terization of remarkable idempotent (see

se
tion 3.).

Proposition 3 Let ϕ ∈ F(X). Then, ϕ is remarkable idempotent if and only if ϕ
satisfay :

(1) ϕ(xy) = ϕ(yx) for all x, y ∈ X.

(2) ϕ(x) = ϕ(x−1) = 0 ⇔ x = eX .

(3) ϕ(xy) ≤ ϕ(x) + ϕ(y) pour tout x, y ∈ X (i.e ϕ is subadditive).

For ea
h remarkable idempotent ϕ we 
an asso
iate in a 
anoni
al way the metri
 ∆∞,ϕ

on X de�ned by ∆∞,ϕ(x, y) := max(ϕ(xy−1), ϕ(yx−1)). We denote by (X,∆∞,ϕ)
the group 
ompletion of (X,∆∞,ϕ). We denote by ϕ the unique extension of ϕ to

(X,∆∞,ϕ) sin
e ϕ is 1-Lip
hitz for the metri
 ∆∞,ϕ by subadditivity. Note that

(X,∆∞,ϕ) =(X,∆∞,ϕ) and that ϕ is also a remarkable idempotent. We need the

following set whi
h is a generalization of the set of 1-Lips
hitz fun
tions :

Lip10,ϕ(X) :=
{
f ∈ F0(X) : f(x)− f(y) ≤ ϕ(xy−1); ∀x, y ∈ X

}
.

Sin
e ϕ(xy−1) ≤ ∆∞,ϕ(x, y) and ∆∞,ϕ is a metri
 invariant then Lip10,ϕ(X) is a subset

of Lip10(X) of all 1-Lips
hitz map f on (X,∆∞,ϕ) su
h that infX f = 0.

We have the following useful identi�
ation between the formal monoid F0,ϕ(X) and
the more expli
it set Lip10,ϕ(X).

Proposition 4 Let ϕ ∈ F(X) be a remarkable idempotent. Then F0,ϕ(X) = Lip10,ϕ(X)

and so Lip10,ϕ(X) is a monoid having ϕ as identity element.

Remark 2 We re
over from the above proposition the monoid (Lip10(X),⊕) mentioned

in the previous se
tion from F0,ϕm(X) where ϕm : x 7→ m(x, eX) whi
h is a remarkable

idempotent.
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Proposition 5 For every remarkable idempotent ϕ ∈ F(X) and every monoidM0,ϕ(X)
we have that M0,ϕ(X) is a submonoid of the monoid Lip10,ϕ(X).

The previous proposition explains that the study of abstra
t monoids of F0(X) ensues
from the study of the monoid Lip10,ϕ(X).

A. The group of unit.

Let us announ
e now our main algebrai
 result. We denote by U(Lip10,ϕ(X)) the

group of unit of the monoid (Lip10,ϕ(X),⊕).

Theorem 1 Let ϕ ∈ F(X) a remarkable idempotent. Then,

(U(Lip10,ϕ(X)), d∞) ∼= (X,∆∞,ϕ)

as groups. This is also equivalent to

(U(Lip10,ϕ(X)), d) ∼= (X,
∆∞,ϕ

1 + ∆∞,ϕ

).

Sin
e the 
ompletion of metri
 spa
es is unique up to isometry, the following 
orollary

gives an alternative way to 
onsiderer the 
ompletion of group metri
 invariant.

Corollary 1 Let (X,m) a group metri
 invariant. Then

(X,m) ∼= (U(Lip10(X)), d∞).

Let us 
hara
terize now the group of unit of abstra
t monoid M0,ϕ(X) of F0(X).

Corollary 2 Let ϕ ∈ F(X) be a remarkable idempotent. Let M0,ϕ(X) be an abstra
t

monoid of F0(X) having ϕ as identity element. Then the group of unit U(M0,ϕ(X)), d)

of M0,ϕ(X) is isometri
ally isomorphi
 to a subgroup of (X,
∆∞,ϕ

1+∆∞,ϕ
).

B. The Bana
h-Stone theorem.

We obtain now the following general version of the Bana
h-Stone theorem for the inf-


onvolution stru
ture.

Theorem 2 Let X and Y be tow groups and let ϕ ∈ F(X) and ψ ∈ F(Y ) be two

remarkable idempotents. Then (1) ⇒ (2) ⇒ (3) ⇔ (4) ⇒ (5) ⇒ (6). If moreover we

assume that ϕ and ψ are symetri
 (i.e ϕ(x) = ϕ(x−1) and ψ(y) = ψ(y−1) for all x ∈ X
and all y ∈ Y ), then (1) − (6) are equivalent.

(1) There exist a group isomorphism T : X → Y su
h that ψ ◦ T = ϕ.

(2) There exist a semigroup isomorphism isometri
 Φ : F(X) → F(Y ) sush that Φ(0) =
0 and Φ(ϕ) = ψ.

(3) There exist a semigroup isomorphism isometri
 Φ : F0(X) → F0(Y ) sush that

Φ(ϕ) = ψ.

(4) (Lip10,ϕ(X), d) ∼= (Lip1
0,ψ

(Y ), d) as monoids.

(5) (Lip10,ϕ(X), d) ∼= (Lip1
0,ψ(Y ), d) as monoids.

(6) (X,∆∞,ϕ) ∼= (Y ,∆∞,ψ) as groups.
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1.3 The main optimization results for the inf-
onvolution.

The algebrai
 main results of the previous se
tions follows from the following optimiza-

tion result whi
h applies on a general group metri
 invariant (not ne
essarily abelian).

This result have many of other appli
ations of optimization in parti
ular for the reso-

lution of the inf-
onvolution equations.

De�nition 3 Let (X,m) be a metri
 spa
e, we say that a fun
tion f has a strong

minimum at x0 ∈ X, if infX f = f(x0) and m(xn, x0) → 0 whenever f(xn) → f(x0).
A strong minimum is in parti
ular unique.

Theorem 3 Let (X,m) be a 
omplete metri
 invariant group with the identity element

eX . Let f and g be two lower semi 
ontinuous fun
tions on (X,m). Suppose that the

map x 7→ f ⊕ g(x) + f ⊕ g(x−1) has a strong minimum at eX and f ⊕ g(eX) = 0. Then
there exists z0 ∈ X su
h that :

(1) the map η : z → f(z−1) + g(z) has a strong minimum at z0 ∈ X (we say that

f ⊕ g(eX ) is attained strongly at z0).

(2) f(x) ≥ f ⊕ g(xz0) + f(z−1
0 ) and g(x) ≥ f ⊕ g(z−1

0 x) + g(z0) for all z ∈ X.

The following result shows that a strong linear perturbation of the 
onvolution f ⊕ g
at some point x0 of two lower semi 
ontinuous fun
tions f and g leads to a strong

perturbation of f and g with the same perturbation on respe
tively some points x1 and
x2 su
h that x1x2 = x0.

Corollary 3 Let (X,m) be a 
omplete metri
 invariant group with the identity element

eX . Let p : X → R be a group morphism and f and g be two lower semi 
ontinuous

fun
tions on (X,m). Suppose that the map x 7→ f ⊕ g(x)− p(x) has a strong minimum

at x0 , then there exists z0 ∈ X su
h that

(1) the map η : z → f(x0z
−1) + g(z) has a strong minimum at z0 ∈ X i.e f ⊕ g(x0) is

attained strongly at z0.

(2) f − p has a strong minimum at x0z
−1
0 and g − p has a strong minimum at z0.

