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ABSTRACT 

This study presents the advances on designing and implementing scalable techniques to support the 
development and execution of MapReduce application in pervasive distributed computing infrastructures, in 
the context of the PER-MARE project. A pervasive framework for MapReduce applications is very useful in 
practice, especially in those scientific, enterprises and educational centers which have many unused or 
underused computing resources, which can be fully exploited to solve relevant problems that demand large 
computing power, such as scientific computing applications, big data processing, etc. In this study, we pro-
pose the study of multiple techniques to support volatility and heterogeneity on MapReduce, by applying two 
complementary approaches: Improving the Apache Hadoop middleware by including context-awareness and 
fault-tolerance features; and providing an alternative pervasive grid implementation, fully adapted to dynamic 
environments. The main design and implementation decisions for both alternatives are described and validated 
through experiments, demonstrating that our approaches provide high reliability when executing on pervasive 
environments. The analysis of the experiments also leads to several insights on the requirements and 
constraints from dynamic and volatile systems, reinforcing the importance of context-aware information and 
advanced fault-tolerance features to provide efficient and reliable MapReduce services on pervasive grids. 
 
Keywords: MapReduce, Fault-Tolerance, Pervasive Distributed Computing  

1. INTRODUCTION 

One of the first challenges a user faces when 
deploying MapReduce is that its most known and 
popular implementation, AH (2014a), requires a 
highly structured environment such as a dedicated 
cluster or a cloud infrastructure to be deployed. 
Indeed, Hadoop has been designed to be deployed 
over a dedicated cluster or cloud computing 
infrastructures such as AEMR (2014). Hadoop relies 
on a collection of tools (Hadoop Core, HDFS, etc.) 
developed by different Apache subprojects, which 
interact through a complicate set of master and slave 
daemons. As a result, Hadoop installation, although 

well documented, requires a stable set of computer 
nodes that shall be known at startup time. The 
installation procedure also lacks of automatic context 
adaption, forcing the administrator to manually define 
the characteristics of each resource, such as the number 
of cores, their relative speed or the available memory.  

Together, these elements prevent a user to quickly 
launch MapReduce over a set of unused resources (e.g., 
the enterprise workers’ desktops), at least not without a 
previous effort to prepare and configure the nodes. 
Indeed, even if Hadoop is now a popular data analysis 
tool, several companies/organizations do not have a 
dedicated infrastructure, as sometimes the demand for 
computing intensive tasks is punctual or executed only 
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periodically. In these cases, cloud computing 
infrastructures represent a popular alternative for usaing 
MapReduce without a dedicate infrastructure. 
Unfortunately, several enterprises fear (or are 
forbidden) to distribute sensible data over the cloud. 
These externalized infrastructures still suffer from 
security issues that prevent their application in some 
cases. We believe that, considering the extreme 
development of mobile devices and networks inside 
organizations nowadays, the opportunistic use of 
existing resources as an internal pervasive grid 
represents an interesting alternative for those who 
hesitate to keep a dedicated infrastructure or to rent 
cloud computing resources. Nevertheless, in order to be 
fully operational, pervasive grids environments have to 
first tackle problems related to their dynamic nature 
where nodes join and leave the network dynamically. 

Our project is precisely addressing this point: 
Proposing scalable techniques to support existing 
Hadoop applications in the context of loosely coupled 
networks such as pervasive grids. We consider pervasive 
grids as a large-scale infrastructure with specific 
characteristics in terms of volatility, reliability, 
connectivity, security, etc. According to Parashar and 
Pierson (2010), pervasive grids represent the extreme 
generalization of the grid concept, in which the resources 
are pervasive. For these authors, pervasive grids 
seamlessly integrate pervasive sensing/actuating 
instruments and devices together with classical high 
performance systems. In the general case, pervasive 
grids rely on volatile resources that may appear and 
disappear from the grid, according their availability. 
Indeed, mobile devices should be able to come into the 
environment in a natural way, as their owner moves 
(Coronato and De Pietro, 2008) and devices from 
different natures, from the desktop and laptop PCs until 
the last generation tablets, should be integrated in 
seamlessly way. It results an environment characterized 
by three main requirements: 
 
• The volatility of its components, whose participation 

on the grid is notably a matter of opportunity and 
availability 

• The heterogeneity of these components, whose 
capabilities may vary on different aspects (platform, 
OS, memory and storage capacity, network 
connection, etc.) 

• The dynamic management of available resources, 
since the internal status of these devices may vary 
during their participation into the grid 
environment 

The following scenario can illustrate these 
requirements: Let us consider that, during the execution of 
a job, a mobile device becomes available, integrating the 
pervasive grid. After its integration, the same device may 
change its network connection, passing from a fixed 
connection to a wireless one. The same can be observed 
with the available memory: After starting a job, device’s 
owner may start new applications that modify device 
memory status. All these changes have an impact on the 
job performance and consequently on the availability of 
this device for the pervasive grid. 

Pervasive grids environments have to deal with such 
additional constraints related to the heterogeneity and the 
volatility of the resources. In such environments, it is 
essential to adapt the application to the network 
variable behavior and to coordinate the resources (task 
scheduling, data placement, etc.). According to 
Coronato and De Pietro (2008), pervasive grid 
environments should be able to self-adapt and self-
configure in order to incoming mobile devices. We 
strongly believe that context-awareness is needed in 
order to support such self-adaption. Context-awareness 
can be defined as the ability of a system to adapt its 
operations to the current context, aiming at increasing 
usability and effectiveness by taking environmental 
context into account (Baldauf et al., 2007). In order to 
support environments changes, context-awareness 
becomes a critical aspect to boost the efficiency of the 
applications over pervasive grids. 

Such dynamic nature of pervasive grids represents an 
important challenge for executing MapReduce 
applications over these environments. Context-awareness 
and nodes volatility become key aspects for successfully 
executing such applications over pervasive grids.  

This work presents the first results of the PER-
MARE (2014), whose goal is proposing scalable 
techniques to support MapReduce in pervasive grids. 
PER-MARE proposes to fully explore the potential of 
unused (or underused) resources at enterprises as 
pervasive grids for MapReduce applications. Our 
challenge is to adapt MapReduce to these dynamic grids. 
For this, we focus on the volatility and heterogeneity of 
the available resources through two complementary 
approaches: On the one hand, we propose to improve 
Hadoop with context-awareness and more fault-tolerance 
concerns; on the other hand, we propose an alternative 
pervasive grid implementation based on a P2P 
computing middleware, fully adapted to these dynamic 
environments. This study demonstrates this vision by its 
first results, organized in three complementary sections: 
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(i) A context-aware scheduler for Hadoop; (ii) a fault-
tolerant job tracker for Hadoop; and (iii) a pervasive grid 
implementation of MapReduce.  

The remain of this study is structured as follow: 
Section 2 introduces basic notions of MapReduce and 
its Hadoop implementations. Section 3 presents 
related works focusing on context-aware and volatility 
issues on MapReduce. Section 4 gives an overview of 
the PER-MARE vision, before presenting our 
contributions in next sections. Section 5 presents a 
context-aware scheduler for Hadoop, while on section 
6 proposes introducing more fault-tolerance for 
Hadoop. Section 7 presents a pervasive grid 
implementation. Section 8 discusses obtained results 
and remaining opening issues, before concluding. 

