
HAL Id: hal-01085287
https://paris1.hal.science/hal-01085287

Submitted on 21 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MAPREDUCE CHALLENGES ON PERVASIVE
GRIDS

Luiz Angelo Steffenel, Olivier Flauzac, Andrea Schwertner Charão, Patricia
Pitthan Barcelos, Benhur Stein, Guilherme Weigert Cassales, Sergio

Nesmachnow, J. Rey, Matías Cogorno, Manuele Kirsch Pinheiro, et al.

To cite this version:
Luiz Angelo Steffenel, Olivier Flauzac, Andrea Schwertner Charão, Patricia Pitthan Barcelos, Benhur
Stein, et al.. MAPREDUCE CHALLENGES ON PERVASIVE GRIDS. Journal of Computer Science,
2014, 10 (11), pp.2194-2210. �10.3844/jcssp.2014.2194.2210�. �hal-01085287�

https://paris1.hal.science/hal-01085287
https://hal.archives-ouvertes.fr

Journal of Computer Science 10 (11): 2194-2210, 2014
ISSN: 1549-3636
© 2014 L.A. Steffenel et al., This open access article is distributed under a Creative Commons Attribution
(CC-BY) 3.0 license
doi:10.3844/jcssp.2014.2194.2210 Published Online 10 (11) 2014 (http://www.thescipub.com/jcs.toc

Corresponding Author: L.A. Steffenel, CReSTIC-SysCom, Universit de Reims Champagne-Ardenne, Reims, France

2194 JCS Science Publications

MAPREDUCE CHALLENGES ON PERVASIVE GRIDS

1L.A. Steffenel, 1O. Flauzac, 2A.S. Charao,
2P.P. Barcelos, 2B. Stein, 2G. Cassales, 3S. Nesmachnow,

3J. Rey, 3M. Cogorno, 4M. Kirsch-Pinheiro and 4C. Souveyet

1CReSTIC-SysCom, Universit de Reims Champagne-Ardenne, Reims, France
2Laboratório de Sistemas de Computação, Universidade Federal de Santa Maria, Santa Maria, Brazil

3Centro de Cálculo, Universidad de la Republica, Montevideo, Uruguay
4Centre de Recherche en Informatique, Universite Paris 1 Pantheon-Sorbonne, Paris, France

Received 2014-04-22; Revised 2014-06-29; Accepted 2014-07-25

ABSTRACT

This study presents the advances on designing and implementing scalable techniques to support the
development and execution of MapReduce application in pervasive distributed computing infrastructures, in
the context of the PER-MARE project. A pervasive framework for MapReduce applications is very useful in
practice, especially in those scientific, enterprises and educational centers which have many unused or
underused computing resources, which can be fully exploited to solve relevant problems that demand large
computing power, such as scientific computing applications, big data processing, etc. In this study, we pro-
pose the study of multiple techniques to support volatility and heterogeneity on MapReduce, by applying two
complementary approaches: Improving the Apache Hadoop middleware by including context-awareness and
fault-tolerance features; and providing an alternative pervasive grid implementation, fully adapted to dynamic
environments. The main design and implementation decisions for both alternatives are described and validated
through experiments, demonstrating that our approaches provide high reliability when executing on pervasive
environments. The analysis of the experiments also leads to several insights on the requirements and
constraints from dynamic and volatile systems, reinforcing the importance of context-aware information and
advanced fault-tolerance features to provide efficient and reliable MapReduce services on pervasive grids.

Keywords: MapReduce, Fault-Tolerance, Pervasive Distributed Computing

1. INTRODUCTION

One of the first challenges a user faces when
deploying MapReduce is that its most known and
popular implementation, AH (2014a), requires a
highly structured environment such as a dedicated
cluster or a cloud infrastructure to be deployed.
Indeed, Hadoop has been designed to be deployed
over a dedicated cluster or cloud computing
infrastructures such as AEMR (2014). Hadoop relies
on a collection of tools (Hadoop Core, HDFS, etc.)
developed by different Apache subprojects, which
interact through a complicate set of master and slave
daemons. As a result, Hadoop installation, although

well documented, requires a stable set of computer
nodes that shall be known at startup time. The
installation procedure also lacks of automatic context
adaption, forcing the administrator to manually define
the characteristics of each resource, such as the number
of cores, their relative speed or the available memory.

Together, these elements prevent a user to quickly
launch MapReduce over a set of unused resources (e.g.,
the enterprise workers’ desktops), at least not without a
previous effort to prepare and configure the nodes.
Indeed, even if Hadoop is now a popular data analysis
tool, several companies/organizations do not have a
dedicated infrastructure, as sometimes the demand for
computing intensive tasks is punctual or executed only

L.A. Steffenel et al. / Journal of Computer Science 10 (11): 2194.2210, 2014

2195 JCS Science Publications

periodically. In these cases, cloud computing
infrastructures represent a popular alternative for usaing
MapReduce without a dedicate infrastructure.
Unfortunately, several enterprises fear (or are
forbidden) to distribute sensible data over the cloud.
These externalized infrastructures still suffer from
security issues that prevent their application in some
cases. We believe that, considering the extreme
development of mobile devices and networks inside
organizations nowadays, the opportunistic use of
existing resources as an internal pervasive grid
represents an interesting alternative for those who
hesitate to keep a dedicated infrastructure or to rent
cloud computing resources. Nevertheless, in order to be
fully operational, pervasive grids environments have to
first tackle problems related to their dynamic nature
where nodes join and leave the network dynamically.

Our project is precisely addressing this point:
Proposing scalable techniques to support existing
Hadoop applications in the context of loosely coupled
networks such as pervasive grids. We consider pervasive
grids as a large-scale infrastructure with specific
characteristics in terms of volatility, reliability,
connectivity, security, etc. According to Parashar and
Pierson (2010), pervasive grids represent the extreme
generalization of the grid concept, in which the resources
are pervasive. For these authors, pervasive grids
seamlessly integrate pervasive sensing/actuating
instruments and devices together with classical high
performance systems. In the general case, pervasive
grids rely on volatile resources that may appear and
disappear from the grid, according their availability.
Indeed, mobile devices should be able to come into the
environment in a natural way, as their owner moves
(Coronato and De Pietro, 2008) and devices from
different natures, from the desktop and laptop PCs until
the last generation tablets, should be integrated in
seamlessly way. It results an environment characterized
by three main requirements:

• The volatility of its components, whose participation

on the grid is notably a matter of opportunity and
availability

• The heterogeneity of these components, whose
capabilities may vary on different aspects (platform,
OS, memory and storage capacity, network
connection, etc.)

• The dynamic management of available resources,
since the internal status of these devices may vary
during their participation into the grid
environment

The following scenario can illustrate these
requirements: Let us consider that, during the execution of
a job, a mobile device becomes available, integrating the
pervasive grid. After its integration, the same device may
change its network connection, passing from a fixed
connection to a wireless one. The same can be observed
with the available memory: After starting a job, device’s
owner may start new applications that modify device
memory status. All these changes have an impact on the
job performance and consequently on the availability of
this device for the pervasive grid.

