
HAL Id: hal-01144214
https://paris1.hal.science/hal-01144214v1

Submitted on 21 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Solving Hard Stable Matching Problems via Local
Search and Cooperative Parallelization

Danny Munera, Daniel Diaz, Salvador Abreu, Francesca Rossi, Vijay
Saraswat, Philippe Codognet

To cite this version:
Danny Munera, Daniel Diaz, Salvador Abreu, Francesca Rossi, Vijay Saraswat, et al.. Solving Hard
Stable Matching Problems via Local Search and Cooperative Parallelization. 29th AAAI Conference
on Artificial Intelligence, Jan 2015, Austin, TX, United States. �hal-01144214�

https://paris1.hal.science/hal-01144214v1
https://hal.archives-ouvertes.fr


Solving Hard Stable Matching Problems via
Local Search and Cooperative Parallelization

Danny Munera
University Paris 1/CRI

danny.munera@malix.univ-paris1.fr

Daniel Diaz
University Paris 1/CRI

daniel.diaz@univ-paris1.fr

Salvador Abreu
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Abstract

Stable matching problems have several practical appli-
cations. If preference lists are truncated and contain
ties, finding a stable matching with maximal size is
computationally difficult. We address this problem us-
ing a local search technique, based on Adaptive Search
and present experimental evidence that this approach
is much more efficient than state-of-the-art exact and
approximate methods. Moreover, parallel versions (par-
ticularly versions with communication) improve perfor-
mance so much that very large and hard instances can
be solved quickly.

1 Introduction
In 1962, Gale and Shapley introduced the Stable Marriage
(SM) problem (Gale and Shapley 1962). An SM instance
of size n involves a set of n men and a set of n women,
each of whom have ranked all members of the other set in a
strict order of preference. Solving such a problem consists in
finding a marriage, i.e. a one-to-one matching between the
men and the women. In addition the marriage must be stable,
meaning that there is no man-woman pair where both would
rather marry each other than their current partner – such a
pair is called a blocking pair. Gale and Shapley proved that
such a stable marriage always exists and proposed a O(n2)
algorithm (called GS in what follows) to find one.

However, requiring each member to rank all members of
the opposite sex in a strict order is too restrictive for many
real-life, large-scale applications. A natural variant of SM is
the Stable Marriage with Incomplete List and Ties (SMTI)
problem (Iwama et al. 1999; Manlove et al. 2002). In SMTI,
the preference lists may include ties (to express indifference)
and may be incomplete (to express that some partners are
unacceptable) The goal now is to find the stable matching of
maximal size (that is, with the smallest number of singles).
This problem is NP-hard.

SMTI is a special case of the Hospitals/Residents prob-
lem (Manlove et al. 2002), for which there are nation-wide
programmes in several countries. Matching problems can
also be found in other settings, such as car sharing or bipar-
tite market sharing, job markets and social networks. Many
of these applications involve very large sets.

We show how to model SMTI problems as permutation
problems and solve them using a local search approach,

based on Adaptive Search (AS) (Codognet and Diaz 2001;
2003). We compare experimentally the sequential version of
our solver with state of the art exact and approximate algo-
rithms to solve such problems, showing significant improve-
ment in performance or solution quality.

Moreover, our implementation uses a parallel frame-
work (Munera et al. 2014) written in X10 (Charles et al.
2005; Saraswat et al. 2012). We show that the independent
parallel version exhibits a significant speedup with increas-
ing number of cores and the cooperative version achieves
super-linear speedup on average and behaves very well on
hard instances.

The rest of the paper is organized as follows. Section 2
provides the necessary background. Section 3 details the
AS modeling of SMTI. In Section 4 we evaluate the perfor-
mance of the AS implementation. Finally, Section 5 asseses
the parallel performance of our implementation.