2. MAPREDUCE/HADOOP BASICS 

MapReduce (Dean and Ghemawat, 2008) is a 
parallel programming paradigm successfully used by 
large Internet service providers to perform 
computations on massive amounts of data. This model 
is currently becoming popular as a solution for rapid 
implementation of distributed data-intensive 
applications. The key strength of the MapReduce 
model is its inherently high degree of potential 
parallelism that should enable processing of petabytes 
of data in a couple of hours on large clusters 
consisting of several thousand nodes.  

A MapReduce computation takes a set of input 
key/value pairs and produces a set of output key/value 
pairs. The user of the MapReduce paradigm expresses 
the computation through two functions: 
 
• Map that processes an input key/value pair to 

generate a set of intermediate key/value pairs 
• Reduce that merges all intermediate values 

associated with the same intermediate key 
 

A few typical examples of simple MapReduce 
applications include counting URL access frequency by 
processing Web page requests, creating reverse Web-link 
graph or an inverted index from large set of documents. 

MapReduce most known implementation is AH 
(2014a). This framework takes care of splitting the input 
data, scheduling the jobs’ component tasks monitoring 
them and re-executing the failed ones. Currently, two 
Hadoop versions are available, both organized as two 
superposed entities: A ‘MapReduce’ engine and a 
distributed file system, named HDFS. The engine 

provides the ability to execute map and reduce tasks 
across the cluster and reports results, while the 
distributed file system provides a storage scheme that is 
able to replicate data across nodes for processing. 

On the Hadoop 1.x architecture, these entities are 
organized in a master-worker pattern (Fig. 1), with two 
different masters (JobTracker and NameNode) and 
workers (TaskTrackers and DataNodes, respectively).  

When a client launches an application on a Hadoop 
1.x cluster, the request is initially managed by the 
JobTracker. The JobTracker collaborates with the 
NameNode in order to distribute the work tasks as 
closely as possible to the data on which it will work. 
Indeed, the NameNode act as the HDFS master, 
providing metadata services for data distribution and 
replication. The JobTracker, on its side, coordinates the 
scheduling of map and reduce tasks into available slots 
managed by the TaskTrackers. Each TaskTracker 
executes map and reduce tasks on data from its 
DataNode, which represents the HDFS slave. When the 
tasks are complete, the TaskTracker notifies the 
JobTracker, which identifies when all tasks are complete 
and eventually notifies the client of job completion.  

Due to its centralized architecture, Hadoop 1.x is 
particularly vulnerable to failures on its master nodes. 
While failures on the TaskNode and on the NameNode 
will be supported by Hadoop 1.x, failures on the 
JobTracker and on the NameNode will compromise 
job execution. Besides, as illustrated by Fig. 1, 
Hadoop 1.x is designed considering a single client 
application at time, which leads to an under-
exploitation of the resources. 

The new Hadoop 2.x version overcomes this ‘simgle 
client’ issue, by replacing the initial MapReduce engine 
by a new one, called YARN. YARN opens Hadoop to 
the possibility of managing multiple applications and 
computing models and notably to the deployment of non- 
MapReduce applications. For this, YARN replaces 
JobTracker and TaskTracker by a new set of entities that 
are independent of the application.  

On the top of YARN daemons (Fig. 2), we found the 
ResourceManager, which is in charge of managing the 
entire cluster and of assigning applications to the 
underlying compute resources. These resources are 
controlled by the NodeManagers. When a new job is 
submitted, the ResourceManager delegates the job 
supervision to an ApplicationMaster, which executes the 
tasks in abstract Containers controlled by the 
NodeManagers. Thus, multiple client applications may 
execute concurrently, sharing cluster resources.  
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Fig. 1. Hadoop 1.x daemons architecture 
 

 
 

Fig. 2. YARN (Hadoop 2.x) daemon architecture 
 

Unfortunately, Hadoop 2.x still adopts a 
master/worker architecture, making it as vulnerable as 
Hadoop 1.x to master (ResourceManager and 
NameNode) failures. This limitation may considerably 
affect its performance on pervasive grids, since these 
nodes may leave the grid during the job execution. 
Actually, neither Hadoop 1.x nor Hadoop 2.x are able to 
manage nodes volatility required by pervasive grids. 
Nodes heterogeneity is not observed either. Both Hadoop 
1.x and Hadoop 2.x consider nodes with similar 
characteristics when managing job execution.  

3. RELATED WORKS 

This section reviews the main related works on 
context-awareness on Hadoop and MapReduce 
implementations on pervasive grids.  

3.1. Context-Awareness  

Because Hadoop performance is tightly dependent on 
the computing environment but also on the application 
characteristics, several researchers focused on bringing 
context-awareness to Hadoop and can be roughly 
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classified in three categories: Job schedulers, task 
schedule optimizers and resource placement facilitators. 

In the first category, we find works like Kumar et al. 
(2012), Tian et al. (2009) or Rasooli and Down (2012). 
These works assume that most jobs are periodic and 
demand similar CPU, network and disk usage 
characteristics. As a consequence, these works propose 
classification mechanisms that first analyze both jobs 
and nodes with respect to its CPU or I/O potential, 
allowing an optimized matching of applications and 
resources when a job is submitted. Similarly, Isard et al. 
(2009) propose a generic solution that uses the 
distribution of resources as context information maps in 
a capacity-demand graph, calculating the optimum 
scheduling from a global cost function and with the 
objective of improving general cluster performance.  

While the previous works focus on the improvement 
of the overall cluster performance through an offline 
knowledge about the applications and the resources, 
sometimes this is not enough to ensure a smooth 
operation. For instance, works like Zaharia et al. (2008) 
and Chen et al. (2010) focus on improving tasks 
deployment inside a job as a way to reduce the response 
time in large clusters, executing many jobs of short 
duration. Using the environment context information and 
the job’s estimated time to end, these works rely on 
heuristics to make the connection between elapsed time 
and a score that represents how much of the job has 
already been processed. This information is used to 
generate a threshold, which will determine when a task is 
slow enough to start a new speculative copy on another 
possibly faster machine. Chen et al. (2010) also uses 
historical execution traces to improve its predictions.  

Finally, works like Xie et al. (2010), aims to provide 
better performance on jobs through better data 
placement, using mainly the data locality as decision-
making information. The performance gain is achieved 
by the data re-balancing in nodes, leaving faster nodes 
with more data. This lowers the cost of speculative tasks 
and also of data transfers through the network.  

From the analysis of these works, we observe that 
most of them rely on the categorization of jobs and 
nodes, which is hard in a dynamic environment like a 
pervasive grid. Even when runtime parameters such as 
elapsed time or data placement are considered, they 
assume a controlled and well-known environment. 
Because these assumptions are too restrictive, these 
works fail on responding to the requirements of a 
pervasive grid environment.  

3.2. Fault-Tolerance and Volatility  

In pervasive grids, nodes have to face both the 
dynamicity of the resources availability but also the own 
nodes volatility, where any node can fail/disconnect 
during the application execution.  