Pervasive grids environments have to deal with such
additional constraints related to the heterogeneity and the
volatility of the resources. In such environments, it is
essential to adapt the application to the network
variable behavior and to coordinate the resources (task
scheduling, data placement, etc.). According to
Coronato and De Pietro (2008), pervasive grid
environments should be able to self-adapt and self-
configure in order to incoming mobile devices. We
strongly believe that context-awareness is needed in
order to support such self-adaption. Context-awareness
can be defined as the ability of a system to adapt its
operations to the current context, aiming at increasing
usability and effectiveness by taking environmental
context into account (Baldauf et al., 2007). In order to
support environments changes, context-awareness
becomes a critical aspect to boost the efficiency of the
applications over pervasive grids.

Such dynamic nature of pervasive grids represents an
important challenge for executing MapReduce
applications over these environments. Context-awareness
and nodes volatility become key aspects for successfully
executing such applications over pervasive grids.

This work presents the first results of the PER-
MARE (2014), whose goal is proposing scalable
techniques to support MapReduce in pervasive grids.
PER-MARE proposes to fully explore the potential of
unused (or underused) resources at enterprises as
pervasive grids for MapReduce applications. Our
challenge is to adapt MapReduce to these dynamic grids.
For this, we focus on the volatility and heterogeneity of
the available resources through two complementary
approaches: On the one hand, we propose to improve
Hadoop with context-awareness and more fault-tolerance
concerns; on the other hand, we propose an alternative
pervasive grid implementation based on a P2P
computing middleware, fully adapted to these dynamic
environments. This study demonstrates this vision by its
first results, organized in three complementary sections:

L.A. Steffenel et al. / Journal of Computer Science 10 (11): 2194.2210, 2014

2196 JCS Science Publications

(i) A context-aware scheduler for Hadoop; (ii) a fault-
tolerant job tracker for Hadoop; and (iii) a pervasive grid
implementation of MapReduce.

The remain of this study is structured as follow:
Section 2 introduces basic notions of MapReduce and
its Hadoop implementations. Section 3 presents
related works focusing on context-aware and volatility
issues on MapReduce. Section 4 gives an overview of
the PER-MARE vision, before presenting our
contributions in next sections. Section 5 presents a
context-aware scheduler for Hadoop, while on section
6 proposes introducing more fault-tolerance for
Hadoop. Section 7 presents a pervasive grid
implementation. Section 8 discusses obtained results
and remaining opening issues, before concluding.

2. MAPREDUCE/HADOOP BASICS

MapReduce (Dean and Ghemawat, 2008) is a
parallel programming paradigm successfully used by
large Internet service providers to perform
computations on massive amounts of data. This model
is currently becoming popular as a solution for rapid
implementation of distributed data-intensive
applications. The key strength of the MapReduce
model is its inherently high degree of potential
parallelism that should enable processing of petabytes
of data in a couple of hours on large clusters
consisting of several thousand nodes.

A MapReduce computation takes a set of input
key/value pairs and produces a set of output key/value
pairs. The user of the MapReduce paradigm expresses
the computation through two functions:

• Map that processes an input key/value pair to

generate a set of intermediate key/value pairs
• Reduce that merges all intermediate values

associated with the same intermediate key

A few typical examples of simple MapReduce
applications include counting URL access frequency by
processing Web page requests, creating reverse Web-link
graph or an inverted index from large set of documents.

MapReduce most known implementation is AH
(2014a). This framework takes care of splitting the input
data, scheduling the jobs’ component tasks monitoring
them and re-executing the failed ones. Currently, two
Hadoop versions are available, both organized as two
superposed entities: A ‘MapReduce’ engine and a
distributed file system, named HDFS. The engine

provides the ability to execute map and reduce tasks
across the cluster and reports results, while the
distributed file system provides a storage scheme that is
able to replicate data across nodes for processing.

On the Hadoop 1.x architecture, these entities are
organized in a master-worker pattern (Fig. 1), with two
different masters (JobTracker and NameNode) and
workers (TaskTrackers and DataNodes, respectively).

When a client launches an application on a Hadoop
1.x cluster, the request is initially managed by the
JobTracker. The JobTracker collaborates with the
NameNode in order to distribute the work tasks as
closely as possible to the data on which it will work.
Indeed, the NameNode act as the HDFS master,
providing metadata services for data distribution and
replication. The JobTracker, on its side, coordinates the
scheduling of map and reduce tasks into available slots
managed by the TaskTrackers. Each TaskTracker
executes map and reduce tasks on data from its
DataNode, which represents the HDFS slave. When the
tasks are complete, the TaskTracker notifies the
JobTracker, which identifies when all tasks are complete
and eventually notifies the client of job completion.

Due to its centralized architecture, Hadoop 1.x is
particularly vulnerable to failures on its master nodes.
While failures on the TaskNode and on the NameNode
will be supported by Hadoop 1.x, failures on the
JobTracker and on the NameNode will compromise
job execution. Besides, as illustrated by Fig. 1,
Hadoop 1.x is designed considering a single client
application at time, which leads to an under-
exploitation of the resources.

The new Hadoop 2.x version overcomes this ‘simgle
client’ issue, by replacing the initial MapReduce engine
by a new one, called YARN. YARN opens Hadoop to
the possibility of managing multiple applications and
computing models and notably to the deployment of non-
MapReduce applications. For this, YARN replaces
JobTracker and TaskTracker by a new set of entities that
are independent of the application.

On the top of YARN daemons (Fig. 2), we found the
ResourceManager, which is in charge of managing the
entire cluster and of assigning applications to the
underlying compute resources. These resources are
controlled by the NodeManagers. When a new job is
submitted, the ResourceManager delegates the job
supervision to an ApplicationMaster, which executes the
tasks in abstract Containers controlled by the
NodeManagers. Thus, multiple client applications may
execute concurrently, sharing cluster resources.

L.A. Steffenel et al. / Journal of Computer Science 10 (11): 2194.2210, 2014

2197 JCS Science Publications

Fig. 1. Hadoop 1.x daemons architecture

Fig. 2. YARN (Hadoop 2.x) daemon architecture

Unfortunately, Hadoop 2.x still adopts a
master/worker architecture, making it as vulnerable as
Hadoop 1.x to master (ResourceManager and
NameNode) failures. This limitation may considerably
affect its performance on pervasive grids, since these
nodes may leave the grid during the job execution.
Actually, neither Hadoop 1.x nor Hadoop 2.x are able to
manage nodes volatility required by pervasive grids.
Nodes heterogeneity is not observed either. Both Hadoop
1.x and Hadoop 2.x consider nodes with similar
characteristics when managing job execution.

3. RELATED WORKS

This section reviews the main related works on
context-awareness on Hadoop and MapReduce
implementations on pervasive grids.

3.1. Context-Awareness

Because Hadoop performance is tightly dependent on
the computing environment but also on the application
characteristics, several researchers focused on bringing
context-awareness to Hadoop and can be roughly

L.A. Steffenel et al. / Journal of Computer Science 10 (11): 2194.2210, 2014

2198 JCS Science Publications

classified in three categories: Job schedulers, task
schedule optimizers and resource placement facilitators.

In the first category, we find works like Kumar et al.
(2012), Tian et al. (2009) or Rasooli and Down (2012).
These works assume that most jobs are periodic and
demand similar CPU, network and disk usage
characteristics. As a consequence, these works propose
classification mechanisms that first analyze both jobs
and nodes with respect to its CPU or I/O potential,
allowing an optimized matching of applications and
resources when a job is submitted. Similarly, Isard et al.
(2009) propose a generic solution that uses the
distribution of resources as context information maps in
a capacity-demand graph, calculating the optimum
scheduling from a global cost function and with the
objective of improving general cluster performance.