1.4 Organization of the paper.

This arti
le is organied as follow. In se
tion 2. we give some examples of 
omplete

metri
 invariant group, remarkable idempotent and monoids for the inf-
onvolution

stru
ture. In se
tion 3. we give the proof of our main optimization result Theorem

5 (Theorem 3 in the introdu
tion). In se
tion 4. we give several algebrai
 properties

of the inf-
onvolution stru
ture and the proof of our main algebrai
 result Theorem 6

(Theorem 1 in the introdu
tion). In se
tion 5. We give various versions of the Bana
h-

Stone theorem and the proof of the main result of this se
tion Theorem 7 (Theorem 2

in the introdu
tion). Finally in se
tion 6. We give an algebrai
 proof of the well know

Bana
h-Dieudonné theorem (See Theorem 9).

1.5 A
knowledgments.

The author thanks Professor Gilles Godefroy for the diverse dis
ussions as well as for

his invaluable advi
e.
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2 Examples.

A. Complete metri
 invariant groups.

Exemples 1 (Abelian group 
ase).

(1) Every Fré
het spa
e is 
omplete metri
 invariant group. In parti
ular every Bana
h

spa
e equiped with the metri
 asso
iated the the norm is a 
omplete metri
 invariant

group.

(2) Let E be a set of �nite 
ardinal and P(E) the set of all subset of E. The set

(P(E),∆) is an abeliean group, where ∆ is the symmetri
 di�eren
e between two sets

: A∆B = (A ∪ B) \ (A ∩ B) for all A,B ∈ P(E). We denote by |A| the 
ardinal

of A. Then (P(E),m) is a 
omplete metri
 group where m is the metri
 de�ned by

m(A,B) = |A∆B|
|E| on P(E).

(3) Every group X is 
omplete metri
 invariant group for the dis
rete metri
.

Exemples 2 (Non abelian group 
ase). Let H be a real separable Hilbert spa
e,

O(H) be the orthogonal group on H and I be the identity operator. We denote by

Oc(H) := {T ∈ O(H) : I − T is a 
oma
t operator}

and

Oh(H) := {T ∈ O(H) : I − T is a Hilbert-Shmidt operator} .

The metri
s dc and dh as de�ned as follow : dc(T, S) = ‖T − S‖op and dh(T, S) =
‖T − S‖HS where ‖.‖op is the norm operator and ‖.‖HS is the Hilbert-S
hmidt norm

‖A‖2HS = Tr|(A
∗

A)| :=
∑

i∈I

‖Aei‖
2

where ‖.‖ is the norm of H and {ei : i ∈ N} an orthonormal basis of H. This de�nition

is independent of the 
hoi
e of the basis.

Theorem 4 (See [[11℄, Theorem 1.1℄) (OC(H), dc) and (Oh(H), dh) are 
omplete

separable metri
 invariant (non abeliean) groups.

B. Remarkable idempotent.

Exemples 3

(1) Let (X,m) be a metri
 invariant group with the identity element eX and 0 < α ≤ 1.
Then the map ϕ in the following 
ases is remarkable idempotent in F(X). In this 
as

ϕ is symetri
 ϕ(x) = ϕ(x−1) for all x ∈ X.

(a) the map ϕ(x) := m(eX , x)
α
for all x ∈ X.

(b) Let χ : R+ → R
+
be an in
reasing and sub-additive fun
tion having a strong

minimum at 0 and su
h that χ(0) = 0. We de�ne ϕ as follow. ϕ(x) :=
χ(m(eX , x)

α).

(2) Let (X, ‖.‖X ) be a real normed ve
tor spa
e. Let C be a 
onvex bounded sub-

set of X 
ontaining the origin. Then the Minkowski fun
tional ϕC(x) :=
inf {λ > 0 : x ∈ λC} for all x ∈ X is remarkable idempotent.

8



(3) Let (X, ‖.‖X ) be a ve
tor normed spa
e , and K ⊂ X∗
be a 
onvex weak-star 
losed

and bounded su
h that int(K) 6= ∅ (int(K) denotes the interior of K for the

norm topology). Then the support fun
tion de�ned by σK(x) := supp∈K p(x) is
remarkable idempotent.

(4) Let X be any group with the identity element eX . Then the map ϕeX de�ned by

ϕeX (eX) = 0 and ϕeX (x) = 1 if x 6= eX is remarkable idempotent.

C. Examples of monoids for the inf-
onvolution.

Exemples 4

(1) Let (X, ‖.‖X ) be a Bana
h spa
e and and K ⊂ X∗
be a 
onvex weak-star 
losed and

bounded su
h that int(K) 6= emptyset. Let LC(X) the set of all bounded from below


onvex and Lips
hitz fun
tions on X. Then (M0,σK (X),⊕) := (LC(X)∩Lip0,σK (X),⊕)
is a monoid having σK as identity element. If K = BX∗

then σK = ‖.‖ and in this 
ase

we re
over the monoid studied in [2℄.

(2) Let (X,m) be a 
omplete metri
 invariant group with identity element eX and let

0 < α ≤ 1 and ϕm(x) = mα(ex;x) for all x ∈ X. Let Lipα(X) be the set of all bounded

from below, α-Hölder fun
tions on X and Lipα(X) is the set of all α-Hölder fun
tions

on X su
h that infX f = 0. Then Lipα(X) and Lipα(X) are monoid having ϕm as

identity element.

(3) Let IC(Rn) be the set of all inf-
ompa
t fun
tions from R
n
into R and let 0 < α ≤ 1.

Then (IC(Rn),⊕) is a semigroup (See [7℄) and IC(Rn)∩Lipα(Rn) is a monoid having

ϕ = ‖.‖α as identity element.

(4) Let X be any algebrai
 group with the identity element eX and let m be the dis
rete

distan
e on X and δeX (x) = 0 if x = eX and take the value 1 otherwise. Let F1(X) ={
f : X → R : supx,y∈X |f(x)− f(y)| ≤ 1

}
and F1

0 (X) := {f : X → [0, 1] : infX f = 0}.
Then F1(X) and F1

0 (X) are monoids having δeX as identity element.

3 The proof of the main optimization results.

Theorem 5 Let (X,m) be a 
omplete metri
 invariant group with the identity element

eX . Let f and g be two lower semi 
ontinuous fun
tions on (X,m). Suppose that the

map x 7→ f ⊕ g(x) + f ⊕ g(x−1) has a strong minimum at eX and f ⊕ g(eX) = 0. Then
there exists z0 ∈ X su
h that :

(1) the map η : z → f(z−1) + g(z) has a strong minimum at z0 ∈ X.

(2) f(x) ≥ f ⊕ g(xz0) + f(z−1
0 ) and g(x) ≥ f ⊕ g(z−1

0 x) + g(z0) for all z ∈ X.

Proof. (1) Let (zn)n ⊂ X be su
h that for all n ∈ N
∗
,

f ⊕ g(eX ) ≤ f(z−1
n ) + g(zn) < f ⊕ g(eX) +

1

n
.

Sin
e f ⊕ g(eX ) = 0 then

0 ≤ f(z−1
n ) + g(zn) <

1

n
. (1)

9



On the other handfor all x, y ∈ X,

f ⊕ g(xy−1) ≤ f(x) + g(y−1) (2)

f ⊕ g(yx−1) ≤ f(y) + g(x−1). (3)

By adding both inequalilies (2) and (3) above we obtain for all x, y ∈ X

f ⊕ g(xy−1) + f ⊕ g(yx−1) ≤
(
f(x) + g(x−1)

)
+
(
f(y) + g(y−1)

)
. (4)

By appllaying the above inequality with x = z−1
n and y = z−1

m , we have

f ⊕ g(z−1
n zm) + f ⊕ g(z−1

m zn) ≤
(
f(z−1

n ) + g(zn)
)
+

(
f(z−1

m ) + g(zm)
)

From our hypothesis we have that the map z → f ⊕ g(z) + f ⊕ g(z−1) has a stong

minimum at eX with 0 = f ⊕ g(eX)+ f ⊕ g(e−1
X ). So from the above inequality and (1)

we obtain

0 ≤ f ⊕ g(z−1
n zm) + f ⊕ g(z−1

m zn) ≤
1

n
+

1

m
.