To respond to the volatility of nodes and improve 
fault-tolerance of the execution environment, two main 
approaches has been considered: (i) To harness Hadoop 
so that it will be able to support a wider range of failure 
scenarios; or (ii) to implement the MapReduce paradigm 
on the top of another middleware support. Hadoop 
includes basic fault-tolerance techniques, data replication 
and speculative execution of tasks, to minimize the 
impact of workers failures, but these techniques are not 
enough to ensure the operation when running on a true 
dynamic environment like pervasive grids.  

When dealing with Hadoop, one of the elementary 
problems comes from its master/worker architecture. 
Hadoop was conceived to tolerate worker’s failures 
through node supervision (heartbeats) and speculative 
task execution, but a failure at the master level forces the 
reboot of the entire network. While it is possible to 
improve fault-tolerance at the file system level by using 
NameNode replication at the HDFS level or integrating 
another file system like AC (2014), we observe that, at 
the job/task level, there is a remaining single point of 
failure, the JobTracker node. To our knowledge, only the 
commercial solution MapR (2014) provides fault-
tolerance at the JobTracker level, but the details about 
these solutions are not freely available. 

Most of the initiatives to improve MapReduce fault-
tolerance prefer to rely on other middleware 
environments. Indeed, the wide acceptance of Hadoop 
somehow hides the fact that MapReduce can be 
implemented on the top of other computing middleware 
systems. Due to the simplicity of its processing model 
(map and reduce phases), data processing can be easily 
adapted to a given distributed middleware, which can 
coordinate tasks through different techniques (distributed 
task schedulers, work-stealing/bag of tasks, etc.). 

Lin et al. (2010) propose a system called MapReduce 
On Opportunistic eNvironment (MOON), which extends 
Hadoop in order to deal with the high unavailability of 
resources. MOON relies on a hybrid architecture, where 
a small set of dedicated nodes are used to provide 
resources with high reliability, in contrast to volatile 
nodes, which may become inaccessible during 
computations. One inconvenient of this system is that in 
spite of its improved fault-tolerance, nodes must be known 
in advance, i.e., no new node can join the network. 
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Also, Tang et al. (2010) propose a system designed to 
support MapReduce applications, by exploiting the 
BitDew middleware (Fedak et al., 2008), which is a 
programmable environment for automatic and 
transparent data management on desktop grids (a 
particular case of pervasive grids aiming at the leverage 
of unused processing cycles and storage space available 
within the enterprise). Unfortunately, this study also 
requires the presence of a stable master node that runs 
BitDew services and coordinates data/task distribution.  

In P2P-MapReduce (Marozzo et al., 2010; 2012), the 
authors present a distributed architecture implemented in 
JXTA and following the super-peer approach, where the 
super-peers serve as cache data server, handle jobs 
submissions and coordinate execution of parallel 
computation. P2P-MapReduce supports node 
disconnection and the integration of new nodes, but is 
partially dependent on Hadoop as it relies on the Hadoop 
execution engine to execute the applications. Because 
this system does not integrate a file system coupled with 
the task manager, the transmission of data is made 
together with the tasks to compute. While this study has 
similar objectives to our own, its architecture is complex 
and presents several dependencies, which may prevent 
an easy deployment over pervasive grids. We also 
believe that performance can be drastically improved by 
implementing a lightweight execution stack independent 
of Hadoop and by improving task scheduling through the 
use of both context and data placement information.  

Even if works cited above have improved fault-
tolerance for MapReduce applications, they still present 
some limitations when considering pervasive grids and 
notably the need for small set of stable nodes and a 
complex architecture (which make difficult their 
application to heterogeneous resources). The deployment 
of MapReduce over pervasive grids remains then an 
open question, since there is no single solution, for the 
moment, that solves all previously mentioned issues 
together. We believe that, when considering pervasive 
grids, where heterogeneity is a major characteristic, data 
processing/scheduling must be driven by contextual 
information (resources characteristics, node reliability, 
network performance, data location) in order to achieve 
the expected processing performance.  

4. THE PER-MARE VISION 

Given the problems presented above, we propose to 
address the lack of context adaptation of MapReduce 
applications over pervasive grids all while keeping the 
compatibility with MapReduce most popular 

implementation, Hadoop. To meet this global goal, we 
started the PER-MARE project, which objective is to study 
the adaptive deployment of MapReduce-based applications 
over pervasive and desktop grid infrastructures.  

Our approach is to improve the behavior of 
MapReduce applications on pervasive grids using a two-
fold investigation method. Hence, to better understand 
the elements that may impact the deployment of 
MapReduce over pervasive grids, our teams investigate 
the problem through two different approaches: On the 
one hand, we try to modify Hadoop in order to 
implement on it a context-aware scheduling and to 
improve fault-tolerance, both with the objective to 
enhance Hadoop against heterogeneity, dynamicity and 
volatility of the nodes. On the other hand, the second 
approach relies on the porting of the MapReduce 
paradigm (and the Hadoop API) over a P2P distributed 
computing middleware. Because this platform is already 
adapted to dynamic and volatile networks, it may 
represent a good alternative for applications 
implemented with Hodoop’s API as shown in Fig. 3. 

We believe that this double approach is essential to 
understand and cover all the facets of the pervasive grid 
challenges. By comparing these two approaches “side by 
side” we can propose effective solutions and provide 
important insights on the adaptability to the 
heterogeneity of resources and the dynamic nature of the 
networks. Thus, our vision, illustrated on Erreur ! Source 
du renvoi introuvable., considers the Hadoop API as 
common access point for MapReduce applications that 
will be able to fully exploit resources on pervasive grids 
through two different implementations, based on a 
context-aware improved Hadoop implementation, or on a 
pervasive grid solution.  

Next sections describe the first results of our work. 
Firstly, we improved current Hadoop implementation 
with a context-aware scheduler, allowing Hadoop to 
observe real characteristics of the available nodes, 
instead of static configuration of such nodes. This 
represents a first step towards a better support of 
heterogeneous environments. Secondly, we propose a 
fault-tolerant implementation of Hadoop that is able to 
replicate its master node in order to prevent crashes due 
to nodes failures, a necessary step to fully handling 
nodes volatility on Hadoop. While both solutions extend 
Hadoop, the third contribution presented in this study 
considers a completely different implementation, based 
on a P2P middleware. This latter focuses on the volatility 
of nodes, allowing new nodes to join or to leave a 
pervasive grid without stopping job execution. 
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Fig. 3. Overview of PER-MARE vision 
 
5. CONTEXT-AWARENESS ON HADOOP 

As dedicated and cloud computing infrastructures 
have leveraged the use of MapReduce, it is natural that 
the most known MapReduce distribution has been 
tailored to such environments. For instance, most IaaS 
clouds use sets of virtual machines that share similar 
characteristics, such as computational power and 
memory. In such cases, MapReduce does not require 
specific adaptation to the computational context, as all 
virtual machines are similar. As a consequence, most 
users simply rely on MapReduce default configurations 
such as the number of reduce tasks by machine, the 
maximum memory, etc. Although this behavior can be 
modified through property files, there is no mechanism 
to automatically detect and modify these parameters. 
When dealing with a heterogeneous environment such as 
a pervasive grid, MapReduce must be able to 
automatically tune to the nodes characteristics. 

While the computational context is tightly related 
to the processing power of the resources, it also 
impacts other aspects such as fault-tolerance and data 
storage. Indeed, Hadoop allows a certain number of 
duplicated processes/data in order to circumvent fault 
situations. If the context on pervasive grid is not 
considered, tasks may be inefficiently allocated or 
even disappear if the node volatility is high. 