2 Background
Stable Marriage with Ties and Incompleteness
We recall the main definitions for SMTI problems (Scott
2005; Iwama and Miyazaki 2008).
Definition 1. (SMTI problem) An SMTI instance of size n
consists of n men and n women, and a preference list for
each of them, which contains some of the people of the other
gender. Such preference lists are weak orders, that is, total
orders possibly containing ties.

While not required by the theory we assume that the pref-
erence list for woman w does not contain man m iff the list
for m does not contain w. This is trivial to establish with
a pre-pass; the generator we use (Gent and Prosser 2002)
already ensures this.
Definition 2. (Marriage) Given an SMTI instance, a mar-
riage M is a set of pairs (m,w) representing a (possibly
partial) one-to-one matching of men and women. If a man
m is not matched in M (i.e. for no w is it the case that
(m,w) ∈ M ), we say that m is single in M (similarly for
women). The size of a marriage M is the cardinality of M .

With the introduction of ties in the preference lists, three
different notions of stability may be used (Irving 1994;
Manlove et al. 2002; Iwama and Miyazaki 2008). As we
only consider weak stability (the most challenging), we sim-
ply call it stability. We define blocking pair in this context:



Definition 3. (Blocking Pair) In a marriage M , (m,w) is
a Blocking Pair (BP) iff (a) m and w accept each other and
(b) m is either single in M or strictly prefers w to his current
wife, and (c) w is either single in M or strictly prefers m to
her current husband.

Definition 4. (Stable marriage) Given an SMTI problem in-
stance, a marriage M is stable iff it has no blocking pairs.

A (weakly) stable marriage always exists and can be
found with variants of the GS algorithm. Since any given
SMTI instance may have stable matchings of different sizes,
a natural requirement is to find those of maximum car-
dinality. This optimization problem (called MAX-SMTI)
has many real-life applications (Iwama and Miyazaki 2008;
Manlove et al. 2002) and has attracted a lot of research
in recent years. The MAX-SMTI problem has been shown
to be NP-hard, even for very restricted cases (e.g. only
men declare ties, ties are of length two, the whole list is a
tie) (Iwama et al. 1999; Manlove et al. 2002). For brevity, in
the rest of this article we refer to MAX-SMTI as SMTI.

SMTI algorithms Finding efficient algorithms to solve
SMTI has been an active field of research for several years,
driven by its applications. SMTI has been shown to be APX-
hard (Halldórsson et al. 2003) and most of the recent re-
search focuses on designing efficient approximation algo-
rithms, i.e. algorithms running in polynomial time yet able
to guarantee solutions within a constant factor of the opti-
mum (Király 2011). Currently, the best algorithms are 3/2-
approximation algorithms (McDermid 2009; Király 2013;
Paluch 2014). An r-approximation algorithm always finds a
stable matching M with |M | ≥ |Mopt|/r where Mopt is a
stable marriage of maximum size. SMTI cannot be approx-
imated within a factor 21/19 and probably not within a fac-
tor of 4/3 either (Halldórsson et al. 2007). These algorithms
only find one solution for a given problem, while it is often
useful to provide multiple (quasi-)optimal solutions.

Constraint Programming (CP) can be used to solve
SMTIs. While there are some efforts to solve SM prob-
lems (Gent et al. 2001), including the introduction of new
global constraints to achieve efficient consistency (Unsworth
and Prosser 2013; Manlove et al. 2007), few papers are de-
voted to the MAX-SMTI variant. The reference paper (Gent
and Prosser 2002) is more a study of the properties of SMTI
problems of limited size (i.e. n ≤ 60) than a search for effi-
cient encodings to solve SMTI using CP.

Surprisingly, SAT solvers have not been extensively used
for SMTI. The work by Gent (Gent et al. 2002) proposes
a SAT encoding for SMTI and uses the Chaff solver for
its evaluation. Linear programming (Roth, Rothblum, and
Vande Vate 1993; Vande Vate 1989) and integer program-
ming (Kwanashie and Manlove 2013) have been also studied
for variants of SM like the Hospitals/Residents problem. Re-
cently, Local Search has been successfully applied to SMTI.
In (Gelain et al. 2013), the authors propose LTIU, a local
search algorithm with very good performance. Comparisons
with some of these papers are in Section 4.