Thus f ⊕ g(z−1
n zm) + f ⊕ g((z−1

n zm)
−1) → 0 when n,m → +∞ whi
h implies that

m(eX , z
−1
n zm) → 0 or equivalently m(zn, zm) → 0 sin
e m is invariant. Thus the

sequen
e (zn)n is Cau
hy in (X,m) and so 
onverges to some z0 sin
e (X,m) is a


omplete metri
 spa
e. By the lower semi-
ontinuity of f and g, the 
ontinuity of

z → z−1
and by using the formulas (1) we get

f(z−1
0 ) + g(z0) ≤ 0 = f ⊕ g(eX).

On the other hand, by de�nition we have f ⊕ g(eX ) ≤ f(z−1
0 ) + g(z0). Thus

f(z−1
0 ) + g(z0) = f ⊕ g(eX ) = 0. (5)

It follows that η has a minimum at z0 ( by de�nition we have infz∈X η(z) = f ⊕ g(eX)).
To see that η has a strong minimum at z0, let (xn)n be any sequen
e su
h that

f(x−1
n ) + g(xn) → infz∈X

{
f(z−1) + g(z)

}
= 0. By applying (4) with x = z−1

0 and

y = x−1
n and the formulas (5) and (1) with the fa
t that f ⊕ g(z) + f ⊕ g(z−1) ≥ 0 for

all z ∈ X, we obtain that f ⊕ g(z−1
0 xn)+ f ⊕ g(x

−1
n z0) → 0 whi
h implies by hypothesis

that m(xn, z0) → 0. Thus z0 is a strong minimum of η.

(2) Using the part (a) we have that 0 = f ⊕ g(eX ) = f(z−1
0 ) + g(z0). We have

f ⊕ g(z−1
0 x) = inf

y∈X

{
f(z−1

0 xy−1) + g(y)
}

≤ f(z−1
0 ) + g(x)

= −g(z0) + g(x). (6)

and

f ⊕ g(xz0) = inf
y∈X

{
f(xz0y

−1) + g(y)
}

≤ f(x) + g(z0)

= −f(z−1
0 ) + f(x). (7)

This ends the proof of (2).
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Lemma 1 Let (X,m) be a metri
 group with the identity element eX and let h : X → R.

Suppose that h has a strong minimum at eX and h(eX) = 0, then the map x 7→ h(x) +
h(x−1) has a strong minimum at eX and h(eX ) = 0.

Remark 3 The 
onverse of the above proposition is not true in general (Take h(x) =
x+ |x| on X = (R,+)).

Proof : Sin
e h has a strong minimum at eX and h(eX) = 0 then h(x) ≥ h(eX) = 0
for all x ∈ X. So h(x) + h(x−1) ≥ 0. On the other hand, we have h(eX ) + h(e−1

X ) =
2h(eX) = 0, and so x → h(x) + h(x−1) has a minimum at eX . Let us show that eX is

a strong minimum for x→ h(x) + h(x−1). Indeed, sin
e h ≥ 0, then we have,

0 ≤ h(x) ≤ h(x) + h(x−1)

for all x ∈ X. If (zn)n is a sequen
e su
h that h(zn)+h(z
−1
n ) → infx∈X

(
h(x) + h(x−1)

)
=

0 then by the above inequalities we have that h(zn) → 0 whi
h implies that zn → eX
sin
e h has a strong minimum at eX . Thus x → h(x) + h(x−1) has a strong minimum

at eX and h(eX) = 0.

Corollary 4 Let (X,m) be a 
omplete metri
 invariant group with the identity element

eX . Let p : X → R be a group morphism and f and g be two lower semi 
ontinuous

fun
tions on (X,m). Suppose that the map x 7→ f ⊕ g(x)− p(x) has a strong minimum

at x0 , then there exists z0 ∈ X su
h that

(1) the map η : z → f(x0z
−1) + g(z) has a strong minimum at z0 ∈ X and f(x0z

−1
0 ) +

g(z0) = f ⊕ g(x0). In parti
ular f ⊕ g(x0) is exa
t at x0.

(2) f − p has a strong minimum at x0z
−1
0 and g − p has a strong minimum at z0.

Proof. First, note that f ⊕ g(x)− p(x) = (f − p)⊕ (g− p)(x) for all x ∈ X sin
e p is a
group morphism. Let us set c := f ⊕ g(x0)− p(x0) and h : t 7→ f ⊕ g(x0t)− p(x0t)− c.
Then h has a strong minimum at eX sin
e by hypothesis x 7→ f⊕g(x)−p(x) has a strong
minimum at x0. Let us denote by f̃ : t 7→ f(x0t) − p(x0t) − c and g̃ : t 7→ g(t) − p(t).
Then we have that f̃ and g̃ are lower semi-
ontinuous and f̃ ⊕ g̃ = h. We dedu
e then

that the map x 7→ f̃ ⊕ g̃(x) has a strong minimus at eX . Thus by Lemma 1 we have

that x 7→ f̃⊕ g̃(x)+ f̃⊕ g̃(x−1) has a strong minimum at eX and we 
an apply Theorem

5 to obtain the existen
e of some z0 ∈ X su
h that:

(1) the map η : z → f̃(z−1) + g̃(z) has a strong minimum at z0 ∈ X.

(2) f̃(x) ≥ f̃ ⊕ g̃(xz0) + f̃(z−1
0 ) and g̃(x) ≥ f̃ ⊕ g̃(z−1

0 x) + g̃(z0) for all z ∈ X.

Using the fa
t that p is a group morphism and by repla
ing f̃ and g̃ by their expression,

we translate (1) and (2) respe
tively as follow

(1′) the map η : z → f(x0z
−1) + g(z) has a strong minimum at z0 ∈ X.

(2′) f(x)− p(x) ≥ (f ⊕ g(x) − p(x))− (f ⊕ g(x0)− p(x0))+
(
f(x0z

−1
0 )− p(x0z

−1
0 ) and

g(x)− p(x) ≥
(
f ⊕ g(x0z

−1
0 x)− p(x0z

−1
0 x)

)
− (f ⊕ g(x0)− p(x0)) + (g(z0)− p(z0) , for

all x ∈ X.

Using the fa
t that x 7→ f ⊕ g(x) − p(x) has a strong minimum at x0, this implies

respe
tively

(1′′) the map η : z → f(x0z
−1) + g(z) has a strong minimum at z0 ∈ X.

(2′′) f(x)− p has a strong minimum at x0z
−1
0 and g − p has a strong minimum at z0.
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4 The inf-
onvolution and algebra.

4.1 Properties and useful lemmas.

4.1.1 The semigroup F0(X).

We have the following more expli
it 
hara
terization of remarkable idempotent. The

proof follows immediately from Lemma 2.

Proposition 6 Let ϕ ∈ F(X). Then, ϕ is remarkable idempotent if and only if ϕ
satisfay :

(1) ϕ(xy) = ϕ(yx) for all x, y ∈ X.