While the previous works focus on the improvement
of the overall cluster performance through an offline
knowledge about the applications and the resources,
sometimes this is not enough to ensure a smooth
operation. For instance, works like Zaharia et al. (2008)
and Chen et al. (2010) focus on improving tasks
deployment inside a job as a way to reduce the response
time in large clusters, executing many jobs of short
duration. Using the environment context information and
the job’s estimated time to end, these works rely on
heuristics to make the connection between elapsed time
and a score that represents how much of the job has
already been processed. This information is used to
generate a threshold, which will determine when a task is
slow enough to start a new speculative copy on another
possibly faster machine. Chen et al. (2010) also uses
historical execution traces to improve its predictions.

Finally, works like Xie et al. (2010), aims to provide
better performance on jobs through better data
placement, using mainly the data locality as decision-
making information. The performance gain is achieved
by the data re-balancing in nodes, leaving faster nodes
with more data. This lowers the cost of speculative tasks
and also of data transfers through the network.

From the analysis of these works, we observe that
most of them rely on the categorization of jobs and
nodes, which is hard in a dynamic environment like a
pervasive grid. Even when runtime parameters such as
elapsed time or data placement are considered, they
assume a controlled and well-known environment.
Because these assumptions are too restrictive, these
works fail on responding to the requirements of a
pervasive grid environment.

3.2. Fault-Tolerance and Volatility

In pervasive grids, nodes have to face both the
dynamicity of the resources availability but also the own
nodes volatility, where any node can fail/disconnect
during the application execution.

To respond to the volatility of nodes and improve
fault-tolerance of the execution environment, two main
approaches has been considered: (i) To harness Hadoop
so that it will be able to support a wider range of failure
scenarios; or (ii) to implement the MapReduce paradigm
on the top of another middleware support. Hadoop
includes basic fault-tolerance techniques, data replication
and speculative execution of tasks, to minimize the
impact of workers failures, but these techniques are not
enough to ensure the operation when running on a true
dynamic environment like pervasive grids.

When dealing with Hadoop, one of the elementary
problems comes from its master/worker architecture.
Hadoop was conceived to tolerate worker’s failures
through node supervision (heartbeats) and speculative
task execution, but a failure at the master level forces the
reboot of the entire network. While it is possible to
improve fault-tolerance at the file system level by using
NameNode replication at the HDFS level or integrating
another file system like AC (2014), we observe that, at
the job/task level, there is a remaining single point of
failure, the JobTracker node. To our knowledge, only the
commercial solution MapR (2014) provides fault-
tolerance at the JobTracker level, but the details about
these solutions are not freely available.

Most of the initiatives to improve MapReduce fault-
tolerance prefer to rely on other middleware
environments. Indeed, the wide acceptance of Hadoop
somehow hides the fact that MapReduce can be
implemented on the top of other computing middleware
systems. Due to the simplicity of its processing model
(map and reduce phases), data processing can be easily
adapted to a given distributed middleware, which can
coordinate tasks through different techniques (distributed
task schedulers, work-stealing/bag of tasks, etc.).

Lin et al. (2010) propose a system called MapReduce
On Opportunistic eNvironment (MOON), which extends
Hadoop in order to deal with the high unavailability of
resources. MOON relies on a hybrid architecture, where
a small set of dedicated nodes are used to provide
resources with high reliability, in contrast to volatile
nodes, which may become inaccessible during
computations. One inconvenient of this system is that in
spite of its improved fault-tolerance, nodes must be known
in advance, i.e., no new node can join the network.

L.A. Steffenel et al. / Journal of Computer Science 10 (11): 2194.2210, 2014

2199 JCS Science Publications

Also, Tang et al. (2010) propose a system designed to
support MapReduce applications, by exploiting the
BitDew middleware (Fedak et al., 2008), which is a
programmable environment for automatic and
transparent data management on desktop grids (a
particular case of pervasive grids aiming at the leverage
of unused processing cycles and storage space available
within the enterprise). Unfortunately, this study also
requires the presence of a stable master node that runs
BitDew services and coordinates data/task distribution.

In P2P-MapReduce (Marozzo et al., 2010; 2012), the
authors present a distributed architecture implemented in
JXTA and following the super-peer approach, where the
super-peers serve as cache data server, handle jobs
submissions and coordinate execution of parallel
computation. P2P-MapReduce supports node
disconnection and the integration of new nodes, but is
partially dependent on Hadoop as it relies on the Hadoop
execution engine to execute the applications. Because
this system does not integrate a file system coupled with
the task manager, the transmission of data is made
together with the tasks to compute. While this study has
similar objectives to our own, its architecture is complex
and presents several dependencies, which may prevent
an easy deployment over pervasive grids. We also
believe that performance can be drastically improved by
implementing a lightweight execution stack independent
of Hadoop and by improving task scheduling through the
use of both context and data placement information.

Even if works cited above have improved fault-
tolerance for MapReduce applications, they still present
some limitations when considering pervasive grids and
notably the need for small set of stable nodes and a
complex architecture (which make difficult their
application to heterogeneous resources). The deployment
of MapReduce over pervasive grids remains then an
open question, since there is no single solution, for the
moment, that solves all previously mentioned issues
together. We believe that, when considering pervasive
grids, where heterogeneity is a major characteristic, data
processing/scheduling must be driven by contextual
information (resources characteristics, node reliability,
network performance, data location) in order to achieve
the expected processing performance.

4. THE PER-MARE VISION

Given the problems presented above, we propose to
address the lack of context adaptation of MapReduce
applications over pervasive grids all while keeping the
compatibility with MapReduce most popular

implementation, Hadoop. To meet this global goal, we
started the PER-MARE project, which objective is to study
the adaptive deployment of MapReduce-based applications
over pervasive and desktop grid infrastructures.

Our approach is to improve the behavior of
MapReduce applications on pervasive grids using a two-
fold investigation method. Hence, to better understand
the elements that may impact the deployment of
MapReduce over pervasive grids, our teams investigate
the problem through two different approaches: On the
one hand, we try to modify Hadoop in order to
implement on it a context-aware scheduling and to
improve fault-tolerance, both with the objective to
enhance Hadoop against heterogeneity, dynamicity and
volatility of the nodes. On the other hand, the second
approach relies on the porting of the MapReduce
paradigm (and the Hadoop API) over a P2P distributed
computing middleware. Because this platform is already
adapted to dynamic and volatile networks, it may
represent a good alternative for applications
implemented with Hodoop’s API as shown in Fig. 3.

We believe that this double approach is essential to
understand and cover all the facets of the pervasive grid
challenges. By comparing these two approaches “side by
side” we can propose effective solutions and provide
important insights on the adaptability to the
heterogeneity of resources and the dynamic nature of the
networks. Thus, our vision, illustrated on Erreur ! Source
du renvoi introuvable., considers the Hadoop API as
common access point for MapReduce applications that
will be able to fully exploit resources on pervasive grids
through two different implementations, based on a
context-aware improved Hadoop implementation, or on a
pervasive grid solution.