The Adaptive Search method
Adaptive Search (AS) was proposed in (Codognet and Diaz
2001) as a generic, domain-independent, constraint-based
local search method. This meta-heuristic takes advantage of
the model of the problem in terms of constraints and vari-
ables in order to guide the search more precisely than a sin-
gle global cost function. AS starts from a random assign-
ment of the variables (i.e. a configuration) and, iteratively,
tries to improve it, modifying one variable at a time until a
solution is found. To this end AS:

• Needs to model the constraints with heuristic functions
that compute an approximate degree of satisfaction of the
goals (the current error on the constraint);

• Combines these errors to compute the global cost of a
configuration;

• For each variable, aggregates the errors of constraints in
which it occurs, and repairs the worst variable (highest
error) with the most promising value;

• maintains a short-term memory (e.g. tabu list) of recently
modified variables which led to local minima, together
with a reset mechanism (i.e. iterative local search).

AS has shown good performance on combinatorial prob-
lems such as classical CSPs, and the Costas Array Prob-
lem (Caniou et al. 2014).

3 An Adaptive Search Model for SMTI
We model SMTI in AS as a permutation problem: the se-
quence of n (X1 . . . Xn) takes on as values permutations of
the values 1 . . . n (implementing an all-different con-
straint). Xi = j is interpreted as either (mi, wj) ∈ M , or
mi is single if wj is not on its preference list. Note this inter-
pretation remains valid when the values of any two variables
are swapped (this is how value assignment is implemented
in permutation problems).

To improve stability of a marriage, we must remove
blocking pairs (BPs). Some BPs may be useless in that
fixing them does not improve things since the man in-
volved remains part of another BP. We thus focus on the so-
called undominated blocking pairs (Klijn and Massó 2003;
Gelain et al. 2013).

Definition 5. (Dominated blocking pair) BP (m,w) domi-
nates BP (m,w′) iff m prefers w to w′.

Definition 6. (Undominated blocking pair) BP (m,w) is
undominated iff there is no other BP dominating (m,w).

These definitions are from the men’s point of view: equiv-
alent ones exist for women. From an implementation per-
spective, finding the undominated BP of a man m amounts
to consider each woman w in his preference list in descend-
ing order of preference, stopping at the first BP encountered:
(m,w) is then an undominated BP. In the following we only
consider undominated BPs, which we simply call BPs.

The cost function of a marriage measures both its sta-
bility (number of BPs) and its quality (number of singles).
Hence: cost(M) = #BP (M)×n+#Singles(M), where
#BP (M) is the number of BPs in M , and #Singles(M) is



the number of singles in M . The number of BPs is weighted
with n to prioritize stable marriages over marriages with
fewer singles. A marriage M is stable iff cost(M) < n,
and perfect iff cost(M) = 0. AS stops as soon as the cost
function reaches 0 or when a given time limit is hit, in which
case it returns the best marriage found so far.

We define R(w,m) as the rank of m in the preference list
of w, ranging over 1..(n+1), with i < j implying w prefers
(man with rank) i to (man with rank) j, and R(w,m) = n+1
iff m is not in the preference list of w. Suppose (m,w) and
(m′, w′) ∈ M form a BP (m,w′), then the error for Xm

(in M ) is R(w′,m′) − R(w′,m). Thus, the further the as-
signed man is from the BP, the larger the error. Algorithm 1
has details – it is worth pointing out that when w′ is sin-
gle in M , the returned score could be R(w′,m′); this often
over-estimates the importance of this case and we have em-
pirically found that 1 is a better choice. Note that the actual
implementation does some straightforward pre-computation
to avoid the linear cost of recomputing R(w,m).