(2) ϕ(x) = ϕ(x−1) = 0 ⇔ x = eX .

(3) ϕ(xy) ≤ ϕ(x) + ϕ(y) pour tout x, y ∈ X (i.e ϕ is subadditive).

Lemma 2 Let X be a group and eX its identity element. Suppose that ϕ(eX ) = 0. Then
ϕ⊕ ϕ = ϕ if and only if ϕ is sub-additive i.e ϕ(xy) ≤ ϕ(x) + ϕ(y) for all x, y ∈ X.

Proof. (⇒) Suppose that ϕ⊕ ϕ = ϕ. Then

ϕ(xy) = inf
z∈X

{
ϕ(xyz−1) + ϕ(z)

}

≤ ϕ(y) + ϕ(x); ∀x, y ∈ X.

(⇐) For the 
onverse suppose that ϕ(xy) ≤ ϕ(x)+ϕ(y) for all x, y ∈ X. Then we have

ϕ(x) = ϕ((xz−1)z) ≤ ϕ(xz−1) + ϕ(z);∀x, z ∈ X. Taking the in�nitum over z ∈ X we

get ϕ(x) ≤ ϕ⊕ ϕ(x) for all x ∈ X. Now

ϕ⊕ ϕ(x) = inf
z∈X

{
ϕ(xz−1) + ϕ(z)

}

≤ ϕ(x) + ϕ(eX)

= ϕ(x).

Thus ϕ⊕ ϕ = ϕ.

Lemma 3 Let ϕ ∈ F(X) be a remarkable idempotent. Then

(1) Then for all f ∈ F(X) we have f ⊕ ϕ = ϕ ⊕ f (all elements f ∈ F(X) 
ommutes

with ϕ).

(2) Lip10,ϕ(X) = F0,ϕ(X) ( in parti
ular (Lip10,ϕ(X),⊕, ϕ) is a monoid).

(3) Every elements f of F0,ϕ(X) is 1-Lips
hitz for the metri
 ∆∞,ϕ.

Proof. (1) Let us �rst proves that for all f ∈ F(X) we have f ⊕ ϕ = ϕ⊕ f . Indeed, by
using the fa
t that ϕ(xy) = ϕ(yx) for all x, y ∈ X with the following variable 
hange

t = xy−1
we have for all x ∈ X,

f ⊕ ϕ(x) = inf
y∈X

{
f(xy−1) + ϕ(y)

}

= inf
y∈X

{
f(t) + ϕ(t−1x)

}

= inf
t∈X

{
ϕ(xt−1) + f(t)

}

= ϕ⊕ f(x)

12



(2) We prove that F0,ϕ(X) ⊂ Lip10,ϕ(X) : Let f ∈ F0,ϕ(X). Then by the de�nition

of F0,ϕ(X) we have ϕ ⊕ f = f ⊕ ϕ = f . We are going to prove that f ∈ Lip10,ϕ(X).
Indeed, let x, y ∈ X and let (zn)n ⊂ X su
h that for all n ∈ N

∗

ϕ⊕ f(y) > ϕ(yz−1
n ) + f(zn)−

1

n
(8)

On the other hand ,

ϕ⊕ f(x) ≤ ϕ(xz−1
n ) + f(zn) (9)

By 
ombining (8) and (9) we have

ϕ⊕ f(x) ≤ ϕ⊕ f(y) + ϕ(xz−1
n )− ϕ(yz−1

n ) +
1

n
(10)

Now using Lemma 2 we have ϕ⊕ ϕ = ϕ and so we have

ϕ(xz−1
n ) = ϕ⊕ ϕ(xz−1

n )

= inf
t∈X

{
ϕ(xz−1

n t−1) + ϕ(t)
}

≤ ϕ(xy−1) + ϕ(yz−1
n ). (11)

Combining (10) and (11) and sending n to +∞ we obtain that

ϕ⊕ f(x) ≤ ϕ⊕ f(y) + ϕ(xy−1).

This shows that ϕ⊕ f ∈ Lip10,ϕ(X). But ϕ⊕ f = f , thus f ∈ Lip10,ϕ(X).

We prove now that Lip10,ϕ(X) ⊂ F0,ϕ(X) : Let f ∈ Lip10,ϕ(X). From part (1) we have

f ⊕ ϕ = ϕ ⊕ f . We are going to prove that f ⊕ ϕ = f . By the de�nition of Lip10,ϕ(X)
we have

f(x) ≤ f(y) + ϕ(xy−1);∀x, y ∈ X.

Taking the in�nimum over y ∈ X, we get f(x) ≤ f ⊕ ϕ(x) for all x ∈ X. For the


onverse inequality we have

f ⊕ ϕ(x) = inf
y∈X

{
f(y) + ϕ(xy−1)

}

≤ f(x) + ϕ(eX )

= f(x).

Thus f ⊕ ϕ = ϕ⊕ f = f and so f ∈ F0,ϕ(X).
(3) This part follows easily from the part (2) and the de�nition of Lip10,ϕ(X). .

Lemma 4 Let ϕ ∈ F(X) be a remarkable idempotent and ϕ be the unique extension

of ϕ to the 
ompletion (X,∆∞,ϕ). Then (Lip10,ϕ(X), d) ∼= (Lip10,ϕ(X), d) as monoids.

More pre
isely, the map

χ : (Lip10,ϕ(X),⊕, d) → (Lip10,ϕ(X),⊕, d)

f 7→ f =

[
x̄ 7→ inf

z∈X

{
ϕ(x̄z−1) + f(z)

}]

is an isometri
 isomorphism.
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Proof. It is easy to see that f ∈ Lip10,ϕ(X) for all f ∈ Lip10,ϕ(X) and that the map χ is

well de�ned sin
e if f = g on X then 
learly f = g on X . Observe that the restri
tion

f|X of f to X 
oin
ide with ϕ ⊕ f , by de�nition of f . The map χ is inje
tive sin
e, if

f = g on X then by the restri
tion to X we obtain ϕ ⊕ f = ϕ ⊕ g. Thus f = g sin
e

Lip10,ϕ(X) = F0,ϕ(X) := {f ∈ F0(X) : f ⊕ ϕ = ϕ⊕ f = f} by Lemma 3. The map χ

is surje
tive. Indeed, let F ∈ Lip10,ϕ(X) and set f = F|X the restri
tion of F to X.

Then by de�nition f(x̄) := infz∈X
{
ϕ(x̄z−1) + F (z)

}
. By the density of X in X and

the 
ontinuity of ϕ and F on X we have

f(x̄) := inf
z∈X

{
ϕ(x̄z−1) + F (z)

}

= inf
z∈X

{
ϕ(x̄z−1) + F (z)

}

= ϕ⊕ F

= F

The last equality follows from the fa
t that F ∈ Lip10,ϕ(X) = F0,ϕ(X) by Lemma 3.

Let us show now that χ is a monoid morphism. Indeed, let f, g ∈ Lip10,ϕ(X). Using the


ontinuity of f and g and the density of X in X , we easily see that f ⊕ g and f ⊕ g

oin
ide on X with f ⊕ g, so by the inje
tivity of χ−1

we have f ⊕ g = f ⊕ g. Thus χ
is a monoid isomorphism. The fa
t that χ is isometri
 follow from the the density of X
on X and a 
ontinuity argument.

For the proof of the following lemma see [[2℄, Lemma 1℄.

Lemma 5 Let f, g ∈ F0(X). Suppose that d∞(f, g) := supx∈X |f(x) − g(x)| < +∞
then

d(f, g) := sup
x∈X

|f(x)− g(x)|

1 + |f(x)− g(x)|
=

d∞(f, g)

1 + d∞(f, g)
.

