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Abstract. This work generalize and extend results obtained recently in [2] from the
Banach spaces framework to the groups framework. We study abstract classes of func-
tions monoids for the inf-convolution structure and give a complete description of the
group of unit of such monoids. We then apply this results to obtain various versions
of the Banach-Stone theorem for the inf-convolution structure in the group framework.
We also give as consequence an algebraic proof of the Banach-Dieudonée theorem. Our
techniques are based on a new optimization result.
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1 Introduction.

We proved recently in [2] a version of the Banach-Stone theorem for the inf-convolution
structure. More precisely, if (X, ||.||) is a Banach space and C£'(X) denotes the set of all
1-Lipschitz convex and bounded from below functions, then (C£!(X),®) is a commu-
tative monoid having e = ||.|| as identity element for the operation @ of inf-convolution.
We proved that this monoid equipped with a natural metric, completely determine the
Banach structure of X. In [2] we used the Banach-Dieudonné theorem (See Theorem
9) which applies only in this convex framework.

In this article we establish general results in the the group framework instead of
the Banach spaces and we handle more general monoids. The tool used in this paper
is a new result of optimization. Our first motivation is to prove a new versions of the
Banach-Stone theorem for the inf-convolution structure in the group framework. For
this purpose, we are going to study and give a complete and explicit description of the
group of unit of general and abstract class of monoids for the inf-convolution structure.
Historically, the inf-convolution appeared as tool of functional analysis and optimiza-
tion (See for instance the work of [7], [10], [5], [12]) but it turns out as we are going
to reveal it in this article, that the inf-convolution also enjoys a remarkable algebraic
properties. Recall that the Banach-Stone theorem asserts that the Banach structure of
the space (C(K),|.||cc) of continuous functions on a compact space K completely de-
termine the topological structure of K. More precisely, the Banach spaces (C(K), ||.||o0)
and (C'(L), ||.]lc) are isometrically isomorphic if and only if the compact spaces K and
L are homeomorphic. The Banach-Stone theorem has been extended on various direc-
tions and other structure are considered by authors like the Banach algebra structure
or unital vector lattice structure. The literature being very rich on this questions, we
send back to the reference [3] for a more complete history and examples of extensions
(See also [1] for the Banach-Stone theorem for the Banach structure on abstract class
of function spaces).

In all this paper, we assume that (X,.,ex) is a group (not necessarily abelian)
denoted multiplicatively and having the identity element ex. By F(X) we denote the
set of all maps defined from X into R and bounded fom below. The inf-convolution
operation on F(X) (See also Moreau [7], [8]) is defined by

(feg(z) = inf {f(y)+g(2)}.

Yz=2x

= inf {f(zz") +9(2)}.

In general f @& g # g @ f if X is not assumed to be an abelian group.
Clearly, (F(X),®) is a semigroup. If moreover X is an abelian group then (F(X),®)
is a commutative semigroup. The semigroup F(X) is equiped with the useful metric :

(@)~ inkx f) — (@) ~ infx g)
4F-9) = 598 T @) —infx) — (9(a) — b 9)]

+ |1£1(ff — 151(fg|, Vf, g€ F(X).
The following formulas is always true

inf(f@g) =il f+infg; Vf g€ F(X).



This guarantees in particular that Fo(X) := {f € F(X) : infx f = 0} is a subsemigroup
of (F(X),®).

1.1 Motivation and example.
The proposition bellow is the kind of results that we wish to show in this article.

Definition 1 Let (X, m) be a metric group. We say that (X, m) is a metric invariant
group if the metric m is invariant i.e

m(x,y) = m(azx,ay) = m(za,ya) Vx,y,a € X.
If moreover (X, m) is complete we say that (X, m) is complete metric invariant group.

Remark 1 FEvery Fréchet space is a complete metric invariant group. For example of
a non abelian complete metric invariant group see Example 2.

We denote by (Lipg(X),®) the semigroup of all Lipschitz and bounded from below
functions f defined on (X,m) such that infx f = 0 and Lip{(X) the monoid included
in Lipo(X) of all 1-Lipschitz map. the monoid Lip§(X) has the map ¢y, :  — m(z,ex)
as identity element. The symbol = denotes “isometrically isomorphic”.

We obtain the following version of the Banach-Stone theorem for the inf-convolution
structure which say that the monoid (Lip{(X), @) completely determine the complete
metric invariant group (X, m).

Proposition 1 Let (X, m) and (Y,m’) be complete metric invariant group. Then the
following assertion are equivalent.

(1) (X,m) = (Y,m') as groups.

(2) (Lip}(X),d) = (Lip{(Y),d) as monoids.

(3) There exits a semigroup isomorphism isometric ® : (Lipg(X),d) — (Lipo(Y),d)
such that ®(pm) = Q.

The proof of this result is based on the following two arguments ( and follows from the
more general Theorem 77):

(1) An isomorphism of monoids send the group of unit U (Lip{(X)) of Lipj(X) on the
group of unit U (Lip{(Y)) of Lip{(Y).

(2) The group of unit U (Lip} (X)) equipped with the metric d is isometrically isomorphic
to (X, ;). This is also equivalent to the fact that U (Lip}(X)) equiped with the metric
doo s isometrically isomorphic to (X, m), where d(f,9) := sup,ex {|f(z) — g(2)|} <
+o0 for all f,g € U(Lip{(X)).

1.2 The main algebraic results for the inf-convolution.

The study of abstract subsemigroups or submonoids of F(X) follows from the study of
subsemigroups or submonoids of Fy(X).

Proposition 2 (F(X),®,d) = (Fo(X)xR, @, d1) as semigroups. Where (f,t)®(g,s) :=
(f®g,t+s) and di((f,t);(g,s)) :=d(f,g) + |t — s| for all (f,t),(g,s) € Fo(X) x R.



Our result in this paper also applies for general monoids included in Fy(X). Let
My ,(X) be an abstract monoid of Fy(X) and having ¢ as identity element, then ¢ is in
particular an idempotent element i.e 9By = ¢. We wonder then if the result obtained in
Proposition 1 hold for the abstract class of monoid My ,(X). The answer is affirmative
for idempotent element ¢ satisfying the condition : p(z) = p(z7!) = 0 & = = ex.
This motivates the following definition. Note that every monoid My ,(X) having ¢ as
identity element is a submonoid of the following formal monoid

FooX) ={f e Fo(X): fop=9pof=[}.
Let us remark that since infx(f @ ¢g) = infx f +infx g; Vf,g € F(X), then every
idempotent element of F(X) belongs necessarily to Fop(X)ie p@p =9 = p >0 =
infx .
Definition 2 Let ¢ € F(X). We say that ¢ is a remarkable idempotent if ¢ is an
idempotent element and satisfy the following two properties:
(1) e(zy) = @(yz) pour tout z,y € X (Always true if X is commutative).
(2) p(z) =p(z7 ) =0z =ex.