Similarly, HDFS tries to place data for the map and 
reduce phases as closes as possible to the 
processes/tasks that will need it, in order to reduce the 

(slow) access over the network. In a pervasive grid, 
the placement policy must account also on the 
volatility and speed of the resources, preventing data 
losses. While the contextual information required for 
the adaptation of MapReduce can be obtained from 
the system properties (CPU and network speed, 
number of cores, memory size, etc.), the diffusion and 
analysis of such information must be tightly integrated 
into the MapReduce framework to boost the platform 
efficiency. For this reason, context-awareness 
(Preuveneers et al., 2009) and context distribution 
(Kirsch-Pinheiro et al. 2008) are important elements 
to be considered.  

Currently, the Apache Hadoop framework scheduler 
is mostly designed for homogeneous environments in 
which nodes characteristics are provided at startup in a 
static way. This section focuses on improving Hadoop 
scheduler mechanism in order to make it more context-
aware towards resources on the cluster.  
5.1. Hadoop Schedulers 

Hadoop scheduling has evolved along its versions. 
On Hadoop 1.x, the default scheduler was designed for 
supporting a batch job submission, organizing jobs in a 
queue. Similarly, Fair Scheduler (AH, 2013), also 
proposed on Hadoop 1.x, considers with the same input 
data size, using a two level scheduling in order to 
distribute the resources equally: A superior level that 
allocates queues for each user, using a weighted fair 
algorithm; and a second level that allocates the resources 
inside each user queue.  

Hadoop 2.x adopts, as a default scheduler, a more 
sophisticated scheduler, the Capacity Scheduler (AH, 
2014b). This scheduler considers a shared Hadoop 
environment across multiple partners. It focuses on 
guarantees that a minimum share will always be 
available for each partner. The benefit comes from the 
fact that different organizations have processing peaks at 
different times, therefore the organization (partner) using 
more capacity, will use the idle capacity of the other 
organizations. This scheduler tracks the resources 
registered within the ResourceManager and monitors 
which resources are free and which are being used.  

While these schedulers include some basic awareness 
about the nodes capacity, we observe that this 
information is often ignored due to a poor startup 
configuration. Indeed, Hadoop is heavily dependent on 
XML files provided at startup and ideally every node 
should provide its own XML files with tailored 
parameters to express the node capacity. In a large 
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heterogeneous cluster, modifying each node 
configuration can be very time consuming since each 
node will have a different configuration. Also, the 
parameters from a XML file are static and any evolution 
of nodes capacity will not be considered till node reboot. 

It is then clear that we must improve the way Hadoop 
detects and handles context information from the 
execution environment, by providing updated 
information about the node capacity.  

In order to detect the node capacity, we chose to 
integrate a context collector into Hadoop, allowing an 
automatic detection of each node capacity. This 
information is given to Hadoop scheduler, which can 
scale the allocation limits in function of the real 
cluster resource availability. In a first moment, this 
scaling affects the containers allocation as a function 
of the available memory and computing cores, 
impacting therefore on the choice of tasks placement 
and how speculative task are started. Also, by 
adapting the capacity to the cluster real resource, no 
resource would be wasted or left inactive while the 
scheduler is making tasks wait due to wrong 
information being received.  

5.2. Collecting Context Information  

To include context information on Hadoop, we 
integrated a collector module based on standard Java 
monitoring API (Oracle, 2014), which allows to easily 
access the real characteristics of a node, with no 
additional libraries required. 

The collector module, illustrated by Fig. 4, allows 
collecting different context information, such as the 
number of processors (cores) and the system memory, 
using a set of interface and abstract/concrete classes that 
generalize the collecting process. Due to its design, it is 
easy to integrate new collectors and improve the 
resources available for the scheduling process, providing 
data about the CPU load or disk usage, for example. 

Context information is described by using a predefined 
name and a description. Such name corresponds to a given 
concept identified in the context ontology. This model, 
inspired from Kirsch-Pinheiro et al. (2004), considers 
context information as an element (a context element), for 
which multiple values can be observed. Context ontology 
allows them to semantically describe such element, while 
the description gives a human readable definition for it.  

This collector module was integrated to the 
NodeManager daemon, since this entity is in charge of 
processing tasks and managing node definition. In this 
first prototype, we only collect node capacity 

(available memory and number of cores) and this 
information is then sent to the ResourceManager. As a 
consequence, the information from the context collector 
module allowed us to improve the Hadoop scheduler 
operation without having to modify its implementation. 
This is especially interesting as further works will be 
able to compare other schedulers from the literature 
without having to modify their implementation.  

5.3. Experiments Description  

In order to evaluate our proposal, we compare the 
container allocation pattern in the original Capacity 
Scheduler with our context-aware Capacity Scheduler. 
We perform the analysis of the container allocation 
pattern when executing the TeraSort algorithm with a 
5GB dataset to sort. By requesting enough containers 
(from nodes expressed capacities) and providing enough 
data to stress the cluster, we aimed at comparing how the 
context information influences the containers (tasks) 
allocation and the overall execution time.  

The experiments were performed in a cluster subset 
of the Grid ‘5000 http://www.grid5000.fr computing 
environment. The subset had five nodes, one master and 
four slaves, each node having the following 
configuration: 2 CPUs AMD@1.7GHz, 12 cores/CPU 
and 47GB RAM. All nodes were running an Ubuntu-
x64-1204 standard image, with Sun JDK 1.7. The 
Hadoop distribution was the 2.2.0 YARN version.  

For unmodified Capacity Scheduler, we adopt the 
default Hadoop configuration, which defines, on yarn-
default.XML, the memory and CPU properties with 
default values of 8192 and 8 respectively. In the case of 
the context-aware scheduler, the same properties are 
obtained from the context collector, overwriting the 
default parameters from the XML configuration files, 
resulting in the parameters from Table 1.  

5.4. Results and Interpretation  

The following charts are consolidated by resources 
represented by NodeManagers. As stated before, the 
containers are allocated to a given NodeManager and 
tasks are executed inside these containers. Please note 
that each segment represents the tasks that are currently 
being executed on the node, so the end of a segment 
indicates the completion of some of the tasks (which can 
still be present in the next segment). 

Figure 5a portraits the execution of the TeraSort with 
original Capacity Scheduler. It is easy to notice that 
some containers had to wait for the completion of others 
in order to start processing their tasks. 
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Indeed, Hadoop splits the work in 38 Map tasks 
(numbered 2-39), which are distributed to the nodes 
according to the known resource capabilities. When the 
first tasks are completed, new tasks are provided to the 
nodes, if any available (as illustrated in Fig. 5a, where 
tasks 32-39 represent the second execution wave). 

If no more tasks are available, the nodes may wait for 
the job completion of be given additional tasks for 
speculative execution (for example, tasks numbered 40-
44). Because speculative tasks depend on the estimated 
advancement of current tasks, they usually concern the 
first tasks deployed and do not contribute to accelerate 
the execution in a homogeneous cluster. Indeed, we 
observe that the speculative tasks from Fig. 5a do not 
help improving the execution time as these tasks 
correspond to tasks from the first wave scheduled on 
nodes stremi-42 and stremi-44.  