For ea
h �xed point x ∈ X, the map δϕx is de�ned on X by

δϕx : X → R

z 7→ ϕ(zx−1).

We de�ne the subset Gϕ0 (X) of Fϕ(X) by Gϕ0 (X) := {δϕx : x ∈ X} .

The following Lemma is an adaptation to our framework of [[2℄, Lemma 3℄.

Lemma 6 Let ϕ ∈ F(X) be a remarkable idempotent. Then, the map

γϕX : (X,∆∞,ϕ) → (Gϕ0 (X), d∞)

x 7→ δϕx

is a group isometri
 isomorphism. Or equivalently, the map

γϕX : (X,
∆∞,ϕ

1 + ∆∞,ϕ
) → (Gϕ0 (X), d)

x 7→ δϕx

is a group isometri
 isomorphism.
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Proof. The se
ond part of the Lemma follow from the �rst part and Lemma 5, so we

need to prove just the �rst part. Indeed, let x1, x2 ∈ X, we prove that δϕx1 ⊕δ
ϕ
x2 = δϕx1x2 .

Indeed, let x ∈ X, we have :

δϕx1 ⊕ δϕx2(x) = inf
z∈X

{
δϕx1(xz

−1) + δϕx2(z)
}

≤ δϕx1(xx
−1
2 ) + δϕx2(x2)

= ϕ
(
x(x1x2)

−1
)
+ ϕ(eX )

= δϕx1x2(x).

For the 
onverse inequality, we use fa
t that ϕ(xy) = ϕ(yx) for all x, y ∈ X and the

sub-additivity of ϕ , to obtain for all z ∈ X

δϕx1x2(x) = δϕx1x2(x)

= ϕ
(
x(x1x2)

−1
)

= ϕ(xx−1
2 x−1

1 )

= ϕ(x−1
1 (xx−1

2 ))

= ϕ((x−1
1 xz−1)(zx−1

2 ))

≤ ϕ(x−1
1 (xz−1)) + ϕ(zx−1

2 )

=
(
ϕ((xz−1)x−1

1 )
)
+ ϕ(zx−1

2 )

= δϕx1(xz
−1) + δϕx2(z)

By taking the in�nimum over z in the last inequality, we obtain

δϕx1x2(x) ≤ δϕx1 ⊕ δϕx2(x).

Thus, δϕx1 ⊕ δϕx2 = δϕx1x2 . In other words,

γϕX(x1x2) = γϕX(x1)⊕ γϕX(x2), ∀x1, x2 ∈ X. (14)

Now by the de�nition of Gϕ(X), γϕX is a surje
tive map. Let us prove that γϕX is one

to one. Indeed, let x1, x2 ∈ X be su
h that δϕx1 = δϕx2 i.e ϕ(xx−1
1 ) = ϕ(xx−1

2 ) for all
x ∈ X. Sin
e ϕ satisfy the 
ondition : ϕ(x) = ϕ(x−1) = 0 ⇔ x = eX then by repla
ing

x by x1 in a �rst time and x by x2 in a se
ond time we obtain 0 = ϕ(eX) = ϕ(x1x
−1
2 ) =

ϕ(x2x
−1
1 ) = ϕ(

(
x1x

−1
2 )−1

)
whi
h implies that x1x

−1
2 = eX i.e x1 = x2. Now, sin
e X

is a group and γϕX is a bije
tive map satisfying the formula (14) then (Gϕ0 (X),⊕) is a
group as image of group by an isomorphism. The identity element of (Gϕ0 (X),⊕) is of

ourse γϕX(eX) = δϕeX = ϕ. Thus γϕX is a group isomorphism.

Let us show now that γϕX is an isometry. By using the sub-additivity of ϕ and the

fa
t that ϕ(eX) = 0 we have :

d∞(δϕx1 , δ
ϕ
x2
) = sup

x∈X
|δϕx1(x)− δϕx2(x)|

= sup
x∈X

|ϕ(xx−1
1 )− ϕ(xx−1

2 )|

= max

(
sup
x∈X

(ϕ(xx−1
1 )− ϕ(xx−1

2 )), sup
x∈X

(ϕ(xx−1
2 )− ϕ(xx−1

1 ))

)

≤ max
(
ϕ(x2x

−1
1 ), ϕ(x1x

−1
2 )

)

= ∆∞,ϕ(x, y)
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For the inverse inequality,

d∞(δx1(ϕ), δx2(ϕ)) = sup
x∈X

|δϕx1(x)− δϕx2(x)|

= sup
x∈X

|ϕ(xx−1
1 )− ϕ(xx−1

2 )|

= max

(
sup
x∈X

(ϕ(xx−1
1 )− ϕ(xx−1

2 )), sup
x∈X

(ϕ(x− x2)− ϕ(x− x1))

)

≥ max
(
ϕ(x2x

−1
1 );ϕ(x1x

−1
2 )

)

= ∆∞,ϕ(x, y)

So d∞(δϕx1 , δ
ϕ
x2) = ∆∞,ϕ(x, y). This shows that γ

ϕ
X is an isometry. The se
ond part of

the Lemma follows from Lemma 5.

4.1.2 The semigroup F(X).

In this se
tion we prove that using the following proposition, we 
an dedu
t results in

the semigroup F(X) 
anoni
ally from the results of the semi group F0(X).
For all (f, t), (g, s) ∈ F0(X) × R, we denote by (f, t)⊕(g, s) := (f ⊕ g, t + s) and

d1((f, t); (g, s)) := d(f, g) + |t− s|. If ϕ is idempotent element, we denote by

Fϕ(X) := {f ∈ F(X) : f ⊕ ϕ = ϕ⊕ f = f}

the monoid having the identity element ϕ and by Lip1ϕ(X) the following set

Lip1ϕ(X) :=
{
f ∈ F(X) : f(x)− f(y) ≤ ϕ(xy−1);∀x, y ∈ X

}
.

If M is a monoid having ϕ as identity element, we denote by U(M) the group of unit

of M i.e U(M) := {f ∈M/∃g ∈M : f ⊕ g = g ⊕ f = ϕ}.

Proposition 7 Let X be a group. Then the following assertions hold,

(1) The following map is an isometri
 isomorphism of semigroups

π : (F(X),⊕, d) → (F0(X)× R,⊕, d1)

f 7→ (f − inf
X
f, inf

X
f).

(2) Let ϕ ∈ F(X) be a remarkable idempotent. Then

(i) Lip1ϕ(X) = Fϕ(X) and (Lip1ϕ(X),⊕, d) ∼= (Lip10,ϕ(X)×R,⊕, d1) as monoids.

(ii) (U(Lip1ϕ(X)),⊕, d) ∼= (U(Lip10,ϕ(X))× R,⊕, d1) as groups.

Proof. The part (1) is easy to verify. The part (2) follows from the fa
t that the

isomorphism π send the monoid Fϕ(X) on the monoid F0,ϕ(X) × R and the fa
t that

F0,ϕ(X) = Lip10,ϕ(X) by Lemma 3. Note also that f ∈ Lip1ϕ(X) if and only if f infX f ∈

Lip10,ϕ(X).
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4.2 The main algebrai
 result: the group of unit.

Let us proof now our �rst main algebrai
 result announ
ed in the introdu
tion. A. The

monoid Lip10,ϕ(X).

Theorem 6 Let ϕ ∈ F(X) a remarkable idempotent. Then the following assertions

hold.

