
HAL Id: hal-01151971
https://paris1.hal.science/hal-01151971

Submitted on 14 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Three strategies to Specify Multi-Instantiation in
Product Lines

Raouia Triki, Camille Salinesi, Raul Mazo

To cite this version:
Raouia Triki, Camille Salinesi, Raul Mazo. Three strategies to Specify Multi-Instantiation in Product
Lines. IEEE RCIS 2015, May 2015, athène, Greece. �hal-01151971�

https://paris1.hal.science/hal-01151971
https://hal.archives-ouvertes.fr

Three strategies to Specify Multi-Instantiation in
Product Lines

Raouia Triki, Camille Salinesi, Raúl Mazo

Centre de Recherche en Informatique (CRI)
University of Paris1-Panthéon Sorbonne

Paris, France
{raouia.triki; camille.salinesi}@univ-paris1.fr, raulmazo@gmail.com

Abstract—Product line engineering uses product line models

to define the valid combinations of elements in a product and to

configure them. Several modeling languages have been proposed

to represent product line models. These languages have limits

and they do not always fit the requirements of the context. For

instance, in the industrial context, product lines contain often

multi-instantiated features which are more difficult to model.

This paper reports lessons learned during a project with an

electronic supplier company called Rexel. Our objective in this

study was to find out the appropriate modeling languages to

model multi-instantiation, as required the Rexel’s Electric Board

that contains many multi-instantiated features. This paper

presents (i) how three categories of modeling languages have

been used in industry to model the multi-instantiation concept of

an electric board; (ii) the limits and difficulties encountered with

each category of modeling languages; and (iii) modeling

strategies to handle multi-instantiation with each kind of

language.

Keywords—product lines; variability; modeling languages;

multi-instantiation

I. INTRODUCTION

Product Line Engineering (PLE) is an emerging paradigm
that enables developing products by reuse of artifacts from a
product line. A Product Line (PL) is “a set of systems that
share a common, managed set of features satisfying the specific
needs of a particular market segment or mission and that are
developed from a common set of core assets in a prescribed
way”1. New products are generated with a configuration
process that tries to match users’ requirements to domain
requirements. The variability of domain requirements is usually
represented by means of a Product Line Model (PLM).
Variability is “the ability of a system or artifact to be
configured customized, extended, or changed for use in a
specific context” [26]. Thus, a PLM represents, in an intensive
manner, the collection of products that belongs to the product
line. This representation comports variability constrains over
the different artifacts of the domain that is being represented.
Optionality, exclusion and multi-instantiation are some
examples of these variability constraints in PLMs.

This paper focuses in how to represent and how to deal
with multi-instantiation (i.e., the possibility to use multiple
times an artifact in a particular product [6] [7]) in PLE. Multi-
instantiation is not a new concept in PLE and it has been used
several times in literature. For instance, there are modeling

languages such as Cardinality-based Feature Models (CFM)
[8], Textual Variability Language (TVL) [4] and a flavor of
UML class diagrams used to represent PLs [5] that include the
concept of multi-instantiation. These languages can be grouped
in three categories: (1) category of modeling languages
specifying constraints on sets of non-predefined instances, (2)
category of modeling languages including built-in concepts to
specify multi-instantiation, and (3) category of modeling
languages without cardinality. The first category corresponds
to the modeling languages that specify constraints on sets of
non-predefined instances. Cardinality-based Feature Models
(CFM) [8] is an example of language belonging to this
category. CFM is an extension of the FODA language [14] and
allows specifying individual cardinalities for each feature and
group cardinalities for bundles of features. Textual Variability
Language (TVL) [4] is a text-based feature modeling language
and is another example of language that belongs to the first
category. The second category of modeling languages includes
built-in concepts to specify multi-instantiation The UML-Class
flavor proposed by Clauss [5] is an example of language
belonging to the second category. This category of diagrams is
used to describe the structure of the system in terms of classes
and their relationships. The third approach is a category of
modeling languages without cardinality. The Feature-Oriented
Domain Analysis (FODA) method [15] that represents the
features of a particular domain and the relationships among
them; and the Orthogonal Variability Model (OVM) [20] that
provides a cross-sectional view of the variability across all
software development artifacts, are examples of languages that
belong to the third category.