Algorithm 1 Function to compute BP error
Input: (m′, w′) ∈M and a man m who prefers w′ to his partner
Output: if (m,w′) is a BP, return an error > 0 else return 0

1: function BP ERROR(m′,w′,m)
2: rankM ′ ← R(w′,m′) . rank of current partner of w′

3: rankM ← R(w′,m) . rank of m in pref. list of w′

4: if rankM = n+ 1 then . m /∈ pref. list of w′

5: return 0 . m not a valid partner for w′ : not a BP
6: end if
7: if rankM ′ = n+ 1 then
8: return 1 . w′ is single (m′ is not in her list) : BP
9: end if

. using the pref. list of w′, the error is the difference be-
tween the rank of her partner m′ and proposed man m

10: return max(0, rankM ′ − rankM)
11: end function

At each iteration, AS selects the “worst” variable from the
current marriage M to improve it. If several variables have
the same error, AS randomly picks one. AS then fixes the
culprit by swapping Xm and Xm′ . In short, AS considers all
BPs, chooses the variable corresponding to the worst one,
fixes it by moving to a new configuration and re-evaluates
the cost of the resulting marriage. This heuristic avoids the
cost of fixing all BPs, one by one.

Since both the evaluation of the cost function and the
evaluation of variable errors require the computation of the
blocking pairs, when the cost function is evaluated, the error
on variables can also be computed and tabled for later use.
This is shown in Algorithm 2.

In most cases, the resulting marriage improves on the cur-
rent one and AS continues iteratively. When this is not the
case, AS has reached a minimum (global or local). As AS
has no way of knowing when the optimum has been reached
(except when the cost is 0) it handles both cases similarly
trying to escape the minimum. To this end, AS relies on
a Tabu list to prohibit the use of recent culprit variables.
When the list becomes too large, AS invokes a reset pro-
cedure to alter the current configuration. The Tabu mecha-

Algorithm 2 Function to evaluate a marriage
Input: M the marriage to evaluate
Output: the global cost and error on variables

1: function COST OF MARRIAGE(M )
2: nSingles← 0
3: for m← 1 to n do
4: w ← Xm . (m,w) ∈M or m is single
5: rankW ← R(m,w) . rank of w in pref. list of m
6: if rankW = n+ 1 then . m is single
7: nSingles← nSingles+ 1
8: end if
9: for all w′ ∈ pref list of m with rank < rankW do

10: let (m′, w′) ∈M . m′ is the partner of w′ in M
. check if (m,w′) forms a BP

11: errorm ← BP ERROR(m′, w′,m)
12: if errorm > 0 then
13: #BP ← #BP + 1
14: break . only consider undominated BP
15: end if
16: end for
17: end for
18: return #BP × n+ nSingles
19: end function

nism is not used for SMTI: as soon as a local minimum is
reached a customized reset procedure is invoked which ba-
sically tries to fix the 2 worst BPs and/or to assign a woman
to a single man, as detailed in Algorithm 3. This procedure
is stochastic; it takes a probability p to also fix the second
worst variable: good results are obtained with a high proba-
bility, e.g. p ' 0.98. This procedure turns out to be very ef-
fective: while preserving most of the configuration (no more
than 2 swaps are performed), it enables AS to escape all lo-
cal minima and reach very good solutions.

Algorithm 3 Reset procedure to escape local minima
Input: M the marriage currently trapped in a local minimum and

p the probability to also fix the second worst variable
Output: M the perturbed marriage to escape the local minimum

1: procedure RESET(M , p)
2: if #BP (M) ≥ 1 then
3: fix the worst variable . ie. 1 swap
4: if #BP (M) ≥ 2 and with a probability p then
5: fix the second worst variable . ie. 1 swap
6: return . exit the procedure
7: end if
8: end if
9: if nSingles(M) ≥ 1 then

10: randomly select a single man
11: and assign him a random woman . ie. 1 swap
12: else
13: randomly swap 2 variables . ie. 1 swap
14: end if
15: end procedure

4 Performance Evaluation
In this section, we compare our AS modeling of SMTI prob-
lems to other approaches, both from the point of view of per-
formance and that of solution quality, i.e. size of a marriage.