Next sections describe the first results of our work.
Firstly, we improved current Hadoop implementation
with a context-aware scheduler, allowing Hadoop to
observe real characteristics of the available nodes,
instead of static configuration of such nodes. This
represents a first step towards a better support of
heterogeneous environments. Secondly, we propose a
fault-tolerant implementation of Hadoop that is able to
replicate its master node in order to prevent crashes due
to nodes failures, a necessary step to fully handling
nodes volatility on Hadoop. While both solutions extend
Hadoop, the third contribution presented in this study
considers a completely different implementation, based
on a P2P middleware. This latter focuses on the volatility
of nodes, allowing new nodes to join or to leave a
pervasive grid without stopping job execution.

L.A. Steffenel et al. / Journal of Computer Science 10 (11): 2194.2210, 2014

2200 JCS Science Publications

Fig. 3. Overview of PER-MARE vision

5. CONTEXT-AWARENESS ON HADOOP

As dedicated and cloud computing infrastructures
have leveraged the use of MapReduce, it is natural that
the most known MapReduce distribution has been
tailored to such environments. For instance, most IaaS
clouds use sets of virtual machines that share similar
characteristics, such as computational power and
memory. In such cases, MapReduce does not require
specific adaptation to the computational context, as all
virtual machines are similar. As a consequence, most
users simply rely on MapReduce default configurations
such as the number of reduce tasks by machine, the
maximum memory, etc. Although this behavior can be
modified through property files, there is no mechanism
to automatically detect and modify these parameters.
When dealing with a heterogeneous environment such as
a pervasive grid, MapReduce must be able to
automatically tune to the nodes characteristics.

While the computational context is tightly related
to the processing power of the resources, it also
impacts other aspects such as fault-tolerance and data
storage. Indeed, Hadoop allows a certain number of
duplicated processes/data in order to circumvent fault
situations. If the context on pervasive grid is not
considered, tasks may be inefficiently allocated or
even disappear if the node volatility is high.

Similarly, HDFS tries to place data for the map and
reduce phases as closes as possible to the
processes/tasks that will need it, in order to reduce the

(slow) access over the network. In a pervasive grid,
the placement policy must account also on the
volatility and speed of the resources, preventing data
losses. While the contextual information required for
the adaptation of MapReduce can be obtained from
the system properties (CPU and network speed,
number of cores, memory size, etc.), the diffusion and
analysis of such information must be tightly integrated
into the MapReduce framework to boost the platform
efficiency. For this reason, context-awareness
(Preuveneers et al., 2009) and context distribution
(Kirsch-Pinheiro et al. 2008) are important elements
to be considered.

Currently, the Apache Hadoop framework scheduler
is mostly designed for homogeneous environments in
which nodes characteristics are provided at startup in a
static way. This section focuses on improving Hadoop
scheduler mechanism in order to make it more context-
aware towards resources on the cluster.
5.1. Hadoop Schedulers

Hadoop scheduling has evolved along its versions.
On Hadoop 1.x, the default scheduler was designed for
supporting a batch job submission, organizing jobs in a
queue. Similarly, Fair Scheduler (AH, 2013), also
proposed on Hadoop 1.x, considers with the same input
data size, using a two level scheduling in order to
distribute the resources equally: A superior level that
allocates queues for each user, using a weighted fair
algorithm; and a second level that allocates the resources
inside each user queue.

Hadoop 2.x adopts, as a default scheduler, a more
sophisticated scheduler, the Capacity Scheduler (AH,
2014b). This scheduler considers a shared Hadoop
environment across multiple partners. It focuses on
guarantees that a minimum share will always be
available for each partner. The benefit comes from the
fact that different organizations have processing peaks at
different times, therefore the organization (partner) using
more capacity, will use the idle capacity of the other
organizations. This scheduler tracks the resources
registered within the ResourceManager and monitors
which resources are free and which are being used.

While these schedulers include some basic awareness
about the nodes capacity, we observe that this
information is often ignored due to a poor startup
configuration. Indeed, Hadoop is heavily dependent on
XML files provided at startup and ideally every node
should provide its own XML files with tailored
parameters to express the node capacity. In a large

L.A. Steffenel et al. / Journal of Computer Science 10 (11): 2194.2210, 2014

2201 JCS Science Publications

heterogeneous cluster, modifying each node
configuration can be very time consuming since each
node will have a different configuration. Also, the
parameters from a XML file are static and any evolution
of nodes capacity will not be considered till node reboot.

It is then clear that we must improve the way Hadoop
detects and handles context information from the
execution environment, by providing updated
information about the node capacity.

In order to detect the node capacity, we chose to
integrate a context collector into Hadoop, allowing an
automatic detection of each node capacity. This
information is given to Hadoop scheduler, which can
scale the allocation limits in function of the real
cluster resource availability. In a first moment, this
scaling affects the containers allocation as a function
of the available memory and computing cores,
impacting therefore on the choice of tasks placement
and how speculative task are started. Also, by
adapting the capacity to the cluster real resource, no
resource would be wasted or left inactive while the
scheduler is making tasks wait due to wrong
information being received.

5.2. Collecting Context Information

To include context information on Hadoop, we
integrated a collector module based on standard Java
monitoring API (Oracle, 2014), which allows to easily
access the real characteristics of a node, with no
additional libraries required.

The collector module, illustrated by Fig. 4, allows
collecting different context information, such as the
number of processors (cores) and the system memory,
using a set of interface and abstract/concrete classes that
generalize the collecting process. Due to its design, it is
easy to integrate new collectors and improve the
resources available for the scheduling process, providing
data about the CPU load or disk usage, for example.

Context information is described by using a predefined
name and a description. Such name corresponds to a given
concept identified in the context ontology. This model,
inspired from Kirsch-Pinheiro et al. (2004), considers
context information as an element (a context element), for
which multiple values can be observed. Context ontology
allows them to semantically describe such element, while
the description gives a human readable definition for it.

This collector module was integrated to the
NodeManager daemon, since this entity is in charge of
processing tasks and managing node definition. In this
first prototype, we only collect node capacity

(available memory and number of cores) and this
information is then sent to the ResourceManager. As a
consequence, the information from the context collector
module allowed us to improve the Hadoop scheduler
operation without having to modify its implementation.
This is especially interesting as further works will be
able to compare other schedulers from the literature
without having to modify their implementation.

5.3. Experiments Description

In order to evaluate our proposal, we compare the
container allocation pattern in the original Capacity
Scheduler with our context-aware Capacity Scheduler.
We perform the analysis of the container allocation
pattern when executing the TeraSort algorithm with a
5GB dataset to sort. By requesting enough containers
(from nodes expressed capacities) and providing enough
data to stress the cluster, we aimed at comparing how the
context information influences the containers (tasks)
allocation and the overall execution time.

The experiments were performed in a cluster subset
of the Grid ‘5000 http://www.grid5000.fr computing
environment. The subset had five nodes, one master and
four slaves, each node having the following
configuration: 2 CPUs AMD@1.7GHz, 12 cores/CPU
and 47GB RAM. All nodes were running an Ubuntu-
x64-1204 standard image, with Sun JDK 1.7. The
Hadoop distribution was the 2.2.0 YARN version.

For unmodified Capacity Scheduler, we adopt the
default Hadoop configuration, which defines, on yarn-
default.XML, the memory and CPU properties with
default values of 8192 and 8 respectively. In the case of
the context-aware scheduler, the same properties are
obtained from the context collector, overwriting the
default parameters from the XML configuration files,
resulting in the parameters from Table 1.