(1) U(Lip10,ϕ(X)) = χ−1 ◦ γϕ
X
(X). Where χ is the isometri
 isomorphism of Lemma 4

and γϕ
X

is the isometri
 isomorphism of Lemma 6 applied to (X,∆∞,ϕ) = (X,∆∞,ϕ).

(2) (U(Lip10,ϕ(X)), d) ∼= (X,
∆∞,ϕ

1+∆∞,ϕ
) as groups.

(3) (U(Lip10,ϕ(X)), d∞) ∼= (X,∆∞,ϕ) as groups.

Proof. (1) By using Lemma 4 we have that χ(U(Lip10,ϕ(X))) = U(Lip10,ϕ(X)) and by

using Lemma 6 we have that γϕ
X
(X) = Gϕ0 (X) so we need to prove that the group of

unit U(Lip10,ϕ(X)) of Lip10,ϕ(X) 
oin
ide with Gϕ0 (X).

(∗) Gϕ0 (X) ⊂ U(Lip10,ϕ(X)) : this in
lusion is 
lear sin
e we now from Lemma 6 that

Gϕ0 (X) is a group having ϕ as identity element.

(∗∗) U(Lip10,ϕ(X)) ⊂ Gϕ0 (X) : let f ∈ U(Lip10,ϕ(X)), there exists g ∈ U(Lip10,ϕ(X))

su
h that f ⊕ g = ϕ. Let us prove that the map x 7→ ϕ(x) + ϕ(x−1) has a stong

minimum at eX on (X,∆∞,ϕ) = (X,∆∞,ϕ). Indeed, sin
e ϕ is remarkable idempotent

then ϕ ≥ 0 = ϕ(eX) = ϕ(e−1
X ) and so x 7→ ϕ(x)+ϕ(x−1) has a minimum at eX . On the

other hand∆∞,ϕ(x, eX) = max(ϕ(x), ϕ(x−1)) ≤ ϕ(x)+ϕ(x−1). Now, ϕ(xn)+ϕ(x
−1
n ) →

0 ⇒ ∆∞,ϕ(xn, eX). Thus, the map x 7→ ϕ(x) +ϕ(x−1) has a strong minimum at eX on

the 
omplet metri
 invariant group (X,∆∞,ϕ). Sin
e ϕ = f ⊕ g and sin
e f and g are

lower semi 
ontinuous (in fa
t 1-Lips
hitz on (X,∆∞,ϕ)), then we 
an apply Theorem

5 to obtain some z0 ∈ X su
h that f(x) ≥ ϕ(xz0)+ f(z−1
0 ) for all x ∈ X. On the other

hand sin
e f ∈ Lip10,ϕ(X), then we have f(x) ≤ ϕ(xz0) + f(z−1
0 ) for all x ∈ X . Thus

f(x) = ϕ(xz0)+ f(z−1
0 ) for all x ∈ X. Now sin
e infX f = 0 = infX ϕ then f(z−1

0 ) = 0.

Finally, we have f(x) = ϕ(xz0) = δϕ
z0−1(x) for all x ∈ X i.e f ∈ Gϕ0 (X).

The part (2) and (3) are just interpretations of the part (1) with the fa
t that d = d∞
1+d∞

on Gϕ0 (X) by Lemma 5 sin
e d∞ is �nite on this group by Lemma 6 .

B. Abstra
t monoid Mϕ(X).

De�nition 4 Let S be a subset of , we say that S satisfy the translation property (T )
if the following property hold :

(T ) The maps x 7→ f(zx) and x 7→ f(xz) belongs to Mϕ(X) for all f ∈Mϕ(X) and all

z ∈ X.

Proposition 8 Let ϕ ∈ F(X) be a remarkable idempotent. Let Mϕ(X) be an abstra
t

monoid of F0(X) having ϕ as identity element. Then

(1) the group of unit (U(Mϕ(X)), d) ofMϕ(X) is isometri
ally isomorphi
 to a subgroup

G of (X,
∆∞,ϕ

1+∆∞,ϕ
).
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(2) If Mϕ(X) satisfy the property (T ), then (U(Mϕ(X)), d) is isometri
ally isomorphi


to a subgroup of G su
h that X ⊂ G ⊂ X.

(3) If the group X is 
omplete for the metri
 ∆∞,ϕ and Mϕ(X) satisfy the property (T )

then U(Mϕ(X)), d) = (Gϕ0 (X), d) is isometri
ally isomorphi
 to (X,
∆∞,ϕ

1+∆∞,ϕ
).

Proof. (1) We haveMϕ(X) ⊂ F0,ϕ = Lip0,ϕ(X). So U(Mϕ(X)) ⊂ U(Lip0,ϕ(X)) whi
h
is isometri
ally isomorphi
 to X by Theorem 6. So the 
on
lusion.

(2) IfMϕ(X) satisfy the property (T ) then Gϕ0 (X) ⊂ U(Mϕ(X)) sin
e Gϕ0 (X) is a group
in
luded in Mϕ(X). On the other hand Gϕ0 (X) is isometri
ally isomorphi
 to X by

Lemma 6. This gives the 
on
lusion with the part (1).

(3) The 
on
lusion follow from the part (2) sin
e X = X in this 
ase.

Corollary 5 Let (X,m) be 
omplete metri
 invariant group. Let M be an abstra
t

submonoid of the monoid Lip10(X) satisfying the translation property (T ) Then the group

of unit (U(M), d) is isometri
ally isomorphi
 to (X, m
1+m

). This show that all submonoid

M of Lip10(X) satis�ng the property (T ), have the same group of unit.

Proof. The proof follow from the part (3) of Proposition 8 sin
e in this 
ase ϕ = ϕm :
x 7→ m(x, eX) and (X,m) = (X,∆∞,ϕm) is 
omplete.

5 Appli
ations to the Bana
h-Stone theorem.

Let us prove now our version of the Bana
h-Stone theorem whi
h states that the stru
-

ture of the monoid (Lip10,ϕ(X),⊕, d) 
ompletely determine the stru
ture of the metri


invariant group 
ompletion (X,∆∞,ϕ) when ϕ is remarkable idempotent and symmetri
.

Theorem 7 Let X and Y be tow groups and let ϕ ∈ F(X) and ψ ∈ F(Y ) be two

remarkable idempotents. Then (1) ⇒ (2) ⇒ (3) ⇔ (4) ⇒ (5) ⇒ (6). If moreover we

assume that ϕ and ψ are symetri
 (i.e ϕ(x) = ϕ(x−1) and ψ(y) = ψ(y−1) for all x ∈ X
and all y ∈ Y ), then (1) − (6) are equivalent.

(1) There exist a group isomorphism T : X → Y su
h that ψ ◦ T = ϕ.

(2) There exist a semigroup isomorphism isometri
 Φ : F(X) → F(Y ) sush that Φ(0) =
0 and Φ(ϕ) = ψ.

(3) There exist a semigroup isomorphism isometri
 Φ : F0(X) → F0(Y ) sush that

Φ(ϕ) = ψ.

(4) (Lip10,ϕ(X), d) ∼= (Lip1
0,ψ

(Y ), d) as monoids.

(5) (Lip10,ϕ(X), d) ∼= (Lip1
0,ψ(Y ), d) as monoids.

(6) (X,∆∞,ϕ) ∼= (Y ,∆∞,ψ) as groups.

Proof. Note that we have (X,∆∞,ϕ) =(X,∆∞,ϕ).