We have the following more explicit characterization of remarkable idempotent (see
section 3.).

Proposition 3 Let ¢ € F(X). Then, ¢ is remarkable idempotent if and only if ¢
satisfay :

(1) w(zy) = p(yz) for all z,y € X.

(2) (@) = pla) =0 & = ex.

(3) e(zy) < (x) + ¢(y) pour tout v,y € X (i.e ¢ is subadditive).

For each remarkable idempotent ¢ we can associate in a canonical way the metric A
on X defined by Ay, (z,y) = max(p(zy™!),¢(yz~1)). We denote by (X,Ax,)
the group completion of (X,A ). We denote by % the unique extension of ¢ to
({, éoo#,) since ¢ is 1-Lipchitz for the metric Ay, by subadditivity. Note that

(X,Ax,p) =(X,Axz) and that % is also a remarkable idempotent. We need the
following set which is a generalization of the set of 1-Lipschitz functions :

Lipy ,(X) :={f € Fo(X) : f(z) = fly) < play™"); Yo,y € X} .

Since p(zy™1) < A o(2,y) and A, is a metric invariant then Lip(lw(X) is a subset
of Lip{(X) of all 1-Lipschitz map f on (X, A ) such that infx f = 0.

We have the following useful identification between the formal monoid Fy ,(X) and
the more explicit set Lz’p(l)’@(X ).

Proposition 4 Let ¢ € F(X) be a remarkable idempotent. Then Fy o(X) = Lipa(p(X)
and so Lip(lw(X) 1s @ monoid having ¢ as identity element.

Remark 2 We recover from the above proposition the monoid (Lip}(X), ) mentioned
in the previous section from Fy o, (X) where ©n, : x — m(x,ex) which is a remarkable
idempotent.



Proposition 5 For every remarkable idempotent ¢ € F(X) and every monoid My ,(X)
we have that Mo, (X) is a submonoid of the monoid Lipj ,(X).

The previous proposition explains that the study of abstract monoids of Fy(X) ensues
from the study of the monoid Lz’pé#p(X ).

A. The group of unit.

Let us announce now our main algebraic result. We denote by U (Lip(lW(X )) the
group of unit of the monoid (Lip(lW(X), ®).

Theorem 1 Let ¢ € F(X) a remarkable idempotent. Then,
(U(Lipg (X)), doo) = (X, Doo,)

as groups. This is also equivalent to

5'a AOO790

(U(Lipy ,(X)),d) = (X, m)-

Since the completion of metric spaces is unique up to isometry, the following corollary
gives an alternative way to considerer the completion of group metric invariant.
Corollary 1 Let (X, m) a group metric invariant. Then

(X.m) 2 U(Lipy(X)), doo)-
Let us characterize now the group of unit of abstract monoid Mg ,(X) of Fo(X).

Corollary 2 Let ¢ € F(X) be a remarkable idempotent. Let My ,(X) be an abstract
monoid of Fo(X) having ¢ as identity element. Then the group of unit U(Mo,(X)), d)

Aoo,p )
P14+ A,

of Mo.,(X) is isometrically isomorphic to a subgroup of (X

B. The Banach-Stone theorem.
We obtain now the following general version of the Banach-Stone theorem for the inf-
convolution structure.

Theorem 2 Let X and Y be tow groups and let ¢ € F(X) and ¢b € F(Y) be two
remarkable idempotents. Then (1) = (2) = (3) & (4) = (5) = (6). If moreover we
assume that @ and 1 are symetric (i.e o(z) = p(x™1) and Y(y) = Y(y~!) forallz € X
and all y € Y), then (1) — (6) are equivalent.

(1) There exist a group isomorphism T : X — Y such that o T = .

(2) There exist a semigroup isomorphism isometric ® : F(X) — F(Y) sush that ®(0) =
0 and ®(p) = 9.

(3) There exist a semigroup isomorphism isometric ® : Fo(X) — Fo(Y) sush that

=

€l
I

<



1.3 The main optimization results for the inf-convolution.

The algebraic main results of the previous sections follows from the following optimiza-
tion result which applies on a general group metric invariant (not necessarily abelian).
This result have many of other applications of optimization in particular for the reso-
lution of the inf-convolution equations.

Definition 3 Let (X,m) be a metric space, we say that a function f has a strong
minimum at xo € X, if infx f = f(xo) and m(x,,x9) — 0 whenever f(xz,) — f(xo).
A strong minimum s in particular unique.

Theorem 3 Let (X, m) be a complete metric invariant group with the identity element
ex. Let f and g be two lower semi continuous functions on (X, m). Suppose that the
map x> f D g(x)+ f®g(x™t) has a strong minimum at ex and f ® glex) =0. Then
there exists zg € X such that :

(1) the map n : z — f(z7') + g(2) has a strong minimum at zy € X (we say that
f @ glex) is attained strongly at zp).

(2) f(2) > f @ glwz) + f(25 ') and g(z) > [ ® gz @) + g(z0) for all z € X.

The following result shows that a strong linear perturbation of the convolution f & g
at some point xy of two lower semi continuous functions f and ¢ leads to a strong
perturbation of f and g with the same perturbation on respectively some points z; and
9 such that z1x9 = zg.

Corollary 3 Let (X, m) be a complete metric invariant group with the identity element
ex. Let p: X — R be a group morphism and f and g be two lower semi continuous
functions on (X, m). Suppose that the map x — f @ g(z) — p(x) has a strong minimum
at xg , then there exists zg € X such that

(1) the map 1 : z — f(woz™ 1) + g(2) has a strong minimum at 2o € X i.e f © g(xg) is
attained strongly at zg.

(2) f —p has a strong minimum at 3:0,20_1 and g — p has a strong minimum at zy.

1.4 Organization of the paper.

This article is organied as follow. In section 2. we give some examples of complete
metric invariant group, remarkable idempotent and monoids for the inf-convolution
structure. In section 3. we give the proof of our main optimization result Theorem
5 (Theorem 3 in the introduction). In section 4. we give several algebraic properties
of the inf-convolution structure and the proof of our main algebraic result Theorem 6
(Theorem 1 in the introduction). In section 5. We give various versions of the Banach-
Stone theorem and the proof of the main result of this section Theorem 7 (Theorem 2
in the introduction). Finally in section 6. We give an algebraic proof of the well know
Banach-Dieudonné theorem (See Theorem 9).