5.4. Results and Interpretation

The following charts are consolidated by resources
represented by NodeManagers. As stated before, the
containers are allocated to a given NodeManager and
tasks are executed inside these containers. Please note
that each segment represents the tasks that are currently
being executed on the node, so the end of a segment
indicates the completion of some of the tasks (which can
still be present in the next segment).

Figure 5a portraits the execution of the TeraSort with
original Capacity Scheduler. It is easy to notice that
some containers had to wait for the completion of others
in order to start processing their tasks.

L.A. Steffenel et al. / Journal of Computer Science 10 (11): 2194.2210, 2014

2202 JCS Science Publications

Indeed, Hadoop splits the work in 38 Map tasks
(numbered 2-39), which are distributed to the nodes
according to the known resource capabilities. When the
first tasks are completed, new tasks are provided to the
nodes, if any available (as illustrated in Fig. 5a, where
tasks 32-39 represent the second execution wave).

If no more tasks are available, the nodes may wait for
the job completion of be given additional tasks for
speculative execution (for example, tasks numbered 40-
44). Because speculative tasks depend on the estimated
advancement of current tasks, they usually concern the
first tasks deployed and do not contribute to accelerate
the execution in a homogeneous cluster. Indeed, we
observe that the speculative tasks from Fig. 5a do not
help improving the execution time as these tasks
correspond to tasks from the first wave scheduled on
nodes stremi-42 and stremi-44.

Figure 5b portraits the execution of the TeraSort
algorithm with context-aware Capacity Scheduler. In this
case the overall completion time was reduced, due to the
fact that all containers could be started right after the
arrival of the request, thanks to the higher resource
availability. Without the context information, the
scheduler uses the default minimum parameters for the
nodes capacities, causing a bad execution performance.

After an analysis and comparison of both charts, we
also notice that the default scheduler launches
speculative containers 41-43 on node stremi-5 and
container 44 on node stremi-42, while the context-aware
chart has only the standard containers, which are
numbered 2-39. This happens because these extra
containers are, in reality, speculative tasks launched
because other tasks were taking too long to finish.

To better understand the impact of context
information on heterogeneous systems, we also
performed a simulation of a heterogeneous cluster.
Comparing to the previous experiments, the only
difference here is that the nodes are purposely given
false capacities when registered to the ResourceManager.
Using these false values, a heterogeneous cluster will be
simulated with the following capacities:

• Stremi-17: 28 GB of memory and 14 cores
• Stremi-22: 32 GB of memory and 18 cores
• Stremi-33: 48 GB of memory and 24 cores
• Stremi-35: 24 GB of memory and 12 cores
• Total Cluster Resources: 132 GB of memory and

68 cores
• Minimum Allocation: 2 GB of memory and 1 core

Fig. 4. Elements of the context collector module

L.A. Steffenel et al. / Journal of Computer Science 10 (11): 2194.2210, 2014

2203 JCS Science Publications

(a)

(b)

Fig. 5. Container assignment (a) with default configuration and (b) with context-awareness configuration

Fig. 6. Container assignment with context-awareness configuration simulating heterogeneous environment

Table 1. Configuration parameters used in the experiments
 Original Context-aware
 -- ---
Total cluster resources 32 GB 32 cores 192 GB 96 cores
Min allocation 1 GB 1 core 4 GB 2 cores
Max allocation 8 GB 8 cores 24 GB 12 cores

Figure 6 portraits the execution of the TeraSort
algorithm within the simulated heterogeneous
environment, also using context-aware Capacity
Scheduler. Compared to the default case, the
heterogeneous environment execution shows an
improvement, but due to the lower cluster capacity, it is a
slightly worse than the context-aware Capacity
Scheduler executing on a homogeneous environment.

It is possible to note that the containers started the
assignment with the node stremi-33, which is the node
with the most capacity in the cluster and also was the

first to be added in the node list. As in the other
experiments, the scheduler launches containers on a node
until its resources are all reserved, then move to the next
node on the list.

This experiment shows that it is possible to use
this context-aware in a heterogeneous environment,
the allocations were adapted to a slightly smaller
cluster if compared to the real environment. As a
future work, it is possible to set the allocation limits in
function not only of total cluster resources but also of
each individual node resource capacity.

L.A. Steffenel et al. / Journal of Computer Science 10 (11): 2194.2210, 2014

2204 JCS Science Publications

6. A FAULT-TOLERANT HADOOP
IMPLEMENTATION

This section introduces our proposal of designing a
fault-tolerant implementation of MapReduce. A review
of current approaches for fault-tolerance in Hadoop is
presented and our proposal for fault-tolerance in Hadoop
based in replicating the JobTracker is described.

6.1. Fault-Tolerance on Hadoop

As previously stated, the basic design of Hadoop is
still widely directed to cluster and grid computing
platforms. In these environments, faults are a second
concern as most nodes will operate flawlessly for a
long time period. Of course, the failure of a node is
still a concern, but some techniques like data
replication and speculative execution of tasks may
limit the danger on most scenarios.

Because Hadoop was developed to work on a
cluster/cloud environment, it has several fault-tolerant
mechanisms to circumvent the crash of workers nodes.
On Hadoop 1.x this is all orchestrated by the JobTracker,
which monitors the status of working nodes while the
NameNode coordinates the data replication. HDFS
allows the replication of the NameNode (through passive
replication), but a failure at the level of the JobTracker
forces a job to be restarted.

On Hadoop 2.x, part of the job management
responsibility is transferred to the ApplicationMaster,
which becomes a task manager. The loss of the
ResourceManager does not blocks the execution of a job,
only prevents new jobs to be submitted. However, the
loss of an ApplicationMaster forces the restart of the job,
just like on Hadoop 1.x.

In this section we concentrate on the enhancement of
fault-tolerance on Hadoop 1.x (at the JobTracker level),
but this solution can also be applied to Hadoop 2.x. We
believe that this approach will lead us to improve the
reliability of Hadoop, especially in the case of pervasive
grids, whose volatility represents a main obstacle to the
deployment of Hadoop.

6.2. Fault-Tolerance Through Replication of the
JobTracker

As stated in the previous section, we want to
develop fault-tolerance solutions that enable Hadoop
to operate in pervasive environments, which means
that we need to ensure the network would not collapse
in the event of a JobTracker failure. The replication of

the JobTracker (or the ResourceManager, in Hadoop
2.x) is the key, but several strategies can be applied to
replicating, monitoring and resuming the JobTracker.
In order to ensure high-availability to the JobTracker
on a pervasive system, our solution needs to comply
with the following properties:

• Fast recovery in the case of a failure
• Small impact on the performance
• Be able to adapt to the capacity and context of the

nodes

The first two properties limit the number of
techniques that can be employed. Indeed, a solution that
uses an external persistent device would add a non-
negligible overhead to the operation and slow-down the
recovery. The third property relates to the heterogeneity
of the nodes and connections on a pervasive system:
Without context-awareness, we risk to resume the
JobTracker on a node without the performance or
stability levels required for the role.

For all these reasons, we decided to implement
JobTracker replication using AZ (2014). ZooKeeper is
one of the tools developed initially inside Hadoop that
become a full project as its application was extended to
other applications. It provides efficient, reliable and
fault-tolerant tools for the coordination of distributed
systems. In our case, we use ZooKeeper services to
storage snapshots of the JobTracker.