Figure 5b portraits the execution of the TeraSort 
algorithm with context-aware Capacity Scheduler. In this 
case the overall completion time was reduced, due to the 
fact that all containers could be started right after the 
arrival of the request, thanks to the higher resource 
availability. Without the context information, the 
scheduler uses the default minimum parameters for the 
nodes capacities, causing a bad execution performance.  

After an analysis and comparison of both charts, we 
also notice that the default scheduler launches 
speculative containers 41-43 on node stremi-5 and 
container 44 on node stremi-42, while the context-aware 
chart has only the standard containers, which are 
numbered 2-39. This happens because these extra 
containers are, in reality, speculative tasks launched 
because other tasks were taking too long to finish.  

To better understand the impact of context 
information on heterogeneous systems, we also 
performed a simulation of a heterogeneous cluster. 
Comparing to the previous experiments, the only 
difference here is that the nodes are purposely given 
false capacities when registered to the ResourceManager. 
Using these false values, a heterogeneous cluster will be 
simulated with the following capacities: 
 
• Stremi-17: 28 GB of memory and 14 cores 
• Stremi-22: 32 GB of memory and 18 cores 
• Stremi-33: 48 GB of memory and 24 cores 
• Stremi-35: 24 GB of memory and 12 cores 
• Total Cluster Resources: 132 GB of memory and 

68 cores 
• Minimum Allocation: 2 GB of memory and 1 core

 

 
 

Fig. 4. Elements of the context collector module 
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(a) 

 

 
(b) 

 
Fig. 5. Container assignment (a) with default configuration and (b) with context-awareness configuration 

 

 
 

Fig. 6. Container assignment with context-awareness configuration simulating heterogeneous environment 
 
Table 1. Configuration parameters used in the experiments  
 Original   Context-aware 
 -------------------------------------------- -----------------------------------------------  
Total cluster resources  32 GB  32 cores  192 GB  96 cores  
Min allocation  1 GB  1 core  4 GB  2 cores  
Max allocation  8 GB  8 cores  24 GB  12 cores  
 

Figure 6 portraits the execution of the TeraSort 
algorithm within the simulated heterogeneous 
environment, also using context-aware Capacity 
Scheduler. Compared to the default case, the 
heterogeneous environment execution shows an 
improvement, but due to the lower cluster capacity, it is a 
slightly worse than the context-aware Capacity 
Scheduler executing on a homogeneous environment. 

It is possible to note that the containers started the 
assignment with the node stremi-33, which is the node 
with the most capacity in the cluster and also was the 

first to be added in the node list. As in the other 
experiments, the scheduler launches containers on a node 
until its resources are all reserved, then move to the next 
node on the list. 

This experiment shows that it is possible to use 
this context-aware in a heterogeneous environment, 
the allocations were adapted to a slightly smaller 
cluster if compared to the real environment. As a 
future work, it is possible to set the allocation limits in 
function not only of total cluster resources but also of 
each individual node resource capacity. 
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6. A FAULT-TOLERANT HADOOP 
IMPLEMENTATION 

This section introduces our proposal of designing a 
fault-tolerant implementation of MapReduce. A review 
of current approaches for fault-tolerance in Hadoop is 
presented and our proposal for fault-tolerance in Hadoop 
based in replicating the JobTracker is described.  

6.1. Fault-Tolerance on Hadoop  

As previously stated, the basic design of Hadoop is 
still widely directed to cluster and grid computing 
platforms. In these environments, faults are a second 
concern as most nodes will operate flawlessly for a 
long time period. Of course, the failure of a node is 
still a concern, but some techniques like data 
replication and speculative execution of tasks may 
limit the danger on most scenarios. 

Because Hadoop was developed to work on a 
cluster/cloud environment, it has several fault-tolerant 
mechanisms to circumvent the crash of workers nodes. 
On Hadoop 1.x this is all orchestrated by the JobTracker, 
which monitors the status of working nodes while the 
NameNode coordinates the data replication. HDFS 
allows the replication of the NameNode (through passive 
replication), but a failure at the level of the JobTracker 
forces a job to be restarted. 

On Hadoop 2.x, part of the job management 
responsibility is transferred to the ApplicationMaster, 
which becomes a task manager. The loss of the 
ResourceManager does not blocks the execution of a job, 
only prevents new jobs to be submitted. However, the 
loss of an ApplicationMaster forces the restart of the job, 
just like on Hadoop 1.x. 

In this section we concentrate on the enhancement of 
fault-tolerance on Hadoop 1.x (at the JobTracker level), 
but this solution can also be applied to Hadoop 2.x. We 
believe that this approach will lead us to improve the 
reliability of Hadoop, especially in the case of pervasive 
grids, whose volatility represents a main obstacle to the 
deployment of Hadoop.  

6.2. Fault-Tolerance Through Replication of the 
JobTracker 

As stated in the previous section, we want to 
develop fault-tolerance solutions that enable Hadoop 
to operate in pervasive environments, which means 
that we need to ensure the network would not collapse 
in the event of a JobTracker failure. The replication of 

the JobTracker (or the ResourceManager, in Hadoop 
2.x) is the key, but several strategies can be applied to 
replicating, monitoring and resuming the JobTracker. 
In order to ensure high-availability to the JobTracker 
on a pervasive system, our solution needs to comply 
with the following properties: 
 
• Fast recovery in the case of a failure  
• Small impact on the performance  
• Be able to adapt to the capacity and context of the 

nodes 
 

The first two properties limit the number of 
techniques that can be employed. Indeed, a solution that 
uses an external persistent device would add a non-
negligible overhead to the operation and slow-down the 
recovery. The third property relates to the heterogeneity 
of the nodes and connections on a pervasive system: 
Without context-awareness, we risk to resume the 
JobTracker on a node without the performance or 
stability levels required for the role. 

For all these reasons, we decided to implement 
JobTracker replication using AZ (2014). ZooKeeper is 
one of the tools developed initially inside Hadoop that 
become a full project as its application was extended to 
other applications. It provides efficient, reliable and 
fault-tolerant tools for the coordination of distributed 
systems. In our case, we use ZooKeeper services to 
storage snapshots of the JobTracker. 

Snapshots are made on a per-attribute basis, where 
JobTracker attributes are stored in ZooKeeper znodes, as 
illustrated in Fig. 7. Depending on the importance of the 
snapshot, some attributes are replicated synchronously, 
while other attributed are replicated asynchronously (for 
example, the blacklist is synced asynchronously while 
the tasks statuses are synced synchronously). By 
modifying specific parts of the Hadoop code, we were 
able to insert snapshot triggers in critical events, 
minimizing the performance impact of the replication. 