1.5 Acknowledgments.

The author thanks Professor Gilles Godefroy for the diverse discussions as well as for
his invaluable advice.



2 Examples.

A. Complete metric invariant groups.

Exemples 1 (Abelian group case).

(1) Every Fréchet space is complete metric invariant group. In particular every Banach
space equiped with the metric associated the the morm is a complete metric invariant
group.

(2) Let E be a set of finite cardinal and P(E) the set of all subset of E. The set
(P(E),A) is an abeliean group, where A is the symmetric difference between two sets
: AAB = (AUB)\ (AN B) for all A,B € P(E). We denote by |A| the cardinal
of A. Then (P(E),m) is a complete metric group where m is the metric defined by

m(A, B) = 538 on P(E).

(3) Every group X is complete metric invariant group for the discrete metric.

Exemples 2 (Non abelian group case). Let H be a real separable Hilbert space,
O(H) be the orthogonal group on H and I be the identity operator. We denote by

O (H):={T € O(H) : I — T is a comact operator}

and

On(H):={T € O(H) : I — T is a Hilbert-Shmidt operator} .
The metrics d. and dy, as defined as follow : d.(T,S) = ||T — S|op and dp(T,S) =
T — S||us where ||.||op s the norm operator and ||.|ms is the Hilbert-Schmidt norm

1Al7s = Te|(A"A)] = Y || Ae)?

icl

where ||.|| is the norm of H and {e; : i € N} an orthonormal basis of H. This definition
18 independent of the choice of the basis.

Theorem 4 (See [[11], Theorem 1.1]) (O¢(H),d.) and (On(H),dy) are complete
separable metric invariant (non abeliean) groups.

B. Remarkable idempotent.

Exemples 3

(1) Let (X, m) be a metric invariant group with the identity element ex and 0 < a < 1.
Then the map ¢ in the following cases is remarkable idempotent in F(X). In this cas
@ is symetric p(x) = p(x™1) for all z € X.

(a) the map p(z) := m(ex,x)* for all x € X.

(b) Let x : RT — R* be an increasing and sub-additive function having a strong

minimum at 0 and such that x(0) = 0. We define ¢ as follow. ¢(x) =

X(m(e)(,.%')a).
(2) Let (X,|.|lx) be a real normed wvector space. Let C be a conver bounded sub-

set of X containing the origin. Then the Minkowski functional oc(z) =
inf {A\ > 0:2 € AC} for all x € X is remarkable idempotent.



(3) Let (X, ||.|lx) be a vector normed space , and K C X* be a conver weak-star closed
and bounded such that int(K) # 0 (int(K) denotes the interior of K for the
norm topology). Then the support function defined by o (x) = sup,cx p(x) is
remarkable idempotent.

(4) Let X be any group with the identity element ex. Then the map ¢, defined by
ey (ex) =0 and @, (v) =1 if x # ex is remarkable idempotent.

C. Examples of monoids for the inf-convolution.

Exemples 4

(1) Let (X, |.]|x) be a Banach space and and K C X* be a conver weak-star closed and
bounded such that int(K) # emptyset. Let LC(X) the set of all bounded from below
convez and Lipschitz functions on X. Then (Mo s, (X),®) = (LC(X )N Lipo,o, (X), )
is a monoid having ok as identity element. If K = Bx+ then ox = ||.|| and in this case
we recover the monoid studied in [2].

(2) Let (X,m) be a complete metric invariant group with identity element ex and let
0<a<1and pn(x) =m*(ey;x) for all x € X. Let Lip*(X) be the set of all bounded
from below, a-Holder functions on X and Lip®(X) is the set of all a-Holder functions
on X such that infx f = 0. Then Lip®(X) and Lip®(X) are monoid having p,, as
identity element.

(3) Let IC(R™) be the set of all inf-compact functions from R™ into R and let 0 < a < 1.
Then (IC(R™),®) is a semigroup (See [7]) and IC(R™)N Lip®(R™) is a monoid having
o = ||.II* as identity element.

(4) Let X be any algebraic group with the identity element ex and let m be the discrete
distance on X and 6, (z) = 0 if x = ex and take the value 1 otherwise. Let F*(X) =

{f : X = Risup, ey If(x) = fy)| < 1} and ]:&(X) ={f: X —[0,1] : infx f = 0}.
Then F1(X) and F3(X) are monoids having 0, as identity element.

3 The proof of the main optimization results.

Theorem 5 Let (X, m) be a complete metric invariant group with the identity element
ex. Let f and g be two lower semi continuous functions on (X, m). Suppose that the
map x> f D g(x)+ f®g(x™t) has a strong minimum at ex and f ® glex) =0. Then
there exists zg € X such that :

(1) the map n : 2 — f(z71) + g(2) has a strong minimum at 29 € X.
(2) £(2) > £ & gl20) + F(25)) and g(x) > f & g(z512) + g(z0) for all 2 € X.

Proof. (1) Let (z,)n, C X be such that for all n € N*¥,
1
feglex) < flz") +9(z) < f@glex)+ o

Since f @ g(ex) = 0 then

0= flh) +gle) <o (1)



On the other handfor all z,y € X,

foglay™ fl@)+9(y™) (2)

feglyx f) +g(™"). (3)

)
)

By adding both inequalilies (2) and (3) above we obtain for all z,y € X
<

fogly™) + fogyz™) (f@)+g9@™") + (Fw) +9l™h).- (4)

By appllaying the above inequality with = z;! and y = 2.,

FOgz " 2m) + F@g(zn'za) < () +9(zn) + (F(z) + 9(zm))

From our hypothesis we have that the map z — f @ g(2) + f ® g(z~') has a stong
minimum at ex with 0 = f @ g(ex) + f @ g(ey'). So from the above inequality and (1)
we obtain

<
- <

, we have

- _ 1 1
0<f@glzem)+ f@g(ztz) < —+—.

n m

Thus f @ g(z,  2m) + f ® 9((2, 2m)"1) — 0 when n,m — +oco which implies that

m(ex,z, ' zm) — 0 or equivalently m(z,,2y,) — 0 since m is invariant. Thus the
sequence (zp), is Cauchy in (X,m) and so converges to some zg since (X,m) is a
complete metric space. By the lower semi-continuity of f and g, the continuity of
z — 27! and by using the formulas (1) we get

fzp") +g(20) 0= f @ glex).
On the other hand, by definition we have f ® g(ex) < f(25") + g(20). Thus
F(zg ") +g(z0) = [ @ glex) = 0. (5)

It follows that 1 has a minimum at zy ( by definition we have inf,cx n(z) = f @ glex)).
To see that n has a strong minimum at zp, let (x,), be any sequence such that
flaph) + g(v) — infoex {f(271) +g(2)} = 0. By applying (4) with z = z;' and
y = x,;* and the formulas (5) and (1) with the fact that f @® g(z) + f ® g(z~1) > 0 for
all z € X, we obtain that f @ g(z5 'zn) + f @ g(x; 20) — 0 which implies by hypothesis
that m(xy,,z9) — 0. Thus zp is a strong minimum of 7.