This evaluation is important for two main reasons: first, it
assesses whether AS is a useful approach to tackle SMTI
problems. Since (Gelain et al. 2013) it has been known that
local search is a viable way to solve SMTI problems, we
will show that AS improves on that. Second, the comparison
demonstrates the quality of the sequential implementation,
which is important when evaluating the performance of the
parallel version, relative to the sequential one.1

To this end, we used an X10 implementation of AS, fur-
ther discussed in Section 5, running sequentially on an AMD
Opteron 6376 clocked at 2.3 GHz, i.e. using only one core.

Problem Set For the evaluation, we used the random prob-
lem generator described in (Gent and Prosser 2002) which
takes three parameters: the size (n), the probability of in-
completeness (p1) and the probability of ties (p2). We gen-
erated problems of size n = 100, with p1 ranging over
[0.1, 0.9] and p2 over [0, 1], with step 0.1. For each (p1, p2)
pair, we solved 100 instances and averaged the results.

Comparison with Local Search

We first consider the Local Search method LTIU of (Gelain
et al. 2013). We ran the AS implementation on the test
benchmark, in the same conditions as the LTIU paper: us-
ing the same problem generator, solving each instance once,
with a limit of 50 000 iterations and using only 1 core.
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Figure 1: AS vs. LTIU - quality of solutions.
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Figure 2: AS vs. LTIU - execution time.

Figure 1 compares the quality of solutions. The percent-
age of perfect stable marriages found is slightly better for
AS. Moreover, AS does not suffer from the LTIU’s dramatic
performance loss when p2 = 1.

Figure 2 compares execution times. The AS implementa-
tion is much faster (thus the log Y scale): the LTIU method
averages over 30s on a similar machine (Gelain et al. 2010)
while AS is two orders of magnitude faster. When p2 in-
creases, the lead extends even further.

Comparison with Approximation Algorithms
We compared AS against McDermid’s method (MD) (Mc-
Dermid 2009), a very efficient 3/2-approximation algorithm,
as implemented in (Podhradsky 2010). For MD also, and for
each (p1, p2) pair, we ran the same 100 instances once, av-
eraging the execution time.
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Figure 3 compares the quality of solutions. The percent-
age of perfect stable marriages found by the AS algorithm is
considerably higher than those found by MD, in particular
using a probability of ties p2 ∈ [0.1..0.7].

Figure 4 compares the execution times, as a 3D chart.
In many cases, AS is up to an order of magnitude faster
than MD. With higher probability of incompleteness (e.g.
p1 = 0.9), MD outperforms AS. This can be explained by

1Both the source code and problem instances are available at
http://cri-hpc1.univ-paris1.fr/smti/



the time-complexity of MD which is proportional to the to-
tal length of the preference lists, i.e. it linearly decreases as
p1 increases.

We note that MD always returns the same, single and
(sub)optimal solution, while AS will yield more than one
solution, with observably better quality. Moreover, a solu-
tion quality vs. performance trade-off is always possible in
AS, by tweaking the timeout parameter.

Comparison with SAT
We also compare AS to the SAT encoding for SMTI of (Gent
et al. 2002), restricting thus to the decision problem: is there
a stable matching of size n? which we answer by actually
finding a perfect stable matching.
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Figure 5 presents the execution times using weak stability,
for n = 100, i.e. the case of figure 2, top left from (Gent et
al. 2002). The execution times for SAT were divided by 25.2,
according to the ratio of the SPECint CPU performance rat-
ings of both machines but, even so, AS outperforms the SAT
version by a factor of about 50.