Snapshots are made on a per-attribute basis, where
JobTracker attributes are stored in ZooKeeper znodes, as
illustrated in Fig. 7. Depending on the importance of the
snapshot, some attributes are replicated synchronously,
while other attributed are replicated asynchronously (for
example, the blacklist is synced asynchronously while
the tasks statuses are synced synchronously). By
modifying specific parts of the Hadoop code, we were
able to insert snapshot triggers in critical events,
minimizing the performance impact of the replication.

In addition, the distributed memory of ZooKeeper is
used to coordinate the nodes in the case of a JobTracker
failure: ZooKeeper keeps a synchronized ordered list of
nodes in the system. This list is regularly updated so that
volatile nodes are removed from the list and new nodes
are inserted at the end of the list, while the node at the
top of the list is current JobTracker node. This procedure
naturally organizes the nodes by order of stability, but in
the future we plan to modify the nod‘s order to adapt to
the context or capacity of the nodes (for example, to
avoid giving this role to an old and slow machine).

L.A. Steffenel et al. / Journal of Computer Science 10 (11): 2194.2210, 2014

2205 JCS Science Publications

Fig. 7. Replication with zookeeper

The JobTracker is monitored by regular heartbeats.
When detecting a connection failure with the JobTracker,
all TaskTracker automatically check for ZooKeeper to
confirm the status of the JobTracker and/or get the new
JobTracker address. Each TaskTracker checks the first
node in the ZooKeeper list of nodes; if the TaskTracker
is at the top of the list, it replaces the ancient JobTracker
spawning a replica using the last snapshot, but if the
TaskTracker is not the first node in the list, it tries to
connect with this first node that should be the new
JobTracker. If the connection fails, the TaskTracker
checks the list of nodes again and repeats the process
until it connects or becomes the new JobTracker. All
these steps are carried using ZooKeeper services.

6.3. Validating the Prototype with Docker-
Hadoop

To validate our solutions, however, we need to test
different scenarios of node and network faults. Because
these experiments require the execution (and
reproduction) of well-defined scenarios, we rely on virtual
machines (most specifically on container-based

virtualization), which allow the researchers to control both
as both system images and network interconnections.

In our experiments, we used Docker-Hadoop
https://github.com/vierja/docker-hadoop as a testbed to
simulate different failure scenarios. Indeed, thanks to
Docker-Hadoop dashboard, one can easily switch-off or
restart nodes in the environment and reproduce the same
scenario at will. Using Docker-Hadoop dashboard
allowed us to test different failure scenarios like:

6.3.1. Crash of the JobTracker Node

In this scenario, we kill the JobTracker in order to
force a new node to resume the JobTracker role. When a
TaskTracker loses connection with the JobTracker, it
checks the list of Zookeeper nodes and it tries to connect
or becomes the new JobTracker, as described in the
previous subsection.

6.3.2. Restart of an Old JobTracker

In this scenario, we investigated the impacts of the
return of an old JobTracker node. Two possibilities
are analyzed:

L.A. Steffenel et al. / Journal of Computer Science 10 (11): 2194.2210, 2014

2206 JCS Science Publications

• The returning node was simply disconnected from the
network and still thinks it is the JobTracker.
Zookeeper always keeps a reference to the actual
JobTracker, so the JobTracker periodically checks
that reference to verify whether it is still the
JobTracker or not. If it is not, the returning
JobTracker kills himself so the JobTracker referenced
by Zookeeper is the only JobTracker in the network

• The returning node has restarted and has lost all its
status, but is still on the top of Zookeeper‘s list. In this
case, the new node is restarted as a TaskTracker, so it
will follows the fault-tolerance mechanism described in
the previous subsection to become the JobTracker

6.3.3. Heartbeat Tuning

A too lazy heartbeat slows-down the reaction to
failures and may lead to some of the situations described
in the previous item. An intensive heartbeat may impact
negatively on the overall performance.

While Docker provides an environment to create and
destroy nodes, the joining of new nodes requires
additional procedures. Indeed, Hadoop was designed to
work over a cluster where all the resources are known
from the beginning. Inserting new nodes require the
restart of the job manager, which may represent an
important drawback in a dynamic environment in the
next section, we present a P2P approach to solve this
problem and discuss the challenges it represents.

7. A P2P IMPLEMENTATION OF
MAPREDUCE

Due to its simple task model, MapReduce can be
easily implemented in a distributed computing
environment. In our project, we rely on the P2P
distributed computing middleware CloudFIT
(Steffenel, 2013), implemented over the Pastry
(Rowstron and Druschel, 2001) overlay network. In
CloudFIT, the programmer needs to decide how to
divide the problem into a finite number of
independent tasks and how to compute each individual
task. This is the same principle of MapReduce map
and reduce steps, which can be considered as a
sequences of Finite number of Independent and
Irregular Tasks (Krajecki, 1999) problems.

The CloudFIT framework is structured around
collaborative nodes connected over a logical oriented
ring overlay network. Task status (and partial results) are
broadcasted among the nodes, which contributes to the

coordination of the computing tasks and form a global
view of the calculus.

A node owns the different parameters of the current
computations (a list of tasks and associated results). It is
able to locally decide which tasks still need to be
computed and can carry the work autonomously if no
other node can be contacted. If later a node reintegrates a
community, it is able to share the results from the tasks it
completed and re-synchronize its task’s list. For the
moment, a simple scheduling mechanism randomly
rearranges the list of tasks at each node, which helps the
computation of tasks in parallel without requiring
additional communication between nodes.

From the strict point of view of FIIT, a
MapReduce job can be expressed as a two rounds
execution: One handling Map tasks and another
handling Reduce tasks. By implementing MapReduce
over a P2P platform such as CloudFIT, we can
introduce interesting properties on MapReduce that
are not always available on Hadoop.

Implementing MapReduce over CloudFIT is quite
straightforward and can easily mimic the behavior of
Hadoop. Hence, during the Map phase, several tasks
are launched according the number of input files,
producing a set of (ki, Vi) pairs. The token passing
mechanism ensures that all pairs (i.e., the results of
each task) are broadcasted to all computing nodes.
Therefore, at the end of the Map phase, each node
contains a copy of the entire set of (ki, Vi) pairs.

At the end of the first step, a new CloudFIT job is
launched, using as input parameter the results from the
map phase. The number of tasks during this Reduce
phase is calculated based on the number of available
nodes. Once a round starts, each node starts a task
from the shared task list and broadcasts its results at
the end of the task’s computation.

Using CloudFIT, MapReduce algorithms are
supposed to support nodes failures as well as nodes
volatility, allowing nodes to dynamically leave and join
the grid. Indeed, as long as a task is not completed, other
nodes on the grid may pick it up. In this way, when a
node fails or leaves the grid, other nodes may recover
tasks originally taken by the crashed node. Inversely,
when a node joins the CloudFIT community, it receives a
copy of the working data and may pick up available
(incomplete) tasks on the shared task list. Thus,
CloudFIT should offer a more fault-tolerant behavior
than Hadoop, supporting not only nodes disconnections,
but also nodes (re-)connection.

Because Hadoop relies on specific classes to handle
data, we tried to use the same ones in CloudFIT

L.A. Steffenel et al. / Journal of Computer Science 10 (11): 2194.2210, 2014

2207 JCS Science Publications

implementation as a way to keep compatibility with the
Hadoop API. However, some of these classes were too
dependent on inner elements of Hadoop, forcing us to
develop our own equivalents, at least for the moment
(further works shall reinforce the compatibility with
Hadoop API). For instance, we had to substitute the
OutputCollector class with our own MultiMap class,
while the rest of the application remains compatible with
both Hadoop and CloudFIT.