(2) Using the part (a) we have that 0 = f @ g(ex) = f(z5 ") + 9(20). We have
Jegl'e) = it {fG ey +90)}
< flz!) + (@)
= —9(z0) + g(). (6)
and
Joglaz) = i {f(@zoy™) +9(y)}

< f(@)+g(20)
= —f(z ")+ f(a). (7)
This ends the proof of (2).m

10



Lemma 1 Let (X, m) be a metric group with the identity element ex and leth : X — R.
Suppose that h has a strong minimum at ex and h(ex) =0, then the map x — h(x) +
h(z~') has a strong minimum at ex and h(ex) = 0.

Remark 3 The converse of the above proposition is not true in general (Take h(zx) =
x4+ x| on X = (R,+4)).

Proof : Since h has a strong minimum at ex and h(ex) = 0 then h(z) > h(ex) =0
for all # € X. So h(x) + h(z~') > 0. On the other hand, we have h(ex) + h(ex') =
2h(ex) = 0, and so x — h(z) + h(z~!) has a minimum at eyx. Let us show that ey is
a strong minimum for z — h(x) + h(x~1). Indeed, since h > 0, then we have,

0 < h(z) < h(x)+ h(:c_l)

forallz € X. If (2, )n is a sequence such that h(z,)+h(z, ') — infzex (h(z) + h(z™1)) =
0 then by the above inequalities we have that h(z,) — 0 which implies that z, — ex
since h has a strong minimum at ex. Thus z — h(z) + h(z~!) has a strong minimum
at ex and h(ex) = 0.

Corollary 4 Let (X, m) be a complete metric invariant group with the identity element
ex. Let p: X — R be a group morphism and f and g be two lower semi continuous
functions on (X, m). Suppose that the map x — f @ g(z) — p(x) has a strong minimum
at xqy , then there exists zg € X such that

(1) the map n: 2 — f(xoz™") + g(2) has a strong minimum at 2o € X and f(zozy ") +
9(20) = f ® g(xo). In particular f & g(xo) is exact at xg.

(2) f —p has a strong minimum at xozo_l and g — p has a strong minimum at zp.

Proof. First, note that f@® g(z) —p(z) = (f —p) ® (g —p)(z) for all x € X since p is a
group morphism. Let us set ¢:= f @ g(z9) — p(zg) and h : t — f @ g(xot) — p(zot) — c.
Then h has a strong minimum at ey since by hypothesis x — f@®g(x)—p(x) has a strong
minimum at xo. Let us denote by f : t — f(zot) — p(zot) —c and § : t = g(t) — p(t).
Then we have that f and ¢ are lower semi-continuous and f ® g = h. We deduce then
that the map x — f @ g(z) has a strong minimus at ex. Thus by Lemma 1 we have
that z — f@§(x)+ f®g(z~!) has a strong minimum at ex and we can apply Theorem
5 to obtain the existence of some zg € X such that:

(1) the map 77 : z = f(z~') 4+ §(z) has a strong minimum at zy € X.

(2) f(z) > f @ glaz) + f(zo_l) and §(z) > f @ G(zy ') +§(20) for all z € X.

Using the fact that p is a group morphism and by replacing f and g by their expression,
we translate (1) and (2) respectively as follow

(1) the map 1 : z = f(x0z~1) + g(2) has a strong minimum at zg € X.

(2) 1(@) —p(x) > (F @ 9(z) — p(z)) — (f © g(z0) — p(z0)) + (F(w05)) — plaoz5") and
g(x) = p(x) > (f @ g(zozg 'x) — pxozy ') = (f @ g(xo) — p(20)) + (9(20) — p(20), for
all z € X.

Using the fact that x — f @ g(x) — p(x) has a strong minimum at xg, this implies
respectively

(1”) the map 1 : z = f(xoz~ 1) + g(2) has a strong minimum at zg € X.

(2”) f(z) — p has a strong minimum at z9z; * and g — p has a strong minimum at z.
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4 The inf-convolution and algebra.

4.1 Properties and useful lemmas.
4.1.1 The semigroup Fy(X).

We have the following more explicit characterization of remarkable idempotent. The
proof follows immediately from Lemma 2.

Proposition 6 Let ¢ € F(X). Then, ¢ is remarkable idempotent if and only if ¢
satisfay :

(1) p(zy) = (yx) for all x,y € X.
(2) p(x) =p(z7 1) =0z =cx.
(3) p(zy) < w(z) + ¢(y) pour tout x,y € X (i.e ¢ is subadditive).

Lemma 2 Let X be a group and ex its identity element. Suppose that p(ex) = 0. Then
©® @ =@ if and only if ¢ is sub-additive i.e p(zy) < o(z) + @(y) for all z,y € X.

Proof. (=) Suppose that ¢ & ¢ = ¢. Then
play) = inf {p(ey="") +¢(2)}
o(y) + ¢(x); Vr,y e X.

IN

(<) For the converse suppose that ¢(zy) < ¢(x)+ ¢(y) for all z,y € X. Then we have
o) = p((zz7H2) < p(zz71) + p(2); Vo, z € X. Taking the infinitum over z € X we
get o(x) < @ @ p(z) for all x € X. Now

poe@) = inf {p@z)+e(2)}
< () + p(ex)
= o(x).
Thus ¢ ®p = ¢.m
Lemma 3 Let ¢ € F(X) be a remarkable idempotent. Then

(1) Then for all f € F(X) we have f ® ¢ = ¢ @ f (all elements f € F(X) commutes
with ¢).

(2) Lipé#p(X) = Fo,0(X) (in particular (Lipé#p(X), @, ) is a monoid).
(3) Every elements f of Fo ,(X) is 1-Lipschitz for the metric A .