5 Parallelization
Parallel versions of local search procedures have been pro-
posed already (Alba 2005; Alba, Luque, and Nesmachnow
2013). In this article we are interested in multi-walks meth-
ods (also called multi-starts) which consist in a concur-
rent exploration of the search space, either independently
or cooperatively with some communication between con-
current processes. The Independent Multi-Walks method
(IW) (Verhoeven and Aarts 1995) is the easiest to imple-
ment since the solver instances do not communicate with
each other. However, the resulting gain tends to flatten when
scaling over a hundred of processors (Caniou et al. 2014),
and can be improved upon. In the Cooperative Multi-Walks
(CW) method (Toulouse, Crainic, and Sans 2004), the solver
instances exchange information (through communication),
hoping to hasten the search process. However, implement-
ing an efficient cooperative method is a very complex task:
several choices have to be made about the communica-
tion (Toulouse, Crainic, and Sans 2004) which influence
each other and which are problem-dependent.

The Cooperative Parallel Local Search Framework
We build on the framework for Cooperative Parallel Local
Search (CPLS) proposed in (Munera et al. 2014; Munera,
Diaz, and Abreu 2013). This framework, made available as
an open source library in X10, allows the programmer to
tune the search process through an extensive set of parame-
ters. CPLS augments the IW strategy with a tunable commu-
nication mechanism, which allows for the cooperation be-
tween the multiple instances to seek either an intensification
or diversification strategy for the search.

Explorer nodes are the basic components in the frame-
work: each consists in a local search solver instance. The
point is to use all the available processing units by map-
ping each explorer node to a physical core. Explorer nodes
are grouped into teams, of fixed parametric size. Each team
seeks to intensify the search in the most promising neighbor-
hood found by any of its members. The parameters which
guide the intensification are the Report Interval (R) and Up-
date Interval (U ): every R iterations, each explorer node
sends its current configuration and the associated cost to its
head node. The head node is the team member which col-
lects and processes this information, retaining the best con-
figurations in an Elite Pool (EP ) whose size is |EP |. Every
U iterations, explorer nodes randomly retrieve a configura-
tion from the EP , in the head node. An explorer node may
adopt the configuration from the EP , if it is “better” than
its own current configuration with a probability pAdopt. Si-
multaneously, the teams implement a mechanism to cooper-
atively diversify the search, i.e. they try to extend the search
to different regions of the search space. A detailed descrip-
tion of this framework may be found in (Munera et al. 2014).

Independence vs Cooperation
In this section we assess the parallelization of the AS model
for SMTI testing both IW and CW strategies. These experi-
ments are made relatively simple when using the X10 imple-
mentation of the CPLS framework which clearly separates
the local search algorithm proper from the management of
parallelism (e.g. process management, communication, syn-
chronization.) This separation allowed us to focus on the
(sequential) local search algorithm and on its X10 encod-
ing. Tuning is done by setting the parameters controlling the
parallel execution, for instance nodes, cores per node, com-
munication scheme, delays. To test with IW, all communi-
cations are simply deactivated. To experiment with CW, the
parameters controlling the cooperation have to be fine tuned.

Cooperation parameters We experimented with the most
important parameters in order to analyze the impact of each
one over the global performance. Due to space limitations,
we do not detail these experiments – we only state the re-
tained parameters. It turned out that intensification is much
more important than diversification for SMTI. The best re-
sults are obtained with 2 teams. The number of explorers of
a team is half the number of used cores. Inside a team, each
explorer periodically exchanges information with the Elite
Pool according to the report interval (R) and update interval
(U ). The best settings were found to be R = 50, U = 100
(UR = 2 being the best ratio), |EP | = 4 and pAdopt = 1.