These three modeling categories support the concept of
multi-instantiation in different manners. That is why we are
interested in the “best manner” to model the multi-instantiation
in PLE. In order to identify that “best manner” to model multi-
instantiation we compared the aforementioned categories in the
context of a research action process. As a result, we identified
the limitations and strengths of each of these categories. We
analyzed these results and we identified the most suitable
category of modeling languages to represent the concept of
multi-instantiation and its associated constraints in the context
of real product line engineering projects relying on an industry
case: the product line developed by an electronic supplier
company called Rexel2. Rexel supplies tailor-made electrical
equipment and services to all professionals involved in the
construction, maintenance, renovation, and development of all
kinds of buildings and infrastructure.

978-1-4673-6630-4/15/$31.00 ©2015 European Union

1 http://www.sei.cmu.edu/. SEI web page
2 http://www.Rexel.com

In particular, this paper presents (i) how three categories of
modeling languages have been used in industry to model the
multi-instantiation concept of an electric board; (ii) the limits
and difficulties encountered with each category of modeling
languages; and (iii) modeling strategies to handle multi-
instantiation with each kind of language.

The remainder of the paper is organized as follows. Section
2 presents the Rexel case. Section 3 presents the methodology
applied for PL modeling. Then, Section 4 presents the Rexel
PL modeling activity with the first category of modeling
languages; Section 5 presents the Rexel PL modeling activity
with the second category; and Section 6 presents the Rexel PL
modeling activity with the third category. Examples tackled in
sections 4, 5 and 6 present different parts of the same case
study described in Section 2. Section 7 provides an analysis of
the results. To finish, Section 8 presents related works and
Section 9 presents the conclusions of the experiment.

II. THE ELECTRIC BOARD CASE STUDY

A. Context

Rexel is an electronic supplier company with over 2500
product references at every sales outlet, and manages their
products sales by using product catalogs that present products
extensively one by one. Products are presented in the catalog
without mentioning in what type of site they should be used, or
if their use corresponds to the French norm for electricity.
Besides, dependencies and incompatibilities, among different
products presented in the catalog are not explicitly defined and
they are therefore difficult to maintain. Thus, Rexel decided to
represent their products in an intensive way by means of
product line models.

B. Electric Board Description

Electric boards are usually used for a particular habitat; for
instance, an apartment, hospital or enterprise. This example
was chosen for its simplicity with respect to other electric
equipments and because it is a real and complete industrial
product line that contains multi-instantiated elements. Rexel’s
electric board (see Figure 1) consists in a collection of electric
equipment pieces that distributes, takes control and protects the
individual circuits that feed each room. It also guarantees
security of people and the entire electrical installation
according to the NFC15-100 norm. This norm provides the
regulations of design, construction and maintenance of
electrical installations in France.

An accommodation must have room(s), kitchen(s), living
room(s), WC(s) and an electrical box. An electrical box has
optional components such as a socket piece, a door, a vertical
comb busbar, an horizontal comb busbar which allows
horizontal feed of rows, circuits or groups of circuits, electrical
pieces of equipment of lighting control, electrical pieces of
equipment of heating control and electrical pieces of equipment
for programming of circuits. The lighting control includes a
contactor or a remote control switch and a clock timer. The

heating control includes a timer switch and a pilot wire
administrator. The programming of circuits includes a remote
dimmer switch and a switch clock. The horizontal comb busbar
supplies electrical equipments of protection such as Surge
Protection Device (SPD) to protect electrical devices from
voltage spikes and differential switches to protect people from
the risks of electric shock. There is one differential switch by
horizontal comb busbar. The horizontal comb busbar also
supplies a collection of electrical pieces of equipment such as
breakers, fuses and Ground Fault Circuit Interrupters (GFCI) to
protect circuits from short-circuit. Only GFCI protects both
circuits and people. Each horizontal comb busbar always
includes at least one circuit. There are several types of circuits,
for instance, lighting circuit, PC16A circuit and dedicated
circuits. Dedicated circuits are used for washing machines,
dishwashers, dryers, ovens, freezers, mechanically controlled
ventilation circuits, cooking circuits, water heater circuits and
shutters circuits. Thus, there is one differential switch or one
GFCI for each horizontal comb busbar in order to protect the
corresponding circuits. The electric board must take into
account constraints defined by the NF C15-100, which
establishes rules for the different electric pieces of equipment.