Proof. (1) Let us first proves that for all f € F(X) we have f @ ¢ = ¢ @ f. Indeed, by
using the fact that ¢(xy) = ¢(yz) for all x,y € X with the following variable change
t = 2y~ we have for all z € X,

fepl) = inf {Ffzy™) +o(y)}
= {f(O) + ot 2)]
= inf {p@t™h) + (1)}

= ¢ f(v)
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(2) We prove that Fo,(X) C Lipj ,(X) : Let f € Fop(X). Then by the definition
of Fo,,(X) we have o @ f = f @ ¢ = f. We are going to prove that f € Lip(lW(X).
Indeed, let z,y € X and let (z,), C X such that for all n € N*

_ 1
P ® fy) > olyz') + flen) = — 8)
On the other hand ,

e® f(x) <z, ') + flzn) (9)

By combining (8) and (9) we have

0® f(@) < 9 ® Fly) + plaz") — plyz) + - (10)
Now using Lemma 2 we have ¢ & ¢ = ¢ and so we have
plaz!) = p@p(zz")
= inf {p(@z"t7) + 00}
< pley™) +elyz ). (11)

Combining (10) and (11) and sending n to 400 we obtain that

@ f(z) <@ fy) +plzy™).
This shows that o ® f € Lipa(p(X). But o @ f = f, thus f € Lip(l)’go(X).

We prove now that Lip ,(X) C Foo(X) : Let f € Lipa(p(X). From part (1) we have
fee=p®f. We are going to prove that f @ ¢ = f. By the definition of Lip(lw(X)
we have

fla) < fy) +olzy™ ') Ve,y € X.

Taking the infinimum over y € X, we get f(z) < f @ p(z) for all z € X. For the
converse inequality we have

inf {f(y)+ e(zy™)}

yeX
< flx) + plex)
f(z).
Thus f@p=¢® f = fandso f € Fyu(X).
(3) This part follows easily from the part (2) and the definition of Lipg ,(X).m-

f@o(x)

Lemma 4 Let ¢ € .7-"(X_) be a remarkable idempotent and @ be the unique extension
of ¢ to the completion (X,Ax ). Then (Lip(lW(X),d) = (Lip(l)@(X),d) as monoids.
More precisely, the map

X (sz(l),ga(X)a @’ d) - (sz(l),ﬁ(y)’ 695 d)
f = Ff=lz0 inf, {B(zz"" + f(2)}
18 an isometric isomorphism.
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Proof. Tt is easy to see that f € Lipé@(Y) for all f € Lz’p(lW(X) and that the map x is
well defined since if f = g on X then clearly f =g on X. Observe that the restriction
Jix of f to X coincide with ¢ @ f, by definition of f. The map Y is injective since, if
f =7 on X then by the restriction to X we obtain ¢ @ f = ¢ @ g. Thus f = g since
Lipa(p(X) = FooX) ={feFo(X): fOp=¢®f=f} by Lemma 3. The map x
is surjective. Indeed, let F' € Lz’p(l)’@(Y) and set f = F|x the restriction of F' to X.
Then by definition f(Z) := inf.ex {¢(Zz"!) + F(2)}. By the density of X in X and
the continuity of @ and F' on X we have

f@) = Zlg)f( {(p(a_czfl) —i—F(z)}

= inf {p(@=") + F(=)}
— B&F

= F

The last equality follows from the fact that F' € Lip(l]@(Y) = Fo5(X) by Lemma 3.
Let us show now that x is a monoid morphism. Indeed, let f,g € Lip(lW(X ). Using the
continuity of f and g and the density of X in X, we easily see that f@® g and f @ g
coincide on X with f @ g, so by the injectivity of x ™! we have f® g = f ® g. Thus x
is a monoid isomorphism. The fact that x is isometric follow from the the density of X
on X and a continuity argument.m

For the proof of the following lemma see [[2], Lemma 1].
Lemma 5 Let f,g € Fo(X). Suppose that dso(f,g) := supgex |f(z) — g(z)] < 400

then
@@l _delfg)
W 9) = S0 T @) — g(@)] ~ T+ doolfog)

For each fixed point € X, the map 5 is defined on X by

07: X — R
z = pzah).

We define the subset G (X) of Fy,(X) by G5'(X) :={d% : z € X}.

The following Lemma is an adaptation to our framework of [[2], Lemma 3].

Lemma 6 Let p € F(X) be a remarkable idempotent. Then, the map

’Y()’}:(XvAOO,SD) — (gg(X)vdoo)
x = 0F

18 a group isometric isomorphism. Or equivalently, the map

A
(X, —=F C(X
i o ( ’1+Aoo,<p) — (G5 (X),d)
x = 0F

18 a group isometric isomorphism.
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Proof. The second part of the Lemma follow from the first part and Lemma 5, so we
need to prove just the first part. Indeed, let z1, 29 € X, we prove that 65, ® 5, = 67,1,
Indeed, let x € X, we have :

0F ® oL, (x) = Zlél)f( {5f1 (xz_l) + 07, (z)}
< 67 (vay ") + 6%, (22)
= o (x(ziz2) ") + @lex)
= 5§1$2 (.T,')

For the converse inequality, we use fact that ¢(xy) = ¢(yx) for all z,y € X and the
sub-additivity of ¢ , to obtain for all z € X

52 (x) = 6%, (x)

= ¢ (z(z1z2)7")

I
S
8
8
[\o}
8
—
= ~—

Il
S

Il
S
~ o~ o~

8

| —
—~
8
8
[\

+ o(zz3 ")
Nz 1) + e(zas )
¢ (w271 +0%,(2)

I IA
S~

S\‘G

®

W

By taking the infinimum over z in the last inequality, we obtain

08 2, () <08 @67 (x).

xr1T2

Thus, 04, ® 04, = 0F,2,. In other words,
V5 (@122) = A%(21) @ 9% (22), Vo2 € X. (14)

Now by the definition of G¥(X), 7% is a surjective map. Let us prove that 7% is one
to one. Indeed, let z1, 22 € X be such that 6%, = 6%, i.e p(za;') = p(za,y ') for all
x € X. Since ¢ satisfy the condition : p(z) = p(z7!) = 0 < = = ey then by replacing
x by 1 in a first time and x by x5 in a second time we obtain 0 = p(ex) = p(r125 ') =
gp(mﬂfl) = go((:clxgl)_l) which implies that xlscgl = ex 1.e 71 = x9. Now, since X
is a group and 7% is a bijective map satisfying the formula (14) then (G§(X),®) is a
group as image of group by an isomorphism. The identity element of (G (X), ®) is of
course Y% (ex) = 0&x = ¢. Thus 7% is a group isomorphism.