In addition, the distributed memory of ZooKeeper is 
used to coordinate the nodes in the case of a JobTracker 
failure: ZooKeeper keeps a synchronized ordered list of 
nodes in the system. This list is regularly updated so that 
volatile nodes are removed from the list and new nodes 
are inserted at the end of the list, while the node at the 
top of the list is current JobTracker node. This procedure 
naturally organizes the nodes by order of stability, but in 
the future we plan to modify the nod‘s order to adapt to 
the context or capacity of the nodes (for example, to 
avoid giving this role to an old and slow machine). 
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Fig. 7. Replication with zookeeper 
 

The JobTracker is monitored by regular heartbeats. 
When detecting a connection failure with the JobTracker, 
all TaskTracker automatically check for ZooKeeper to 
confirm the status of the JobTracker and/or get the new 
JobTracker address. Each TaskTracker checks the first 
node in the ZooKeeper list of nodes; if the TaskTracker 
is at the top of the list, it replaces the ancient JobTracker 
spawning a replica using the last snapshot, but if the 
TaskTracker is not the first node in the list, it tries to 
connect with this first node that should be the new 
JobTracker. If the connection fails, the TaskTracker 
checks the list of nodes again and repeats the process 
until it connects or becomes the new JobTracker. All 
these steps are carried using ZooKeeper services. 

6.3. Validating the Prototype with Docker-
Hadoop 

To validate our solutions, however, we need to test 
different scenarios of node and network faults. Because 
these experiments require the execution (and 
reproduction) of well-defined scenarios, we rely on virtual 
machines (most specifically on container-based 

virtualization), which allow the researchers to control both 
as both system images and network interconnections.  

In our experiments, we used Docker-Hadoop 
https://github.com/vierja/docker-hadoop as a testbed to 
simulate different failure scenarios. Indeed, thanks to 
Docker-Hadoop dashboard, one can easily switch-off or 
restart nodes in the environment and reproduce the same 
scenario at will. Using Docker-Hadoop dashboard 
allowed us to test different failure scenarios like:  

6.3.1. Crash of the JobTracker Node 

In this scenario, we kill the JobTracker in order to 
force a new node to resume the JobTracker role. When a 
TaskTracker loses connection with the JobTracker, it 
checks the list of Zookeeper nodes and it tries to connect 
or becomes the new JobTracker, as described in the 
previous subsection. 

6.3.2. Restart of an Old JobTracker 

In this scenario, we investigated the impacts of the 
return of an old JobTracker node. Two possibilities 
are analyzed: 
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• The returning node was simply disconnected from the 
network and still thinks it is the JobTracker. 
Zookeeper always keeps a reference to the actual 
JobTracker, so the JobTracker periodically checks 
that reference to verify whether it is still the 
JobTracker or not. If it is not, the returning 
JobTracker kills himself so the JobTracker referenced 
by Zookeeper is the only JobTracker in the network 

• The returning node has restarted and has lost all its 
status, but is still on the top of Zookeeper‘s list. In this 
case, the new node is restarted as a TaskTracker, so it 
will follows the fault-tolerance mechanism described in 
the previous subsection to become the JobTracker 

 
6.3.3. Heartbeat Tuning 

A too lazy heartbeat slows-down the reaction to 
failures and may lead to some of the situations described 
in the previous item. An intensive heartbeat may impact 
negatively on the overall performance.  

While Docker provides an environment to create and 
destroy nodes, the joining of new nodes requires 
additional procedures. Indeed, Hadoop was designed to 
work over a cluster where all the resources are known 
from the beginning. Inserting new nodes require the 
restart of the job manager, which may represent an 
important drawback in a dynamic environment in the 
next section, we present a P2P approach to solve this 
problem and discuss the challenges it represents.  

7. A P2P IMPLEMENTATION OF 
MAPREDUCE 

Due to its simple task model, MapReduce can be 
easily implemented in a distributed computing 
environment. In our project, we rely on the P2P 
distributed computing middleware CloudFIT 
(Steffenel, 2013), implemented over the Pastry 
(Rowstron and Druschel, 2001) overlay network. In 
CloudFIT, the programmer needs to decide how to 
divide the problem into a finite number of 
independent tasks and how to compute each individual 
task. This is the same principle of MapReduce map 
and reduce steps, which can be considered as a 
sequences of Finite number of Independent and 
Irregular Tasks (Krajecki, 1999) problems. 

The CloudFIT framework is structured around 
collaborative nodes connected over a logical oriented 
ring overlay network. Task status (and partial results) are 
broadcasted among the nodes, which contributes to the 

coordination of the computing tasks and form a global 
view of the calculus. 

A node owns the different parameters of the current 
computations (a list of tasks and associated results). It is 
able to locally decide which tasks still need to be 
computed and can carry the work autonomously if no 
other node can be contacted. If later a node reintegrates a 
community, it is able to share the results from the tasks it 
completed and re-synchronize its task’s list. For the 
moment, a simple scheduling mechanism randomly 
rearranges the list of tasks at each node, which helps the 
computation of tasks in parallel without requiring 
additional communication between nodes.  

From the strict point of view of FIIT, a 
MapReduce job can be expressed as a two rounds 
execution: One handling Map tasks and another 
handling Reduce tasks. By implementing MapReduce 
over a P2P platform such as CloudFIT, we can 
introduce interesting properties on MapReduce that 
are not always available on Hadoop. 

Implementing MapReduce over CloudFIT is quite 
straightforward and can easily mimic the behavior of 
Hadoop. Hence, during the Map phase, several tasks 
are launched according the number of input files, 
producing a set of (ki, Vi) pairs. The token passing 
mechanism ensures that all pairs (i.e., the results of 
each task) are broadcasted to all computing nodes. 
Therefore, at the end of the Map phase, each node 
contains a copy of the entire set of (ki, Vi) pairs.  

At the end of the first step, a new CloudFIT job is 
launched, using as input parameter the results from the 
map phase. The number of tasks during this Reduce 
phase is calculated based on the number of available 
nodes. Once a round starts, each node starts a task 
from the shared task list and broadcasts its results at 
the end of the task’s computation. 

Using CloudFIT, MapReduce algorithms are 
supposed to support nodes failures as well as nodes 
volatility, allowing nodes to dynamically leave and join 
the grid. Indeed, as long as a task is not completed, other 
nodes on the grid may pick it up. In this way, when a 
node fails or leaves the grid, other nodes may recover 
tasks originally taken by the crashed node. Inversely, 
when a node joins the CloudFIT community, it receives a 
copy of the working data and may pick up available 
(incomplete) tasks on the shared task list. Thus, 
CloudFIT should offer a more fault-tolerant behavior 
than Hadoop, supporting not only nodes disconnections, 
but also nodes (re-)connection.  

Because Hadoop relies on specific classes to handle 
data, we tried to use the same ones in CloudFIT 
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implementation as a way to keep compatibility with the 
Hadoop API. However, some of these classes were too 
dependent on inner elements of Hadoop, forcing us to 
develop our own equivalents, at least for the moment 
(further works shall reinforce the compatibility with 
Hadoop API). For instance, we had to substitute the 
OutputCollector class with our own MultiMap class, 
while the rest of the application remains compatible with 
both Hadoop and CloudFIT.  

An initial example of MapReduce over CloudFIT 
was proposed, using the traditional WordCount 
application. As indicated previously, this first prototype 
organizes MapReduce in a two rounds execution, but one 
single difference between this implementation and the 
one using Hadoop resides on the need to indicate the 
number of computing tasks, called blocks. Indeed, this 
behavior is automatized on Hadoop, which tries to guess 
the required number of Map and Reduce processes. In 
our prototype, this parameter was defined as to mimic 
the behavior of Hadoop, i.e., by setting a number of Map 
tasks to roughly correspond to the number of input files 
and the number of Reduce tasks to correspond to the 
number of computing cores available on the CloudFIT 
network at the time Reduce starts (this number may 
varies later, due to nodes volatility).  