Fig. 1. Example of a Rexel’s Electric Board

III. METHODOLOGY

The work reported in this paper was achieved through an
“Action Research” methodology [19]. Action Research aims to
improve practice by solving real problems and is conducted in
order to investigate contemporary phenomena in their natural
context [16]. Susman [28] has developed a detailed action
research model with the different phases to be carried out in
each cycle of the action research process. The Action research
model consists in a certain number of cycles and five phases
for each cycle (cf. Figure 2). As we were in the situation that
Rexel really needed help to handle the non-trivial PL
specification issue of multi-instantiation, we found the action
research method suitable for this project.

Fig. 2. Research Action Model [28]

The five phases of the action research cycle can be
described as follows:

1) Diagnosing: defining the problem of how modeling the

multi-instantiation concept in a product line.

2) Action planning: three categories of languages are

considered to model the multi-instantiation.

3) Taking action: the first category that consists in

specifying collection of constraints for non-predefined

instances is used for modeling the multi-instantiation

constraints.

4) Evaluating: an evaluation of the first category is

carried out by observing whether the multi-instantiation is

well modeled or not.

5) Specifying learning: interpretation of the general

findings by specifying the strengths and limitations of the first

category of languages.
Three cycles were performed: one for each category of

language that was addressed in the project. At the end of each
cycle, the problem was reassessed, and another cycle started
with lessons learned in mind.

IV. FIRST CYCLE

The first category of modeling languages specifies
constraints on sets of non-predefined instances. For example,
TVL models the multi-instantiation by adding an explicit
cardinality to the concerned feature [4]. TVL has an explicit
enumeration type and also allows expressing constraints over
the number of multi-instantiated features [4]. For instance, a
“differential switch” has a type and a caliber, where the type
can be “AC” or “Asi” and the caliber can be “25 amps”, “40
amps” or “63 amps”. This can be represented using different
attributes types: enumeration for the type of the attribute that
specifies differential switch, and integer for the caliber of
differential switch.

enum diffSwitches in {AC, Asi};

Accomodation {

 int accomodArea;

 accomodArea <= 35 -> count(diffSwitch.filter(

 caliberDiffSwitch == 25 && typeDiffSwitch == AC))>= 1;

 accomodArea > 35 && accomodArea <= 100 -> count(

 diffSwitch.filter (

 caliberDiffSwitch == 40 && typeDiffSwitch == AC))>= 2;

 accomodArea > 100 -> count(diffSwitch.filter(

 caliberDiffSwitch == 40 && typeDiffSwitch == AC))>= 3;

 DiffSwitch {

 int caliberDiffSwitch in {25, 40, 63};

 diffSwitches typeDiffSwitch;

}},

Fig. 3. Excerpt of constraints specified with TVL

To define constraints like “For an accommodation area not
exceeding 35m2, at least one differential switch with rated
current of 25amps and with type of AC must be expected” can
be expressed with TVL by using the functions count() and
filter() applied to attributes. In fact, for each accommodation
area, it is possible to define the number of differential switches
that must be installed and their caliber and types. For example,
Figure 3 shows constraints applied for accommodation area
between 35m2 and 100m2; and constraints applied for
accommodation area greater than 100m2. It is also possible to
specify that each circuit must have at least one protection with
a Breaker, GFCI or Fuse, using the or-decomposition
constraint called “group someOf” and the xor-decomposition
constraint called “group oneOf”, as shown in Figure 4.

enum breakers in {AC, A, ASi};

enum gfcis in {AC, Asi};

enum fuses in {A, Asi};

Circuit [1..*] {

 ProtectionCircuit;

 group someOf {

 ProtectionCircuit [1..1] {

 group oneof {

 Breaker {

 int caliberBreaker in {2,6,10,16,20,25,32};

 breakers typeBreaker;