(1) ⇒ (2) If T : X → Y is an isomorphism su
h that ψ ◦ T = ϕ then the map

Φ : F(X) → F(Y ) de�ned by Φ(f) = f ◦ T−1
is a semigroup isomorphism, isometri


for the metri
 d and satisfy Φ(ϕ) = ψ and Φ(0) = 0.
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(2) ⇒(3)SinceΦ is a semigroup isomorphism that Φ(0 ⊕ f) = Φ(0) ⊕ Φ(f) for all f ∈
F(X). Sin
e Φ(0) = 0 and 0⊕ f = infX f , then we obtain that Φ(infX f) = infY Φ(f)
for all ∈ F(X). In parti
ular, 0 = Φ(0) = infY Φ(f) for all f ∈ F0(X), this show that

Φ send F0(X) on F0(Y ).

(3) ⇒ (4) Sin
e Φ(ϕ) = ψ and Φ is a semigroup isomorphism then 
learly Φ maps the

monoid F0,ϕ(X) onto the monoid F
0,ψ(Y ). So using the fa
t that F0,ϕ(X) = Lip10,ϕ(X)

and F
0,ψ(Y ) = Lip1

0,ψ
(Y ) by Lemma 3, we obtain that (Lip10,ϕ(X), d) ∼= (Lip1

0,ψ
(Y ), d)

as monoids by Φ.

(4) ⇔ (5) Follows from Lemma 4.

(5) ⇒ (6) Sin
e (Lip10,ϕ(X), d) ∼= (Lip10,ψ(Y ), d) and sin
e isomorphism of monoids send

the group of unit on the group of unit, we have U(Lip10,ϕ(X)) ∼= U(Lip10,ϕ(Y )). Using

Theorem 6 we obtain that (X,∆∞,ϕ) ∼= (Y ,∆∞,ψ).

Suppose now that ϕ and ψ are symmetri
, then

∆∞,ϕ(x, eX) = ∆∞,ϕ(x, eX) = max(ϕ(x), ϕ(x−1) = ϕ(x)

for all x ∈ X and ∆∞,ψ(y, eY ) = ∆∞,ψ(y, eY ) = ψ(y) for all y ∈ Y . We need to prove

that (6) ⇒ (1). Indeed, Let T : (X,∆∞,ϕ) → (Y ,∆∞,ψ) be an isomorphism isometri
.

In parti
ular we have

ψ(T (x)) = ∆∞,ψ(T (x), eY )

= ∆∞,ψ(T (x), T (eX ))

= ∆∞,ϕ(x, eX )

= ϕ(x).

This 
on
lude the proof.

The following 
orollary shows that the monoid (Lip10(X),⊕, d) 
ompletely determine

the stru
ture of the 
omplete metri
 invariant group (X,m).

Corollary 6 Let (X,m) and (Y,m′) be 
omplete metri
 invariant groups. Let ϕm :
x 7→ m(x, eX) for all x ∈ X and ψm′ : y 7→ m′(y, eY ) for all y ∈ Y . Then, the following
assertions are equivalent.

(1) (X,m) ∼= (Y,m′) as groups.

(2) There exist a semigroup isomorphism isometri
 Φ : F(X) → F(Y ) sush that

Φ(ϕm) = ψm′
and Φ(0) = 0.

(3) There exist a semigroup isomorphism isometri
 Φ : F0(X) → F0(Y ) sush that

Φ(ϕm) = ψm′
.

(4) (Lip10(X), d) ∼= (Lip10(Y ), d) as monoids.

(5) There exist a semigroup isomorphism isometri
 Φ : (Lip0(X), d) → (Lip0(Y ), d)
sush that Φ(ϕm) = ψm′

.

Proof. The part (1) ⇔ (2) ⇔ (3) ⇔ (4) follow from Theorem 7 and the fa
t that (X,m)
and (Y,m′) are 
omplete, and that Lip10(X) = Lip10,ϕm

(X) with ϕm : x 7→ m(x, eX).
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On the other hand, the part (1) ⇒ (5) is 
lear and the part (5) ⇒ (4) follow from

the fa
t that Lip10(X) = F0,ϕm(X), Lip10(X) = F0,ϕm′
(Y ) and the fa
t that Φ send

ne
essarily the monoid F0,ϕm(X) on the monoid F0,ϕm′
(Y ).

Now we give the purely algebrai
 version of the above 
orollary. We denote by

F1
0 (X) the monoid of all fun
tions f : X → [0, 1] su
h that infX f = 0. This monoid

has the identity element, the map

δeX =

{
0 if x = eX
1 otherwise.

Corollary 7 Let X and Y be two groups. Then the following assertions are equivalent.

(1) (F1
0 (X),⊕, d) is isometri
ally isomorphi
 to (F1

0 (Y ),⊕, d) as monoids (also as semi-

groups).

(2) (F1
0 (X),⊕) is isomorphi
 to (F1

0 (Y ),⊕) as monoids (also as semigroups).

(3) X and Y are isomorphi
 as groups.

Proof. First, note that the group X ( and in similar way the group Y ) 
an be endowed

with the dis
rete metri
 denoted by dis. So we have that (X, dis) is a 
omplete metri


invariant group. Then, we see easily that with this metri
 we have F1
0 (X) = Lip10(X).

On the other hand we have that X and Y are isomorphi
 if and only if (X, dis) and
(Y, dis) are isometri
ally isomorphi
, this implies by Corollary 6 that (F1

0 (X), d) and

(F1
0 (Y ), d) are isometri
ally isomorphi
 as monoids, in parti
ular they are isomorphi
.

For the 
onverse, if F1
0 (X) and F1

0 (Y ) are isomorphi
 as monoids, then the group of

unit of F1
0 (X) is isomorphi
 to the group of unit of F1

0 (Y ). Thus, by Theorem 6 (Or

Corollary 7) we obtain that X and Y are isomorphi
.

6 Appli
ation to the Bana
h-Dieudonée Theorem.

Let us re
all some notions. Let K and C be 
onvex subsets of ve
tor spa
es. A fun
tion

T : K → C is said to be a�ne if for all x, y ∈ K and 0 ≤ λ ≤ 1, T (λx + (1 − λ)y) =
λT (x) + (1− λ)T (y). The set of all 
ontinuous real-valued a�ne fun
tions on a 
onvex

subset K of a topologi
al ve
tor spa
e will be denoted by Aff(K). We denote by

Aff0(BX∗) the set of all a�ne weak star 
ontinuous fun
tions that vanish at 0. Clearly,
all translates of 
ontinuous linear fun
tionals are elements of A�(K), but the 
onverse
in not true in general (see [9℄ page 21.). However, we do have the following relationship.

Proposition 9 ([9℄, Proposition 4.5) Assume that K is a 
ompa
t 
onvex subset of a

separated lo
ally 
onvex spa
e X then

{
a ∈ Aff(K) : a = r + x∗|K for some x∗ ∈ X∗ and some r ∈ R

}

is dense in (Aff(K), ‖.‖∞).
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But in the parti
ular 
ase when X is a Bana
h spa
e and K = (BX∗ , w∗) is the unit
ball of the dual spa
e X∗

endowed with the weak star topologies, the well known result

due to Bana
h and Dieudonné states that :

Aff0(BX∗) =
{
ẑ|K : z ∈ X

}
.

Where ẑ : p 7→ p(z) for all p ∈ X∗
and ẑ|BX∗

denotes the restri
tion of ẑ to K. In

parti
ular (Aff0(BX∗), ‖.‖∞) is isometri
ally isomorphi
 to (X, ‖.‖).

We give in this se
tion a simple proof of the Bana
h-Dieudonné theorem by using

our algebrai
 results of this arti
le. More pre
isely, we us Theorem 6.