7.1. Prototype Evaluation  

The experiments were conducted over 16 machines 
on the Helios cluster from the Grid’5000 network. Each 

machine is composed by 2 AMD Opteron 275 2.2 GHz 
CPUs, totalizing 4 cores per node and a Gigabit Ethernet 
interconnects the nodes.  

For the experiments, we evaluate the performance of 
both CloudFIT and Hadoop solutions when varying the 
total amount of data and the number/size of input files. 
For each data size, we measure 3 different input splits: 
One single file, 1MB splits and 512kB splits. The reason 
for such approach is to analyze the impact of the input 
files on the map step from both solutions. For the input 
data, we chose the Gutenberg Project Science Fiction 
Bookshelf CD 
http://www.gutenberg.org/wiki/Gutenberg:The_CD_and
_DVD_Project, which contains more than 200 books in 
text format. The results presented on Fig. 8 represent the 
median of the performed measures for 16 nodes.  

When analyzing the measures, two major scenarios 
arise: For small data volumes, our prototype largely 
outperforms Hadoop, while the difference tends to 
stabilize for large data sets. This is mostly due to 
CloudFIT lightweight middleware. Even though, the 
analysis of application and middleware traces shows 
that the replication pattern used on CloudFIT shall be 
improved if we want to achieve good performances. 
Indeed, currently we use a full-replication scheme, so 
that up to n-1 nodes can fail without losing the job 
progress. The inconvenient is that this overloads the 
network with results transfers and also requires an 
important storage capacity on each node. 

 

 
 

Fig. 8. Hadoop vs CloudFIT performance comparison 
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To circumvent this bottleneck, we are currently 
implementing an alternative storage mechanism based 
on DHTs, like for example the PAST distributed file 
system (Druschel and Rowstron, 2001). Using PAST, 
we allow workers to share the results of the tasks with 
a configurable replication factor, all while minimizing 
the data transfer between nodes and the storage 
requirements. PAST integration is still under work but 
we expect to integrate this solution and our context 
acquisition module to make tasks scheduling aware of 
context elements such as data locality, network and 
processing capabilities of the nodes. 

8. CONCLUSION 

Pervasive grids represent an important step 
towards the establishment of mobiquitous systems in 
which concerns high performance computing. While 
the pervasive computing model has no intention to 
supersede classical high performance computing, there 
is a large domain of applications that require more 
flexible environments, as provided by a pervasive 
computing model. Indeed, pervasive grids concentrate 
three main challenges on dynamic environment 
composed by a multitude of devices: (i) The volatility 
of its components; (ii) their intrinsic heterogeneity; 
and (iii) how to manage the dynamic evolution of 
these resources.  

In this study we study these issues when deploying 
MapReduce applications on top of pervasive grids. We 
observed that Hadoop, the most known implementation 
of MapReduce on clusters and cloud infrastructures, 
fails to respond to the three challenges listed above. We 
strongly believe that pervasive grids are especially 
adapted to deploy MapReduce application on 
enterprises, fully exploring the potential of unused (or 
underused) resources and therefore reinforcing the 
enterprises competitiveness. 

To reach this goal, we present the basis of the 
PER-MARE project, which explores a two-fold 
approach for implementing effective MapReduce 
support on pervasive grids: First, by improving 
Hadoop so that it supports a minimum of volatility 
and context awareness; second, by developing an 
alternative middleware for MapReduce directly on top 
of a pervasive grid platform. By proceeding on both 
fronts, we aim at obtaining better insights on scientific 
and technical obstacles towards the development of 
flexible and adaptive MapReduce middleware.  

Therefore, in a first moment we have propose to 
introduce context information on Hadoop schedulers, in 
order to take in account the heterogeneity and the 
dynamicity of the nodes. By injecting real-time context 
information (such as available memory) on Hadoop 
schedulers, we circumvent the poor dynamicity 
management of current Hadoop implementations. As 
the experiments showed encouraging performance 
speedups, the next steps will include additional context 
information (CPU load and data location, for example) 
and the study of alternative scheduling algorithms more 
tailored to resource variability. 

Later, we focused on Hadoop fault-tolerance, 
studying how to remove one of the last single point of 
failure in the architecture and therefore allowing a 
smooth operation in dynamic environments where any 
node can disconnect or fail. By coupling context-aware 
scheduling and an improved fault-tolerant architecture, 
we are able to support the disconnection of any node in 
the architecture as well as distributing work tasks 
according to the nodes capabilities.  

Even though the previous contributions improve 
Hadoop operation, Hadoop remains a complex (and 
heavy) middleware that not always can be deployed 
on pervasive systems. Therefore, we also presented 
our efforts to implement MapReduce over a pervasive 
grid middleware, as a way to embrace and take profit 
from the volatility of pervasive grids and devices 
diversity. By proposing a Hadoop-compliant API over 
a pervasive grid middleware, we offer MapReduce 
applications a transparent choice between an 
implementation optimized for data-intensive problems 
(Hadoop) and one optimized for computing intensive 
problems over a highly dynamic environments. 

From these contributions we pointed out several 
elements that can be improved in both Hadoop and 
pervasive grid frameworks. For instance, future works 
shall continue towards the association of these 
contributions in order to provide a complete panorama of 
MapReduce solutions on pervasive grids.  

9. ACKNOWLEDGEMENT 

The authors would like to thank their partners in the 
PER-MARE project and acknowledge the financial 
support given to this research by the 
CAPES/MAEE/ANII STIC-AmSud collaboration 
program (project number 13STIC07). Experiments 
presented in this study were carried out on Grid’5000 
experimental testbed (https://www.grid5000.fr).  



L.A. Steffenel et al. / Journal of Computer Science 10 (11): 2194.2210, 2014 

 
2209 JCS Science Publications

 

10. REFERENCES 

AEMR, 2014. Amazon Elastic MapReduce. 
AH, 2013. Fair scheduler. Apache Hadoop. 
AH, 2014a. Welcome to Apache Hadoop.  
AH, 2014b. Hadoop MapReduce next gen-eration-

capacity scheduler. Apache Hadoop.  
AC, 2014. Welcome to Apache Cassan-dra. Apache 

Cassandra.  
AZ, 2014. ZooKeeper: A distributed coordination service 

for distributed applications. Apache Zookeeper.  
Baldauf, M., S. Dustdar and F. Rosenberg, 2007. A 

survey on context-aware systems. Int. J. Ad Hoc 
Ubiquit. Comput., 2: 263-277. DOI: 
10.1504/IJAHUC.2007.014070  

Chen, Q., D. Zhang, M. Guo, Q. Deng and S. Guo, 2010. 
SAMR: A Self-adaptive MapReduce scheduling 
algorithm in heterogeneous environment. 
Proceedings of the IEEE 10th International 
Conference on Computer and Information 
Technology, Jun. 29-Jul. 1, IEEE Xplore Press, 

Bradford, pp: 2736-2743. DOI: 
10.1109/CIT.2010.458  

Coronato, A. and G.D. Pietro, 2008. Mipeg: A middle-
ware infrastructure for pervasive grids. Future 
Generat. Comput. Syst., 24: 17-29. DOI: 
10.1016/j.future.2007.04.007  