 },

 Gfci {

 int caliberGfci in {10, 16, 20, 25, 32};

 gfcis typeGfci;

 },

 Fuse {

 int caliberFuse in {10, 16, 20, 25};

 fuses typeFuse;

 }

 }

 }

 }},

Fig. 4. Excerpt of the Electric Board modeled with TVL

Likewise as shown in Figure 5, the cardinality-based
feature model language allows to represent the fact that an
horizontal comb busbar has at least one “Protected circuit”
which in turn has at least one “Circuit” of type “Lighting
circuit”, “PC 16A Circuit”, “Dedicated Circuit”, or “Other
circuit”.

Fig. 5. Excerpt of an Electric Board modeled with CFM

Constraints applied over sets like « There must be at least
three dedicated circuits for powering devices such as: washing
machine, dishwasher, dryer, oven, and freezer » can be
expressed with a CFM. However due to its tree structure, the
cardinality-based FM language cannot express constraints such
as “When the heating circuits and electric water heaters, whose
total power exceeds 8kVA, are placed downstream of the same
differential switch, an AC type differential switch and 40amps
caliber must be replaced by an AC type differential switch and
63amps caliber”, because it is not possible, with CFM, to
calculate the sum of the powers of “heating circuit” and “water
heater circuit”. Moreover, far from the multi-instantiation, it is
notable that CFMs do not make distinction between “concrete”
and “abstract” features. For instance, “Protected Circuit” in
Figure 5 is an abstract feature and “Lighting Circuit” is a
concrete feature. Apart from what we observed in this cycle
about feature multi-instantiation, we also observed that, once
the electric board modeled as a feature model, it was difficult
to know (and remember several days after) if certain features
were represented as characteristics of the product line or just as
decisions to take in the configuration process.

V. SECOND CYCLE

The second category consists in the modeling languages
that include built-in concepts to specify multi-instantiation.
This is, for instance, the case of the UML dialect proposed by
Clauss [5] to specify with a concept of cardinality how many
times a class can be instantiated. In this notation, classes are
modeled using stereotypes to specify whether a class is a
“variation”, a “variant” or “optional”. For instance, a “circuit”
is a “variation” (cf. Figure 6) of: “lighting circuit”, “PC 16A
circuit”, “dedicated circuit” or “other circuit”, which are
represented as “variants” by means of the inheritance concept
of the UML class diagrams.

Fig. 6. Excerpt of Electric Board modeled with UML class diagrams

The limitation of this kind of notation is that all variations
cannot be specified. For instance, it is not possible to model the
different variations of the “dedicated circuit” because a
variation cannot have in turn variations. Thus, constraints on
non-modeled variants cannot be expressed.

VI. THIRD CYCLE

The modeling languages studied here do not offer an
explicit concept to represent multi-instantiation. For instance,
the FODA and OVM languages do not include the multi-
instantiation concept. There are two possible strategies to
handle the multi-instantiation phenomenon when using this
category of language: (i) to explicitly specify all the possible
instances in the product line model; and (ii) to use attributes to
enumerate the number of times a feature should be instantiated.

A. Strategy (1): Explicit Specification of all Instances

This strategy supports multi-instantiation by explicitly
specifying all the possible feature instances in the product line
model; for example, each instance of “breaker” can be
represented as a feature in the FODA model specifying its type
and its caliber (cf. Figure 7) i.e. a breaker feature with “A” type
and “32” caliber, a breaker feature with “A” type and “16”
caliber, a breaker feature with “AC” type and “16” caliber, etc.

Fig. 7. Excerpt of Electric Board modeled with FODA language

In addition to the potentially very large number of features
instances to represent, it is very hard to specify the constraints
between these features. For example, the constraint “VMC
circuits must be protected with a maximum rated current of
16amps circuit breaker” can be confusing because it is not
clear for which instance the constraint should be applied. Thus,
questions like “should the constraint be applied to the instance
Breaker A 16 or to the instance Breaker AC 16?” often arise
when this strategy is used.