In what follow, K is a 
onvex bounded and weak-star 
losed set of X∗

ongaing 0

su
h that int(K) 6= ∅ where int(K) denote the interior of K for the norm topology.

We denote by A(X∗) the set of all fun
tions F : X∗ → R ∪ {+∞} 
onvex weak-star

lower semi
ontinuous with non empty domain. We denote by iK the indi
ator fun
tion

iK(x) = 0 if x ∈ K and +∞ otherwise and by AK(X
∗) := {F + iK : F ∈ A(X∗)} whi
h

is a monoid for the operation + and having the fun
tion iK as identity element. We

also denote A(K) the set of all fun
tions F : K → R ∪ {+∞} 
onvex weak-star lower

semi
ontinuous on K, whi
h is a monoid having 0 as identity element. Clearly, the map

i : (A(K),+) → (AK(X
∗),+)

F 7→ F̃ + iK .

is a monoid isomorphism, where F̃ := F on K and +∞ otherwise.

Finally by T we denote the Fen
hel-Moreau operator i.e T (f) = f∗ where f∗(p) :=
supx∈X {p(x)− f(x)} for all p ∈ X∗

and by σK : x 7→ supp∈K {p(x)} the support fun
-

tion. It is well known that the inf-
onvolution of two 
onvex fun
tion is also 
onvex

fun
tion and that (f ⊕ g)∗ = f∗ + g∗ is always true.

For the inf-
onvolution stru
ture, we deal with the parti
ular semigroup CL0(X) of
all 
onvex map f de�ned on a Bana
h spa
e X su
h that infX f = 0 and the submonoid

MσK (X) := CL0(X) ∩ Lip0,σK (X) of the monoid (Lip0,σK (X),⊕) where σK : x 7→
supp∈K {p(x)} denotes the support fun
tion whi
h is a remarkable idempotent (see the

proposition bellow). We re
all below the well know Fen
hel-Moreau theorem.

Theorem 8 (Fen
hel-Moreau) Let X be a Bana
h spa
e and f be a fun
tion de�ned

on X su
h that {x ∈ X : f(x) < +∞} 6= ∅. Then, f is 
onvexe lower semi 
ontinuous

if and only if f∗∗(x) = f(x) for all x ∈ X.

Proposition 10 Let K be a 
onvex bounded and weak-star 
losed set of X∗
su
h that

int(K) 6= ∅. Then

(1) The support fun
tion σK is remarkable idempotent of MσK (X) and is Lips
hitz on

(X, ‖.‖).

(2) For ea
h �xed point z ∈ X, we have (σK(. − z))∗ = ẑ + iK , where ẑ : p 7→ p(z) for
all p ∈ X∗

.
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(3) U(MσK (X)) = GσK0 (X) := {σK(.− z) : z ∈ X}.

(4) U(A(K)) = Aff0(K) = i−1(U(AK(X
∗)))

Proof. (1) We know that σK is subadditive, so from Proposition 6 it su�
es to prove

that σK(x) = σK(−x) = 0 if and only if x = 0 whi
h is 
lear sin
e int(K) 6= ∅. Sin
e

K is bounded set then σK is Lips
hitz on (X, ‖.‖).

(2) This part is well known and 
an be easily veri�ed.

(3) Sin
e MσK (X) is stable by the translation property (T ) (See De�nition 4) then, by

Proposition 8 we have U(MσK (X)) = GσK0 (X) := {σK(.− z) : z ∈ X} sin
e (X,∆∞,σK )
is 
omplete. In fa
t here ∆∞,σK (x, y) = supp∈K |p(x − y)| is equivalent to the metri


asso
iated to the norm ‖.‖ sin
e K is bounded and int(K) 6= ∅.

(4) First we have U(A(K)) = AFF0(K). Indeed, let F ∈ U(A(K)) then there exists

G ∈ U(A(K)) su
h that F +G = 0 i.e F = −G on K. Sin
e both F and G are 
onvex

weak-star lower semi
ontinuous on K then F (respa
tivelly G) is a�ne and weak-star


ontinuous on K. Conversely, if F is a�ne and weak-star 
ontinuous then −F is a�ne

and weak-star 
ontinuous too and so F ∈ U(A(K)). A monoid isomorphism send the

group of unit on the group of unit so i(U(A(K))) = i(Aff0(K)) = U(AK(X
∗)).

Proposition 11 Let K be a 
onvex bounded and weak-star 
losed set of X∗
su
h that

int(K) 6= ∅.

(2) The map

T : (MσK (X),⊕) → (AK(X∗),+)

f 7→ T (f)

is a monoid isomorphism. Consequently,

i−1 ◦ T : (MσK (X),⊕) → (A(K),+)

f 7→ i−1 ◦ T (f)

is a monoid isomorphism.

Proof. The inje
tivity of T follow from the Fen
hel-Moreau theorem (see above)

sin
e every element of MσK (X) is 
onvex and Lips
hitz. For the surje
tivity, Let

F be weak-star lower semi
ontinuous and 
onvex fun
tion on X∗
. Let f : x 7→

supp∈K {p(x)− F (p)} = (F + iK)∗(x). Then f ∈ MσK (X) and F + iK = f∗ = T (f).
Indeed, f is bounded from below sin
e 0 ∈ K and infX f = 0 sin
e F (0) = 0. We

have that f is 
onvex and weak-star lower semi
ontinuous as supremum of a�ne and

weak-star 
ontinuous fun
tions. So f ∈ CL0(X). On the other hand f ∈ Lip0,σK (X)
as supremum of element in Lip0,σK (X), sin
e for ea
h �xed p ∈ K we have (p(x) −
F (p)) − (p(y) − F (p)) = p(x − y) ≤ σK(x − y) and we 
an take supremum in the

inequality (p(x)−F (p)) ≤ σK(x− y) + (p(y)−F (p)). Thus f ∈MσK (X). Now by the

Fen
hel-Moreau theorem we have F + iK = (F + iK)∗∗ = f∗ sin
e F + iK is 
onvex

weak-star lower semi
ontinuous. So T is surje
tive. Finally T is a morphism for the

inf-
onvolution sin
e it is well know and easy to verify that (f ⊕ g)∗ = f∗ + g∗ for all

f, g ∈MσK (X). By 
omposition of isomorphism we obtain the se
ond a�rmation.

We give now the algebrai
 proof of the Bana
h-Dieudonée theorem.
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Theorem 9 (Bana
h-Dieudonée) Let K be a 
onvex bounded and weak-star 
losed

set of X∗

ontaining 0 su
h that int(K) 6= ∅. Then

Aff0(K) =
{
ẑ|K : z ∈ X

}
.

If moreover K is symmetri
 then (Aff0(K), ‖.‖∞) is isometri
ally isomorphi
 to (X,σK).
In this 
ase σK is an equivalent norm on X.

Proof. Sin
e a monoid isomorphism send the group of unit on the group of unit,

then i−1 ◦ T (U(MσK (X))) = U(A(K)) by Proposition 11. The 
on
lusion follow from

Proposition 10.

We give as 
orollary the following well known result.

Corollary 8 [[4℄, Theorem 55℄ Let F ∈ X∗∗
(the bidual of X). Suppose that F is

weak-star 
ontinuous. Then there exists x ∈ X su
h that F = x̂.

Proof. The restri
tion F|BX∗
is a�ne weak-star 
ontinuous on BX∗

. So applying The-

orem 9 with K = BX∗
, there exists x ∈ X su
h that F|BX∗

= x̂|BX∗
. By homogeneity

we have F = x̂.
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