Let us show now that 7% is an isometry. By using the sub-additivity of ¢ and the
fact that ¢(ex) = 0 we have :

doo(6%,,0%,) = sup|d0f, (z) — 07, (x)|

T 7x2 ex

x

= sup |90(:C561_1) - SO($$2_1)|
zeX

— max (Sup(w(mll) — o(za; ")), sup (p(zay ') — s0(9”011))>

reX zeX

max (go(:ﬂzfﬂfl), @(mlxgl))
Ao ()
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For the inverse inequality,

oo (021 (#), 05 () = §g§|5fl(x)—5f2($)l

= sup p(zay ") — plaay )|
zeX

— <Sup(s0(m11) ~ pleay ), sup(p(e — w2) — (o - xn))
rxeX xeX

> max (30(332331_1)§ 80(551332_1))
= Aoo,go(xay)

S0 doo (0%, 0%,) = Aco,p(2,y). This shows that 7% is an isometry. The second part of
the Lemma follows from Lemma 5.

4.1.2 The semigroup F(X).

In this section we prove that using the following proposition, we can deduct results in
the semigroup F(X) canonically from the results of the semi group Fo(X).

For all (f,t),(g,s) € Fo(X) x R, we denote by (f,t)&(g,s) := (f & g,t + s) and
di((f,t);(g,s)) :=d(f,g) + |t —s|. If ¢ is idempotent element, we denote by

FoX):={f e F(X): fop=pof=[}
the monoid having the identity element ¢ and by Lip}p(X ) the following set
Lipy(X) = {f € F(X) : f(z) = f(y) < p(zy™');Va,y € X}.

If M is a monoid having ¢ as identity element, we denote by U(M) the group of unit
of MieUM):={feM/3geM:fdg=gd f =}

Proposition 7 Let X be a group. Then the following assertions hold,

(1) The following map is an isometric isomorphism of semigroups

T (FX),@,d) — (Fo(X) xR, 3, dy)
f o (F —inf fiinf f).

(2) Let p € F(X) be a remarkable idempotent. Then
(7) Lz’pglo(X) = F,(X) and (Lipsla(X), @,d) = (Lip(lW(X)xR,@, dy) as monoids.
(i) U(Liph (X)), ®,d) = U(Lip (X)) x B, B, d1) as groups.

Proof.  The part (1) is easy to verify. The part (2) follows from the fact that the
isomorphism 7 send the monoid F,(X) on the monoid Fy ,(X) x R and the fact that
Fo.p(X) = Lipg ,(X) by Lemma 3. Note also that f € Lip},(X) if and only if finfy f €
Lipj ,(X)m
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4.2 The main algebraic result: the group of unit.

Let us proof now our first main algebraic result announced in the introduction. A. The
monoid Lip; ,(X).

Theorem 6 Let ¢ € F(X) a remarkable idempotent. Then the following assertions
hold.

(1) Z/I(Lip(lW(X)) =xto 7%(7). Where x is the isometric isomorphism of Lemma 4
and ’y% is the isometric isomorphism of Lemma 6 applied to (X, Asop) = (X, Koo#,).

(2) (U(Llp(lJ,go(X))’d) = (Xa 1_’_307:#)) as groups.

(3) (Z/I(Lipé#p(X)),doo) >~ (X, Ax,p) as groups.

Proof. (1) By using Lemma 4 we have that X(U(Lip(lw(X))) = L{(Lz’pé@(Y)) and by
using Lemma 6 we have that 'y%(Y) = gf (X) so we need to prove that the group of
unit U (Lip} 5(X)) of Lip§ 5(X) coincide with G§ (X).

(x) G¥(X) cU (Lip(lw(Y)) : this inclusion is clear since we now from Lemma 6 that
QOE (X) is a group having % as identity element.

(xx) Z/I(Lip(l)@(Y)) CGi(X): let f e U(Lipé@(Y)), there exists g € U(Lipé@(Y))
such that f @ g = @. Let us prove that the map = — ®(z) + B(z~!) has a stong
minimum at ex on (X, Ax3) = (X, Ax,). Indeed, since P is remarkable idempotent
then > 0 = B(ex) = pley’) and so x — B(x) + (2~ ') has a minimum at ex. On the
other hand A (7, ex) = max(p(z), p(z71)) < p(x)+@(z71). Now, B(z,)+p(z, 1) —
0 = Ao z(Tn,ex). Thus, the map x — B(z) + (2 ') has a strong minimum at ex on
the complet metric invariant group (X, Ao ). Since = f 67 and since f and g are
lower semi continuous (in fact 1-Lipschitz on (X, A )), then we can apply Theorem
5 to obtain some zg € X such that f(x) > B(x20) + f(z; ') for all z € X. On the other
hand since f € Lip(l]@(Y), then we have f(z) < B(x20) + f(zy ') for all x € X. Thus
f(z) =B(x20) + f(2y ) for all z € X. Now since infs; f = 0 = inf 7 then f(z;') = 0.
Finally, we have f(z) = @(z20) = 52_1 (z) for all z € X ie f € G¥(X).

The part (2) and (3) are just interpretations of the part (1) with the fact that d = 113700

on gg (X) by Lemma 5 since du is finite on this group by Lemma 6 .

B. Abstract monoid M,(X).

Definition 4 Let S be a subset of , we say that S satisfy the translation property (T')
if the following property hold :

(T') The maps x — f(zx) and x — f(xz) belongs to M,(X) for all f € My(X) and all
ze X.

Proposition 8 Let ¢ € F(X) be a remarkable idempotent. Let M,(X) be an abstract
monoid of Fo(X) having ¢ as identity element. Then
(1) the group of unit (U(My(X)),d) of My(X) is isometrically isomorphic to a subgroup

R Aoo,
G of (X, 1+Zoj,¢)'
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(2) If M, (X) satisfy the property (T'), then (U(M,(X)),d) is isometrically isomorphic
to a subgroup of G such that X C G C X.
(3) If the group X is complete for the metric A, and M, (X) satisfy the property (T)

then U(M,(X)),d) = (G5 (X),d) is isometrically isomorphic to (X, HAA%).

Proof. (1) We have My, (X) C Fo,, = Lipo,(X). SoU(My(X)) CU(Lipo,(X)) which
is isometrically isomorphic to X by Theorem 6. So the conclusion.

(2) If M,(X) satisfy the property (T') then G (X) C U(M,(X)) since G7(X) is a group
included in M,(X). On the other hand G7(X) is isometrically isomorphic to X by
Lemma 6. This gives the conclusion with the part (1).

(3) The conclusion follow from the part (2) since X = X in this case.m

Corollary 5 Let (X, m) be complete metric invariant group. Let M be an abstract
submonoid of the monoid Lip(X) satisfying the translation property (T') Then the group
of unit (U(M),d) is isometrically isomorphic to (X, 4;). This show that all submonoid

M of Lip}(X) satisfing the property (T), have the same group of unit.