B. Strategy (2): Attributes to Enumerate Feature

Instantiations

Another way to circumvent the lack of cardinalities is to
record the number of instances of features. The idea is to
represent the number of times that a feature can be instantiated
by means of an attribute of feature or variant. For example, an
electric board configuration can contain many breakers, to
protect the different existing circuits, with different types and
different calibers. Then, an attribute, called “number” for
instance, can be added to the feature, variant or variation point
to represent the number of instances of that element into a

particular product. Figure 8 shows an extract of the electric
board modeled with the OVM language in which the variation
point called “breaker” can be instantiated many times: the
attribute “NbrBreaker” saves the number of breakers
instantiated in one configuration. For instance, in one
configuration, there may be (i) two A type and 16amps caliber
breakers; and (ii) one AC type and 32amps caliber breaker.
Thus, the attribute “NbrA” saves the number of occurrences
according to the variant “A” that is 2. The same for the
attribute “NbrAc” that is equal to 1 occurrence, the attribute
“Nbr16” that is equal to 2 occurrences, and the attribute
“Nbr32” that is equal to 1 occurrence. Thus, the attribute
“NbrBreaker” is equal to 3 occurrences that is the sum of all
breakers contained in this configuration.

Fig. 8. Excerpt of Electric Board modeled with OVM language

Even if it is possible to represent the number of instances
that a domain element can have with attributes, there are still
limitations. Indeed, with this strategy, it becomes impossible to
consider different instances individually. For instance, it is not
possible to have both breaker calibers “16” and “32”.
Furthermore, some constrains like “In the case of T1 type of
housing, and if the equipment is not provided at least three
specialized circuits are planned including a 32A circuit and
two 16A circuits” cannot be expressed.

VII. ANALYSIS

This paper presents three categories of modeling languages
that can be used to represent multi-instantiation in the context
of product lines and shows how to use them with real case. At
the end of our experiment we remarked that the first category
of languages has the syntax richness to represent the electric
board multi-instantiated elements and some constraints over
them. We also noticed that the second category of languages
has still limitations to specify some variations and constraints.
Regarding the third category, we remarked that the use of
explicit instances make it difficult to specify constraints on
instances because it is not possible to distinguish which
instance is concerned by the constraint. However, the use of
attributes to count the number of instances is somewhat better
than the previous strategy despite its weakness to express all
constraints. In fact, with such strategy, it is not possible to
specify in one configuration different instances with different
values. Although the third category includes the more popular
languages in PLE, it is also the least appropriate to represent
multi-instantiation because (i) the syntax of the languages of

this category does not define feature cardinalities, and (ii) these
languages do not allow expressing constraints on feature
instances. However, to choose one category of modeling
languages depends on the context and the objectives that the
engineers intend to achieve.

VIII. RELATED WORKS

The literature proposes several comparative analyses of
product line modeling languages. For instance, Djebbi &
Salinesi [10] presents a comparative framework for evaluating
FM languages intended to be used in real scenarios. Sinnema &
Deelestra [24] proposes a classification framework of six
variability modeling techniques: CBFM [10], COVAMOF
[25], VSL [2], conIPF [13], Pure::Variants [3] and Koalish [4]
based on a defined set of criteria. In the same context of
comparative analysis between modeling languages, Heymans
et al. [12] present a method for evaluating the quality of the
semantics of feature notations by means of the SEQUAL
framework [17]. However, none of these studies addresses the
multi-instantiation problem or seek how to model this concept.
Czarnecki et al. [7] carried out a comparison between feature
modeling (FM) and decision modeling (DM) by identifying
commonalities and differences between them and using ten
dimensions such as (i) data types, and (ii) dependencies and
constraints. Thus, they state like this paper do it that there are
some FM (e.g, CFM) and DM (e.g., V-Manage [29]) languages
that support the multi-instantiation and that some FM
languages support composite types like the TVL that has an
explicit enumeration type. Cordy et al. [6] propose the TVL as
a solution for the multi-instantiated features without doing a
comparative study between modeling languages as has been
done in this paper. In particular, they define the cardinality of a
feature to make possible the use of a feature multiple times in
one configuration and they define constraints that can be
applied on instances of a feature such as “forall” and “exists”.
Recently, Mazo [18] reports an empirical study in which he
analyses the advantages and limitations of the feature modeling
notation when it is used to represent industrial product lines
with multi-instantiation and complex constraints.