Problem Set As shown in the previous section, SMTI
problems of size 100 are very easy to solve with sequential
AS. We therefore consider problems of size 1000 generated
with p1 = 0.95 and p2 = 0.8. We selected these param-
eters because the resulting problems involve a large num-
ber of variables, a huge search space (1000! ' 102567) and
because they are difficult to solve due to the high level of
incompleteness in the preference lists. For this experiment,
we generated 10 random problems and executed each one
50 times (the results are averaged), varying the number of
cores from 1 (sequential) to 128. Using an unlimited time-
out forced the solver to discover perfect stable marriages.

Parallel hardware All parallel experiments have been
carried out on a cluster of 16 machines, each with 4 × 16-
core AMD Opteron 6376 CPUs running at 2.3 GHz and 128
GB of RAM. The nodes are interconnected with InfiniBand
FDR 4× (i.e. 56 GBPS.) We had access to 4 nodes and used
up to 32 cores per node, i.e. 128 cores. We made no attempt
to control thread placement. In the rest of this section, the
execution times are given in seconds and correspond to wall
time which is the real elapsed time, and includes the time to
install all solver instances, the time to solve the problem, the
time for communications and the time to detect and propa-
gate the termination.
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Figure 6: Execution time using IW and CW.

Figure 6 presents a log-log graph of execution times using
IW and CW. The Ideal time corresponds to linear speedup:
time is halved when the number of cores is doubled. It is
worth noticing that IW is rather efficient: using 128 cores
the average time decreases from 44.453s to 1.207s which
corresponds to a speedup factor of 37. However, as is often
the case with IW, it is difficult to obtain a linear speedup.
Moreover, this sub-linear speedup tends to taper off. The re-
sults with CW are much better. The best recorded speedup
is 86 using 80 cores (44.5s to 0.519s). Beyond this number
of cores, the time tends to stabilize. This could mean that we
have reached an incompressible limit to solve problems of
size 1000, or that we are being limited by low-level factors.

Evaluation on Hard Problems
We evaluate the benefit of parallelism on hard problems. To
do so, we generated 100 random problems of size n = 1000,

ran them sequentially and selected the 10 hardest instances.
We then repeated the previous experiment, using only these
instances.
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Figure 7: Execution time on hard problems

Figure 7 presents a log-log graph of the execution time
using IW and CW for these hard problems.We also recall
the CW curve obtained in the previous experiment (i.e. on
normal problems), for reference.

The difficulty of the problems is clear from the sequen-
tial time: in the previous experiment, a problem was solved
in about 44s while about 285s are needed for the hardest
instances. Using IW, we reach a quasi-linear speedup: 91.5
for 128 cores which corresponds to a reduction of the ex-
ecution time from 284.5s to 3.1s. However the execution
time remains much slower than for normal problems. It turns
out that, when using cooperation in CW, execution times
are drastically improved and the best speedup is 492 with
128 cores corresponding to an execution time of 0.579s. It
is worth noticing that this time is very similar to the best
time (0.519s) obtained in the previous experiment for nor-
mal problems.

From a practical point of view, it appears that parallelism
with cooperation neutralizes the relative difficulty of prob-
lems, as instances which are originally about 6 times harder
get solved in approximately the same time. Of course, the
problem retains its worst-case NP-hard complexity, and par-
allel search cannot change this.

6 Conclusion
We proposed to model SMTIs as permutation problems and
solve them using a local search approach based on Adaptive
Search. The sequential version of this solver outperforms
state-of-the-art solvers for SMTIs. Moreover, the parallel
version, especially the one with cooperation among concur-
rent processes, shows super-linear speedup and performs ex-
ceptionally well, particularly on very hard instances.

We plan to experiment with very large instances on a mas-
sively parallel machine to test the scaling limitations. We
also plan to study which features of the stable matching
problem make it so suitable for cooperation. We also intend
to adapt our solver to tackle related problems, such as the
Hospitals/Residents problem allowing ties (at first restricted
to the hospitals preferences and, later, also for residents).
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