Proof. The proof follow from the part (3) of Proposition 8 since in this case ¢ = @, :
z— m(z,ex) and (X,m) = (X,Ax,,) is complete.m

5 Applications to the Banach-Stone theorem.

Let us prove now our version of the Banach-Stone theorem which states that the struc-
ture of the monoid (Lipé#p(X ), @, d) completely determine the structure of the metric

invariant group completion (X, Zoo#,) when ¢ is remarkable idempotent and symmetric.

Theorem 7 Let X and Y be tow groups and let ¢ € F(X) and ¢p € F(Y) be two
remarkable idempotents. Then (1) = (2) = (3) & (4) = (5) = (6). If moreover we
assume that @ and 1 are symetric (i.e o(z) = p(x™1) and Y(y) = Y(y~!) for allx € X
and ally € Y), then (1) — (6) are equivalent.

(1) There ezist a group isomorphism T : X — Y such that ¢ o T = .

(2) There exist a semigroup isomorphism isometric ® : F(X) — F(Y) sush that ®(0) =
0 and ®(p) = 9.

(3) There exist a semigroup isomorphism isometric @ : Fo(X) — Fo(Y) sush that

iy

€l
I

<

Proof. Note that we have (X, A ) =(X, Ao 5)-

(1) = (2) f T : X — Y is an isomorphism such that 1) o T = % then the map
P : F(X) = F(Y) defined by ®(f) = foT~" is a semigroup isomorphism, isometric
for the metric d and satisfy (%) = ¢ and ¢(0) = 0.
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(2) =(3)Since® is a semigroup isomorphism that ®(0 & f) = ®(0) & ¢(f) for all f €
F(X). Since ®(0) =0 and 0@ f = infx f, then we obtain that ®(infx f) = infy ®(f)
for all € F(X). In particular, 0 = ®(0) = infy ®(f) for all f € Fo(X), this show that
® send Fo(X) on Fo(Y).

(3) = (4) Since ®(%) = ¢ and @ is a semigroup isomorphism then clearly ® maps the
monoid Fo (X ) onto the monoid .7-"0’@(7). So using the fact that Fo(X) = Lip(lw(Y)
and ]:OE(?) = LipéE(Y) by Lemma 3, we obtain that (Lip(l)’@(Y), d) = (LipéE(Y), d)
as monoids by ®. ’ ’

(4) < (5) Follows from Lemma 4.

(5) = (6) Since (Lipy ,(X),d) = (Lip%)’w(Y), d) and since isomorphism of monoids send
the group of unit on the group of unit, we have Z/I(Lip(lW(X)) = U(Lip(lw(Y)). Using
Theorem 6 we obtain that (X, A ) = (Y, A ).

Suppose now that ¢ and ¢ are symmetric, then

Zoo,go(xa eX) = Aoo,@(xv eX) = max(@(x)va(xil) = @(.%')

for all x € X and A y(y,ey) = A opy,ey) = P(y) for all y € Y. We need to prove

that (6) = (1). Indeed, Let T": (X, Ax,p) = (Y, Aso,p) be an isomorphism isometric.
In particular we have

U(T(x) =

This conclude the proof.m

The following corollary shows that the monoid (Lip}(X), ®, d) completely determine
the structure of the complete metric invariant group (X, m).

Corollary 6 Let (X, m) and (Y,m') be complete metric invariant groups. Let @y, :

x = m(z,eX) forallx € X and iy 2y — m/(y,ey) for ally € Y. Then, the following

assertions are equivalent.

(1) (X,m) = (Y,m') as groups.

(2) There ezist a semigroup isomorphism isometric ® : F(X) — F(Y) sush that

O (om) = Yy and ®(0) = 0.

(3) There erist a semigroup isomorphism isometric ® : Fo(X) — Fo(Y) sush that
(om) =

(4) (szo( ) d) =~ (Lip{(Y),d) as monoids.

(5) There exist a semigroup isomorphism isometric ® : (Lipy(X),d) — (Lipo(Y),d)

sush that (o) = Uy

Proof. The part (1) < (2) < (3) < (4) follow from Theorem 7 and the fact that (X, m)
and (Y, m') are complete, and that Lip}(X) = Lz’p(lwm (X) with ¢, : © — m(z,ex).
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On the other hand, the part (1) = (5) is clear and the part (5) = (4) follow from
the fact that Lipj(X) = Fo,, (X), Lipy(X) = Fop (V) and the fact that & send
necessarily the monoid Fy ,,, (X) on the monoid Fo, ,(Y).m

Now we give the purely algebraic version of the above corollary. We denote by
FL(X) the monoid of all functions f : X — [0,1] such that infx f = 0. This monoid
has the identity element, the map

5ex:{ 0if x=-ex

1 otherwise.

Corollary 7 Let X and Y be two groups. Then the following assertions are equivalent.

(1) (F3(X),®,d) is isometrically isomorphic to (FE(Y),®,d) as monoids (also as semi-
groups).

(2) (FH(X),®) is isomorphic to (F3(Y),®) as monoids (also as semigroups).

(3) X and Y are isomorphic as groups.

Proof. First, note that the group X ( and in similar way the group Y') can be endowed
with the discrete metric denoted by dis. So we have that (X, dis) is a complete metric
invariant group. Then, we see easily that with this metric we have F¢(X) = Lip}(X).
On the other hand we have that X and Y are isomorphic if and only if (X,dis) and
(Y, dis) are isometrically isomorphic, this implies by Corollary 6 that (F3(X),d) and
(Fa(Y),d) are isometrically isomorphic as monoids, in particular they are isomorphic.
For the converse, if .7-"3(X ) and .7-"3 (Y') are isomorphic as monoids, then the group of
unit of F3(X) is isomorphic to the group of unit of F3(Y). Thus, by Theorem 6 (Or
Corollary 7) we obtain that X and Y are isomorphic.m

6 Application to the Banach-Dieudonée Theorem.

Let us recall some notions. Let K and C be convex subsets of vector spaces. A function
T:K — Cis said to be affine if for all z,y € K and 0 < A <1, T(Az + (1 — N)y) =
AT (z) + (1 — \)T'(y). The set of all continuous real-valued affine functions on a convex
subset K of a topological vector space will be denoted by Aff(K). We denote by
Af fo(Bx+) the set of all affine weak star continuous functions that vanish at 0. Clearly,
all translates of continuous linear functionals are elements of Aff(K), but the converse
in not true in general (see [9] page 21.). However, we do have the following relationship.

Proposition 9 (/9], Proposition 4.5) Assume that K is a compact convezr subset of a
separated locally convexr space X then

{a € Aff(K):a=r+uaf for somez” € X" and some r € R}
is dense in (Aff(K),|.||co)-
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But in the particular case when X is a Banach space and K = (Bx~,w*) is the unit
ball of the dual space X* endowed with the weak star topologies, the well known result
due to Banach and Dieudonné states that :

Affo(Bx+) ={fk:2€ X}.