IX. CONCLUSION

This paper presents how three categories of modeling
languages can be used for modeling the multi-instantiation in
product lines. Each category has strengths and weaknesses (cf.
Table 1). Some languages are more appropriated for
representing multi-instantiation than others. Thus, choosing an
approach ultimately depends on the context and work targets.

As perspectives, it would be interesting to carry out a study
that seeks ways to use advantages of TVL, which well model
the multi-instantiation, to enhance FODA, which is the most
widespread product line modeling language.

TABLE I. SUMMARY OF MULTI-INSTANTIATION MODELING CATEGORIES

Approaches Advantages Drawbacks Languages

A
p
p
ro

ac
h
 1

-Present multi-
instantiated features
plainly using feature
cardinality

-Use an explicit
enumeration type for
some languages like
the TVL

-Constraints on multi-
instantiated features are
easily expressed

There are some
languages in this
category that have
some formal
defects like the
cardinality-based
feature model
language.

-TVL

-Cardinality
based feature
model

-Constraint
programming
over finite
domain

A
p
p
ro

ac
h
 2

Present multi-
instantiation clearly
using cardinality and
stereotypes to
instantiate classes

-Do not specify
group features,
only with OCL
constraints.

-Some variations
and constraints
cannot be
specified

-UML

-SysML

-Ontologies

A
p
p
ro

ac
h
 3

E
x
p
li

ci
tl

y
 s

p
ec

if
y
in

g
 a

ll

p
o
ss

ib
le

 i
n
st

an
ce

s

-All instances are
explicitly modeled

-Too many
instances
presented in the
model

-Constraints are
very complex to
specify:
expressing
constraints on
instances can be
confusing

-FODA

-OVM

-DOPLER

E
n
u

m
er

at
in

g
 t

h
e

n
u

m
b
er

o

f
fe

at
u

re
 i

n
st

an
ti

at
io

n
s

-Attributes are simple
to use

-It is impossible to
have different
instances

-There are
constraints that
cannot be
expressed:
constraints on
different instances

REFERENCES

[1] T. Asikainen, T. Soininen, T. Männisto, “A Koala-based approach for
modelling and deploying configurable softwareproduct families”, 5th
Workshop on Product Family Engineering, Springer Verlag Lecture
Notes on Computer Science, vol. 3014, pp. 225-249, May 2004.

[2] M. Becker, “Towards a general model of variability in product families”,
Proceedings of the 1st Workshop on Software Variability Management,
Groningen, Netherlands, February 2003.

[3] D. Beuche, H. Papajewski, W. Schröder-Preikschat, “Variability
management with feature models”, Science of Computer Programming,
vol. 53 no°3, pp. 333-352, 2004.

[4] A. Classen, Q. Boucher, P. Heymans, “A text-based Approach to
Feature Modelling: Syntax and semantics of TVL”,
Sci.Comput.Program,vol. 76, pp. 1130-1143, 2011.

[5] M. Clauss, “A proposal for uniform abstract modelling of feature
interactions in UML”, In Proceedings of the European Conference on
Object-Oriented Programming, Workshop Feature Interaction in
Composed System, 2001.

[6] M. Cordy, P.Y. Schobbens, P. Heymans, A. Legay, “Beyond Boolean
Product-Line Model Checking: Dealing with Feature Attributesand
Multi-Features”, ICSE, pp. 472-481, 2013.

[7] K. Czarnecki, P. Grunbacher, R. Rabiser, K. Schmid , A. Wasowski,
“Cool Features and Tough Decisions: A comparison of Variability
Modeling Approaches”, Vamos, 2012.

[8] K. Czarnecki , S.Helsen , U.W. Eisenecker, “Formalizing cardinality-
based feature models and their specialization”, Software Process
Improvement and Practice, vol. 10, pp. 7–29, 2005.

[9] K. Czarnecki, U.W. Eisenecker, “Generative Programming: Methods,
Tools and Applications”, Addison Wesley, 2000.