Dean J. and S. Ghemawat, 2008. Mapreduce: Simplified 
data processing on large clusters. Commun. ACM, 
51: 107-113. DOI: 10.1145/1327452.1327492  

Druschel, P. and A. Rowstron, 2001. PAST: A large-
scale, persistent peer-to-peer storage utility. 
Proceedings of the 8th Workshop on Hot Topics in 
Operating Systems May 20-22, IEEE Xplore Press, 
75-80. DOI: 10.1109/HOTOS.2001.990064  

Rowstron A. and P. Druschel, 2001. Pastry: Scalable, 
decentralized object location and routing for large-
scale peer-to-peer systems. Proceedings of the 
IFIP/ACM International Conference on Distributed 
Systems Platforms Heidelberg, Nov. 12-16, Springer 
Berlin Heidelberg, Germany, pp: 329-350. DOI: 
10.1007/3-540-45518-3_18  

Fedak, G., H. He and F. Cappello, 2008. BitDew: A 
programmable environment for large-scale data 
management and distribution. Proceedings of the 
International Conference for High Performance 
Computing, Networking, Storage and Analysis, 
Nov. 15-21, IEEE Xplore Press, Austin, TX., pp: 1-
12. DOI: 10.1109/SC.2008.5213939  

Isard, M., V. Prabhakaran, J. Currey, U. Wieder and K. 
Talwar et al., 2009. Quincy: Fair scheduling for 
distributed computing clusters. Proceedings of the 
ACM SIGOPS 22nd Symposium on Operating 
Systems Principles, Oct. 11-14, ACM, New York, 
pp: 261-276. DOI: 10.1145/1629575.1629601  

Kirsch-Pinheiro, M., J. Gensel and H. Martin, 2004. 
Representing Context for an Adaptative Awareness 
Mechanism. In: Groupware: Design, 
Implementation and Use, Gabriela Marín Raventós, 
Luis A. Guerrero and Gert-Jan de Vreede (Eds.)., 
Springer, ISBN-10: 3540230165, pp: 339-348. 

Kirsch-Pinheiro, M., Y. Vanrompay, K. Victor, Y. 
Berbers and M. Valla et al., 2008. Context Grouping 
Mechanism for Context Distribution in Ubiquitous 
Environments. In: On the Move to Meaningful 
Internet Systems, R. Meersman and Z. Tari (Eds.), 
Springer, pp: 571-588.  

Krajecki, M., 1999. An object oriented environment to 
manage the parallelism of the FIIT applications. 
Proceedings of the 5th International Conference on 
Parallel Computing Technologies, Sept. 6-10, 
Springer Berlin Heidelberg, Russia, pp: 229-234. 
DOI: 10.1007/3-540-48387-X_25 

Kumar, K.A., V.K. Konishetty, K. Voruganti and G.V. 
Prabhakara Rao, 2012. CASH: Context aware 
scheduler for Hadoop. Proceedings of the 
International Conference on Advances in 
Computing, Communications and Informatics, Aug. 
03-05, ACM New York, pp: 52-61. DOI: 
10.1145/2345396.2345406  

Lin, H., X. Ma, J. Archuleta, W. Feng and M. Gardner et 
al., 2010. Moon: Mapreduce on opportunistic 
environments. Proceedings of the 19th ACM 
International Symposium on High Performance 
Distributed Computing, Jun. 21-25, ACM New 
York, pp: 95-106. DOI: 10.1145/1851476.1851489  

MapR, 2014. MapR closes $110m financing led by 
Google Capital. MapR Technologies, Inc.  

Marozzo, F., D. Talia and P. Trunfio, 2010. A Peer-to-
Peer Framework for Supporting MapReduce 
Applications in Dynamic Cloud Environments. In: 
Cloud Computing: Principles, Systems and 
Applications, Antonopoulos, N. and L. Gillam 
(Eds.)., Springer, ISBN 978-1-84996-240-7, pp: 
113-125.  

Marozzo, F., D. Talia and P. Trunfio, 2012. P2P-
MapReduce: Parallel data processing in dynamic 
cloud environments. J. Comput. Syst. Sci., 78: 1382-
1402. DOI: 10.1016/j.jcss.2011.12.021  



L.A. Steffenel et al. / Journal of Computer Science 10 (11): 2194.2210, 2014 

 
2210 JCS Science Publications

 

Oracle, 2014. Overview of Java SE Monitoring and 
Management,  

Parashar, M. and J.M. Pierson, 2010. Pervasive Grids: 
Challenges and Opportunities. In: Handbook of 
Research on Scalable Computing Technologies, Li, 
K., C. Hsu, L. Yang,  J. Dongarra and H. Zima 
(Eds.), IGI Global Snippet, Hershey, ISBN-10: 
1605666629, pp: 14-30.  

PER-MARE, 2014, PER-MARE-adaptive deployment of 
MapReduce-based applications over pervasive and 
desktop grid infrastructures.  

Preuveneers, D., K. Victor, Y. Vanrompay, P. Rigole and 
M. Kirsch-Pinheiro, 2009. Context-Aware 
Adaptation in an Ecology of Applications. In: 
Context-Aware Mobile and Ubiquitous Computing 
for Enhanced Usability: Adaptive Tech-nologies and 
Applications, Stojanovic, D. (Ed.), IGI Global, 
Hershey, ISBN-10: 1605666629, pp: 1-25. 

Rasooli, A. and D. Down, 2014. COSHH: A 
classification and optimization based scheduler for 
heterogeneous Hadoop systems. Future Generat. 
Comput. Syst., 36: 1-15, DOI: 
10.1016/j.future.2014.01.002  

Steffenel, L.A., 2013. Deliverable 2.1: First Steps on the 
Development of a P2P Middleware for MapReduce. 
PER-MARE report.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Tang, B., M. Moca, S. Chevalier, H. He and G. Fedak, 
2010. Towards MapReduce for desktop grid 
computing. Proceedings of the International 
Conference on P2P, Parallel, Grid, Cloud and 
Internet Computing, Nov. 4-6, IEEE Xplore Press, 
Fukuoka, pp: 193-200. DOI: 
10.1109/3PGCIC.2010.33  

Tian, C., H. Zhou, Y. He and L. Zha, 2009. A dynamic 
MapReduce scheduler for heterogeneous workloads. 
Proceedings of the 8th International Conference on 
Grid and Cooperative Computing, Aug. 27-29, IEEE 
Xplore Press, Lanzhou, Gansu, pp: 218-224. DOI: 
10.1109/GCC.2009.19  

Xie, J., S. Yin, X. Ruan, Z. Ding and Y. Tian et al., 
2010. Improving MapReduce performance through 
data placement in heterogeneous Hadoop clusters. 
Proceedings of IEEE International Symposium on 
Parallel & Distributed Processing, Workshops and 
Phd Forum, Apr. 19-23, IEEE Xplore Press, Atlanta, 
GA., pp: 1-9. DOI: 10.1109/IPDPSW.2010.5470880  

Zaharia, M., A. Konwinski, A.D. Joseph, R. Katz and I. 
Stoica. 2008. Improving MapReduce performance in 
heterogeneous environments. Proceedings of the 8th 
USENIX Conference on Operating Systems Design 
and Implementation, (SDI’ 08), USENIX 
Association Berkeley, CA, USA., pp: 29-42.  