Where 2 : p = p(z) for all p € X* and 2, denotes the restriction of 2 to K. In
particular (Af fo(Bx+), ||-]|co) is isometrically isomorphic to (X, [|.]).

We give in this section a simple proof of the Banach-Dieudonné theorem by using
our algebraic results of this article. More precisely, we us Theorem 6.

In what follow, K is a convex bounded and weak-star closed set of X™* congaing 0
such that int(K) # () where int(K) denote the interior of K for the norm topology.
We denote by A(X™) the set of all functions F' : X* — R U {400} convex weak-star
lower semicontinuous with non empty domain. We denote by i the indicator function
ig(z) =0if x € K and 400 otherwise and by A (X*) := {F + ix : F € A(X")} which
is a monoid for the operation + and having the function ix as identity element. We
also denote A(K) the set of all functions F' : K — R U {+00} convex weak-star lower
semicontinuous on K, which is a monoid having 0 as identity element. Clearly, the map

L (AK),+) = (A (X7), +)
F — F+ig.

is a monoid isomorphism, where F' := F' on K and +oo otherwise.

Finally by 7 we denote the Fenchel-Moreau operator i.e T(f) = f* where f*(p) :=
sup,cx {p(z) — f(x)} for all p € X* and by ok : © = sup,cx {p(z)} the support func-
tion. It is well known that the inf-convolution of two convex function is also convex
function and that (f @ g)* = f* + ¢* is always true.

For the inf-convolution structure, we deal with the particular semigroup CLy(X) of
all convex map f defined on a Banach space X such that infx f = 0 and the submonoid
My, (X) = CLy(X) N Lipy,g, (X) of the monoid (Lipg s, (X),®) where o : x +—
sup,e {p(z)} denotes the support function which is a remarkable idempotent (see the
proposition bellow). We recall below the well know Fenchel-Moreau theorem.

Theorem 8 (Fenchel-Moreau) Let X be a Banach space and f be a function defined
on X such that {x € X : f(z) < +00} # 0. Then, f is conveze lower semi continuous
if and only if f**(x) = f(z) for allx € X.

Proposition 10 Let K be a conver bounded and weak-star closed set of X* such that
int(K) # 0. Then

(1) The support function ok 1is remarkable idempotent of My, (X) and is Lipschitz on
(X 11D

(2) For each fized point z € X, we have (o (. — 2))* = 2+ ik, where 2 : p > p(z) for
al p € X*.
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(3) UM, (X)) = GI¥(X) = {ok(. — 2) 1 2 € X}
(4) U(A(K)) = Af fo(K) = i H(U(AK (X))

(
Proof. (1) We know that ok is subadditive, so from Proposition 6 it suffices to prove
that ox(z) = oxg(—x) = 0 if and only if x = 0 which is clear since int(K) # (. Since
K is bounded set then o is Lipschitz on (X, ||.]).

(2) This part is well known and can be easily verified.

(3) Since M, (X) is stable by the translation property (T") (See Definition 4) then, by
Proposition 8 we have U (M, (X)) = G¥(X) = {ok(. — 2) : z € X} since (X, Aso oy )
is complete. In fact here A 5, (7,9) = sup,cx [p(7 — y)| is equivalent to the metric
associated to the norm ||.|| since K is bounded and int(K) # (.

(4) First we have U(A(K)) = AFFo(K). Indeed, let F € U(A(K)) then there exists
G € U(A(K)) such that F+ G =01i.e F'= —G on K. Since both F' and G are convex
weak-star lower semicontinuous on K then F' (respactivelly G) is affine and weak-star
continuous on K. Conversely, if I is affine and weak-star continuous then —F’ is affine

and weak-star continuous too and so F' € U(A(K)). A monoid isomorphism send the
group of unit on the group of unit so i(U(A(K))) = i(Af fo(K)) =U(Ar(X*)).m

Proposition 11 Let K be a conver bounded and weak-star closed set of X* such that

int(K) # 0.
(2) The map
T: (Mo (X),®) — (Ag(X"),+)
fo= T

1s @ monoid isomorphism. Consequently,

o T (Mo (X), @) — (A(K),+)

fom it T(f)

1§ a monoid isomorphism.
Proof.  The injectivity of T follow from the Fenchel-Moreau theorem (see above)

since every element of M,, (X) is convex and Lipschitz. For the surjectivity, Let
F be weak-star lower semicontinuous and convex function on X*. Let f : =z +—
subper {p(x) — F(p)} = (F +ix)"(z). Then f € My, (X) and F +ix = f* = T(f).
Indeed, f is bounded from below since 0 € K and infx f = 0 since F(0) = 0. We
have that f is convex and weak-star lower semicontinuous as supremum of affine and
weak-star continuous functions. So f € CLy(X). On the other hand f € Lipg s, (X)
as supremum of element in Lipg », (X), since for each fixed p € K we have (p(x) —
F(p)) — (p(y) — F(p)) = p(x —y) < ox(xr —y) and we can take supremum in the
inequality (p(z) — F(p)) < ox(x —y) + (p(y) — F(p)). Thus f € M,, (X). Now by the
Fenchel-Moreau theorem we have F + ix = (F + ix)*™ = f* since F + i is convex
weak-star lower semicontinuous. So 7T is surjective. Finally 7 is a morphism for the
inf-convolution since it is well know and easy to verify that (f @ g)* = f* + ¢* for all
fyg € My, (X). By composition of isomorphism we obtain the second affirmation.m

We give now the algebraic proof of the Banach-Dieudonée theorem.
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Theorem 9 (Banach-Dieudonée) Let K be a conver bounded and weak-star closed
set of X* containing 0 such that int(K) # (0. Then

Affo(K)={4k:2€X}.

If moreover K is symmetric then (Af fo(K), ||.||ec) s isometrically isomorphic to (X, 0k).
In this case ok is an equivalent norm on X.

Proof.  Since a monoid isomorphism send the group of unit on the group of unit,
then i1 o T (U(M,, (X))) = U(A(K)) by Proposition 11. The conclusion follow from
Proposition 10.m

We give as corollary the following well known result.

Corollary 8 [[4], Theorem 55| Let F' € X** (the bidual of X ). Suppose that F is
weak-star continuous. Then there exists x € X such that F = Z.

Proof. The restriction Fjp, ., is affine weak-star continuous on Bx«. So applying The-
orem 9 with K = Bx-~, there exists © € X such that F|p , = #|p,.. By homogeneity
we have I' = I.m
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