[10] O. Djebbi, C. Salinesi, “Criteria for Comparing Requirements
Variability Modeling Notations for Product Lines”, CERE workshop at
RE Conference, USA, pp. 20 – 35, 2006.

[11] M. Griss, J. Favaro, M. Allesandro, “Integrating Feature Modeling with
RSEB”, Proceedings of the Fifth International Conference on Software
Reuse, Vancouver, BC, Canada, 1998.

[12] P. Heymans, P.Y. Schobbens, J.C. Trigaux, Y. Bontemps, R.
Matulevicius, and A. Classen, “Evaluating formal properties of feature
diagram languages”, Software IET, vol. 2, pp. 281–302, 2008.

[13] L. Hotz, T. Krebs, K. Wolter, J. Nijhuis, S. Deelstra, M. Sinnema, J.
MacGregor, ConWguration in Industrial Product Families –The ConIPF
Methodology, IOS Press, ISBN 1-58603-641-6, July 2006.

[14] K. Kang, K. Lee, J. Lee, “FOPLE – Feature Oriented Product Line
Software Engineering: Principles and Guidelines”, Pohang University of
science and technology, 2002.

[15] K. Kang, S. Cohen, J. Hess , W. Novak, S. Peterson, “Feature–Oriented
Domain Analysis (FODA) Feasibility Study”, Technical Report
CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie Mellon
University, 1990.

[16] E. Koshy, V. Koshy, H. Waterman, “Action research in healthcare”,
Thousand Oaks, CA: Sage, 2011.

[17] J. Krogstie, “Using a semiotic framework to evaluate UML for the
development of models of high quality”, Unified modeling Language:
Systems analysis, design and development issues, IDEA Group
Publishing, pp.89-106, 2001.

[18] R. Mazo. Avantages et limites des modèles de caractéristiques dans la
modélisation des exigences de variabilité. Journal "Génie Logiciel", No.
111, Paris-France, pp. 42-48, Dec. 2014.

[19] R. O'Brien, “An Overview of the Methodological Approach of Action
Research”, Roberto Richardson (Ed.) Theory and Practice of Action
Research, Brazil, Universidade Federal da Paraíba, 2001.

[20] K. Pohl, G. Bockle, F. J. Van der Linden, “Software Product Line
Engineering: Fundations, Principles and Techniques”, Springer–Verlag,
Berlin, DE, 2005.

[21] I. Rodrigues, N. Matos, S. Abreu, R. Deneckere, D. Diaz, “Towards
constraint-informed information systems”, RCIS, 2013.

[22] P. Runeson, M. Höst, “Guidelines for conducting and reporting case
study research in software engineering, Empirical Software
Engineering”, vol. 14, pp. 131-164, 2009.

[23] P. Schobbens, P. Heymans, J. C. Trigaux, “Feature diagrams: A survey
and a formal semantics”, Requirements Engineering, 14th IEEE
international conference, pp. 139-148, September, 2006.

[24] M. Sinnema, S. Deelstra, “Classifying variability modeling techniques”,
Information and Software Technology, vol. 49, pp. 717-739, 2007.

[25] M. Sinnema, S. Deelstra, J. Nijhuis, J. Bosch, “COVAMOF: A
framework for modeling variability in software product families”,
Proceedings of the third Software Product Line Conference, Springer
Verlag Lecture Notes on Computer Science, vol. 3154, pp. 197-213,
August 2004.

[26] M. Sinnema, S. Deelstra, J. Nijhuis, J. Bosch, “Managing Variability in
Software Product Families”, Proceedings of the 2nd Groningen
Workshop on Software Variability Management , 2004.

[27] D. Streitferdt, “Family-Oriented Requirements Engineering”, PhD
Thesis, Technical University Ilmenau, 2004.

[28] G. I. Susman, “Action Research: A Sociotechnical Systems
Perspective”, Ed. G. Morgan. London: Sage Publications, pp. 95-113,
1983.

[29] Europeen Software Institute Spain and IKV++ Technologies AG
Germany, MASTER: Model-driven Architecture inSTrumentation,
Enhancement and Refinement, 2002.