An initial example of MapReduce over CloudFIT
was proposed, using the traditional WordCount
application. As indicated previously, this first prototype
organizes MapReduce in a two rounds execution, but one
single difference between this implementation and the
one using Hadoop resides on the need to indicate the
number of computing tasks, called blocks. Indeed, this
behavior is automatized on Hadoop, which tries to guess
the required number of Map and Reduce processes. In
our prototype, this parameter was defined as to mimic
the behavior of Hadoop, i.e., by setting a number of Map
tasks to roughly correspond to the number of input files
and the number of Reduce tasks to correspond to the
number of computing cores available on the CloudFIT
network at the time Reduce starts (this number may
varies later, due to nodes volatility).

7.1. Prototype Evaluation

The experiments were conducted over 16 machines
on the Helios cluster from the Grid’5000 network. Each

machine is composed by 2 AMD Opteron 275 2.2 GHz
CPUs, totalizing 4 cores per node and a Gigabit Ethernet
interconnects the nodes.

For the experiments, we evaluate the performance of
both CloudFIT and Hadoop solutions when varying the
total amount of data and the number/size of input files.
For each data size, we measure 3 different input splits:
One single file, 1MB splits and 512kB splits. The reason
for such approach is to analyze the impact of the input
files on the map step from both solutions. For the input
data, we chose the Gutenberg Project Science Fiction
Bookshelf CD
http://www.gutenberg.org/wiki/Gutenberg:The_CD_and
_DVD_Project, which contains more than 200 books in
text format. The results presented on Fig. 8 represent the
median of the performed measures for 16 nodes.

When analyzing the measures, two major scenarios
arise: For small data volumes, our prototype largely
outperforms Hadoop, while the difference tends to
stabilize for large data sets. This is mostly due to
CloudFIT lightweight middleware. Even though, the
analysis of application and middleware traces shows
that the replication pattern used on CloudFIT shall be
improved if we want to achieve good performances.
Indeed, currently we use a full-replication scheme, so
that up to n-1 nodes can fail without losing the job
progress. The inconvenient is that this overloads the
network with results transfers and also requires an
important storage capacity on each node.

Fig. 8. Hadoop vs CloudFIT performance comparison

L.A. Steffenel et al. / Journal of Computer Science 10 (11): 2194.2210, 2014

2208 JCS Science Publications

To circumvent this bottleneck, we are currently
implementing an alternative storage mechanism based
on DHTs, like for example the PAST distributed file
system (Druschel and Rowstron, 2001). Using PAST,
we allow workers to share the results of the tasks with
a configurable replication factor, all while minimizing
the data transfer between nodes and the storage
requirements. PAST integration is still under work but
we expect to integrate this solution and our context
acquisition module to make tasks scheduling aware of
context elements such as data locality, network and
processing capabilities of the nodes.

8. CONCLUSION

Pervasive grids represent an important step
towards the establishment of mobiquitous systems in
which concerns high performance computing. While
the pervasive computing model has no intention to
supersede classical high performance computing, there
is a large domain of applications that require more
flexible environments, as provided by a pervasive
computing model. Indeed, pervasive grids concentrate
three main challenges on dynamic environment
composed by a multitude of devices: (i) The volatility
of its components; (ii) their intrinsic heterogeneity;
and (iii) how to manage the dynamic evolution of
these resources.

In this study we study these issues when deploying
MapReduce applications on top of pervasive grids. We
observed that Hadoop, the most known implementation
of MapReduce on clusters and cloud infrastructures,
fails to respond to the three challenges listed above. We
strongly believe that pervasive grids are especially
adapted to deploy MapReduce application on
enterprises, fully exploring the potential of unused (or
underused) resources and therefore reinforcing the
enterprises competitiveness.

To reach this goal, we present the basis of the
PER-MARE project, which explores a two-fold
approach for implementing effective MapReduce
support on pervasive grids: First, by improving
Hadoop so that it supports a minimum of volatility
and context awareness; second, by developing an
alternative middleware for MapReduce directly on top
of a pervasive grid platform. By proceeding on both
fronts, we aim at obtaining better insights on scientific
and technical obstacles towards the development of
flexible and adaptive MapReduce middleware.

Therefore, in a first moment we have propose to
introduce context information on Hadoop schedulers, in
order to take in account the heterogeneity and the
dynamicity of the nodes. By injecting real-time context
information (such as available memory) on Hadoop
schedulers, we circumvent the poor dynamicity
management of current Hadoop implementations. As
the experiments showed encouraging performance
speedups, the next steps will include additional context
information (CPU load and data location, for example)
and the study of alternative scheduling algorithms more
tailored to resource variability.

Later, we focused on Hadoop fault-tolerance,
studying how to remove one of the last single point of
failure in the architecture and therefore allowing a
smooth operation in dynamic environments where any
node can disconnect or fail. By coupling context-aware
scheduling and an improved fault-tolerant architecture,
we are able to support the disconnection of any node in
the architecture as well as distributing work tasks
according to the nodes capabilities.

Even though the previous contributions improve
Hadoop operation, Hadoop remains a complex (and
heavy) middleware that not always can be deployed
on pervasive systems. Therefore, we also presented
our efforts to implement MapReduce over a pervasive
grid middleware, as a way to embrace and take profit
from the volatility of pervasive grids and devices
diversity. By proposing a Hadoop-compliant API over
a pervasive grid middleware, we offer MapReduce
applications a transparent choice between an
implementation optimized for data-intensive problems
(Hadoop) and one optimized for computing intensive
problems over a highly dynamic environments.

From these contributions we pointed out several
elements that can be improved in both Hadoop and
pervasive grid frameworks. For instance, future works
shall continue towards the association of these
contributions in order to provide a complete panorama of
MapReduce solutions on pervasive grids.

9. ACKNOWLEDGEMENT

The authors would like to thank their partners in the
PER-MARE project and acknowledge the financial
support given to this research by the
CAPES/MAEE/ANII STIC-AmSud collaboration
program (project number 13STIC07). Experiments
presented in this study were carried out on Grid’5000
experimental testbed (https://www.grid5000.fr).

L.A. Steffenel et al. / Journal of Computer Science 10 (11): 2194.2210, 2014

2209 JCS Science Publications

10. REFERENCES

AEMR, 2014. Amazon Elastic MapReduce.
AH, 2013. Fair scheduler. Apache Hadoop.
AH, 2014a. Welcome to Apache Hadoop.
AH, 2014b. Hadoop MapReduce next gen-eration-

capacity scheduler. Apache Hadoop.
AC, 2014. Welcome to Apache Cassan-dra. Apache

Cassandra.
AZ, 2014. ZooKeeper: A distributed coordination service

for distributed applications. Apache Zookeeper.
Baldauf, M., S. Dustdar and F. Rosenberg, 2007. A

survey on context-aware systems. Int. J. Ad Hoc
Ubiquit. Comput., 2: 263-277. DOI:
10.1504/IJAHUC.2007.014070

Chen, Q., D. Zhang, M. Guo, Q. Deng and S. Guo, 2010.
SAMR: A Self-adaptive MapReduce scheduling
algorithm in heterogeneous environment.
Proceedings of the IEEE 10th International
Conference on Computer and Information
Technology, Jun. 29-Jul. 1, IEEE Xplore Press,

Bradford, pp: 2736-2743. DOI:
10.1109/CIT.2010.458

Coronato, A. and G.D. Pietro, 2008. Mipeg: A middle-
ware infrastructure for pervasive grids. Future
Generat. Comput. Syst., 24: 17-29. DOI:
10.1016/j.future.2007.04.007

Dean J. and S. Ghemawat, 2008. Mapreduce: Simplified
data processing on large clusters. Commun. ACM,
51: 107-113. DOI: 10.1145/1327452.1327492

Druschel, P. and A. Rowstron, 2001. PAST: A large-
scale, persistent peer-to-peer storage utility.
Proceedings of the 8th Workshop on Hot Topics in
Operating Systems May 20-22, IEEE Xplore Press,
75-80. DOI: 10.1109/HOTOS.2001.990064

Rowstron A. and P. Druschel, 2001. Pastry: Scalable,
decentralized object location and routing for large-
scale peer-to-peer systems. Proceedings of the
IFIP/ACM International Conference on Distributed
Systems Platforms Heidelberg, Nov. 12-16, Springer
Berlin Heidelberg, Germany, pp: 329-350. DOI:
10.1007/3-540-45518-3_18

Fedak, G., H. He and F. Cappello, 2008. BitDew: A
programmable environment for large-scale data
management and distribution. Proceedings of the
International Conference for High Performance
Computing, Networking, Storage and Analysis,
Nov. 15-21, IEEE Xplore Press, Austin, TX., pp: 1-
12. DOI: 10.1109/SC.2008.5213939

Isard, M., V. Prabhakaran, J. Currey, U. Wieder and K.
Talwar et al., 2009. Quincy: Fair scheduling for
distributed computing clusters. Proceedings of the
ACM SIGOPS 22nd Symposium on Operating
Systems Principles, Oct. 11-14, ACM, New York,
pp: 261-276. DOI: 10.1145/1629575.1629601

Kirsch-Pinheiro, M., J. Gensel and H. Martin, 2004.
Representing Context for an Adaptative Awareness
Mechanism. In: Groupware: Design,
Implementation and Use, Gabriela Marín Raventós,
Luis A. Guerrero and Gert-Jan de Vreede (Eds.).,
Springer, ISBN-10: 3540230165, pp: 339-348.

Kirsch-Pinheiro, M., Y. Vanrompay, K. Victor, Y.
Berbers and M. Valla et al., 2008. Context Grouping
Mechanism for Context Distribution in Ubiquitous
Environments. In: On the Move to Meaningful
Internet Systems, R. Meersman and Z. Tari (Eds.),
Springer, pp: 571-588.

Krajecki, M., 1999. An object oriented environment to
manage the parallelism of the FIIT applications.
Proceedings of the 5th International Conference on
Parallel Computing Technologies, Sept. 6-10,
Springer Berlin Heidelberg, Russia, pp: 229-234.
DOI: 10.1007/3-540-48387-X_25

Kumar, K.A., V.K. Konishetty, K. Voruganti and G.V.
Prabhakara Rao, 2012. CASH: Context aware
scheduler for Hadoop. Proceedings of the
International Conference on Advances in
Computing, Communications and Informatics, Aug.
03-05, ACM New York, pp: 52-61. DOI:
10.1145/2345396.2345406

Lin, H., X. Ma, J. Archuleta, W. Feng and M. Gardner et
al., 2010. Moon: Mapreduce on opportunistic
environments. Proceedings of the 19th ACM
International Symposium on High Performance
Distributed Computing, Jun. 21-25, ACM New
York, pp: 95-106. DOI: 10.1145/1851476.1851489

MapR, 2014. MapR closes $110m financing led by
Google Capital. MapR Technologies, Inc.

Marozzo, F., D. Talia and P. Trunfio, 2010. A Peer-to-
Peer Framework for Supporting MapReduce
Applications in Dynamic Cloud Environments. In:
Cloud Computing: Principles, Systems and
Applications, Antonopoulos, N. and L. Gillam
(Eds.)., Springer, ISBN 978-1-84996-240-7, pp:
113-125.

Marozzo, F., D. Talia and P. Trunfio, 2012. P2P-
MapReduce: Parallel data processing in dynamic
cloud environments. J. Comput. Syst. Sci., 78: 1382-
1402. DOI: 10.1016/j.jcss.2011.12.021

L.A. Steffenel et al. / Journal of Computer Science 10 (11): 2194.2210, 2014

2210 JCS Science Publications

Oracle, 2014. Overview of Java SE Monitoring and
Management,

Parashar, M. and J.M. Pierson, 2010. Pervasive Grids:
Challenges and Opportunities. In: Handbook of
Research on Scalable Computing Technologies, Li,
K., C. Hsu, L. Yang, J. Dongarra and H. Zima
(Eds.), IGI Global Snippet, Hershey, ISBN-10:
1605666629, pp: 14-30.

PER-MARE, 2014, PER-MARE-adaptive deployment of
MapReduce-based applications over pervasive and
desktop grid infrastructures.

Preuveneers, D., K. Victor, Y. Vanrompay, P. Rigole and
M. Kirsch-Pinheiro, 2009. Context-Aware
Adaptation in an Ecology of Applications. In:
Context-Aware Mobile and Ubiquitous Computing
for Enhanced Usability: Adaptive Tech-nologies and
Applications, Stojanovic, D. (Ed.), IGI Global,
Hershey, ISBN-10: 1605666629, pp: 1-25.

Rasooli, A. and D. Down, 2014. COSHH: A
classification and optimization based scheduler for
heterogeneous Hadoop systems. Future Generat.
Comput. Syst., 36: 1-15, DOI:
10.1016/j.future.2014.01.002

Steffenel, L.A., 2013. Deliverable 2.1: First Steps on the
Development of a P2P Middleware for MapReduce.
PER-MARE report.

Tang, B., M. Moca, S. Chevalier, H. He and G. Fedak,
2010. Towards MapReduce for desktop grid
computing. Proceedings of the International
Conference on P2P, Parallel, Grid, Cloud and
Internet Computing, Nov. 4-6, IEEE Xplore Press,
Fukuoka, pp: 193-200. DOI:
10.1109/3PGCIC.2010.33

Tian, C., H. Zhou, Y. He and L. Zha, 2009. A dynamic
MapReduce scheduler for heterogeneous workloads.
Proceedings of the 8th International Conference on
Grid and Cooperative Computing, Aug. 27-29, IEEE
Xplore Press, Lanzhou, Gansu, pp: 218-224. DOI:
10.1109/GCC.2009.19

Xie, J., S. Yin, X. Ruan, Z. Ding and Y. Tian et al.,
2010. Improving MapReduce performance through
data placement in heterogeneous Hadoop clusters.
Proceedings of IEEE International Symposium on
Parallel & Distributed Processing, Workshops and
Phd Forum, Apr. 19-23, IEEE Xplore Press, Atlanta,
GA., pp: 1-9. DOI: 10.1109/IPDPSW.2010.5470880

Zaharia, M., A. Konwinski, A.D. Joseph, R. Katz and I.
Stoica. 2008. Improving MapReduce performance in
heterogeneous environments. Proceedings of the 8th
USENIX Conference on Operating Systems Design
and Implementation, (SDI’ 08), USENIX
Association Berkeley, CA, USA., pp: 29-42.

