Modelos De

U N Enfoque Ontológico

PhD Gloria-Lucia Giraldo
email: glgiraldog@unal.edu.co

Luisa Rincón-Perez

PhD Raul Mazo
email: raul.mazo@univ-paris1.fr

IDENTIFYING DEAD FEATURES AND THEIR CAUSES IN PRODUCT LINE MODELS: AN ONTOLOGICAL APPROACH IDENTIFICANDO CARACTERÍSTICAS MUERTAS Y SUS CAUSAS EN

Keywords: Product lines, feature models, ontologies, dead features, SQWRL

Feature Models (FMs) are a notation to represent differences and commonalities between products derived from a product line. However, product line modelers could unintentionally incorporate dead features in FMs. A dead feature is a type of defect, which implies that one or more features are not present in any product of the product line. Some authors have used ontologies in product lines, but they have not exploited ontology reasoning to identify and explain causes for defects in FMs in natural language. In this paper, we propose an ontology that represents FMs in OWL (Web Ontology Language). Then, we use SQWRL (Semantic Query-enhanced Web Rule Language) to identify dead features in a FM and identify and explain certain causes of this defect in natural language. Our preliminary empirical evaluation confirms the benefits of our approach.

INTRODUCTION

A product line is a family of related products distinguished by different sets of features that each product provides [START_REF] Clements | Software Product Lines: Practices and Patterns 1st ed[END_REF]. A particular application of product line is the software product line (SPL). Software Product Line Engineering (SPLE) is thus the software development paradigm geared for the construction of SPLs. Extensive research and industrial experience widely prove the significant benefits of SPLE practices, which among them are reduced time to market, increased asset reuse and increased software quality [START_REF] Pohl | Software Product Line Engineering: Foundations, Principles and Techniques[END_REF]. In order to do that, SPLE usually uses Product Line Models (PLMs) to represent the correct combination of features that represent valid products.

A common notation to represent PLMs is Feature Models (FMs). FMs describe the features, their relations and the valid feature combinations of a product line [START_REF] Kang | Feasibility Study Feature-Oriented Domain Analysis (FODA)[END_REF]. FMs have also proven useful to communicate with customers and other stakeholders, such as marketing representatives, managers, production engineers, system architects, etc. Consequently, having FMs that correctly represent the domain of the product line is of paramount importance for ensuring quality in SPLE. However, creating feature models with features that correctly represent the domain described by the model is not trivial [START_REF] Trinidad | Automated Error Analysis for the Agilization of Feature Modeling[END_REF]. In fact, when a FM is constructed, defects may be unintentionally introduced, which decreases the quality of the FM and hence also the expected benefits of product line. Dead features are one such defect. A feature is dead if it cannot appear in any products of the product line [START_REF] Der Massen | Deficiencies in Feature Models[END_REF][START_REF] Trinidad | Isolated Features Detection in Feature Models[END_REF][START_REF] Benavides | Automated analysis of feature models 20 years later: A literature review[END_REF][START_REF] Sun | Formal Semantics and Verification for Feature Modeling[END_REF].

Some studies in the literature automatically identify whether a FM present dead features or not [START_REF] Der Massen | Deficiencies in Feature Models[END_REF][START_REF] Salinesi | Defects in Product Line Models and how to identify them , En: Software Product Line -Advanced Topic[END_REF][START_REF] Thüm | SAAK: FeatureIDE: An extensible framework for featureoriented software development[END_REF][START_REF] Mazo | VariaMos : a Tool for Product Line Driven Systems[END_REF]. However, few studies have focused on identifying causes for such defect [START_REF] Trinidad | FAMA Framework[END_REF][START_REF] Trinidad | Abductive Reasoning and Automated Analysis of Feature models: How are they connected[END_REF]. Identifying the cause consist in identifying the dependencies that, combined in a certain manner, produce a dead feature. Such identification helps product line engineers to understand the problem and to determine the best solution to fix dead features [START_REF] Trinidad | Automated Error Analysis for the Agilization of Feature Modeling[END_REF][START_REF] Batory | Automated analysis of feature models: challenges ahead[END_REF]. In addition, in an end-users configuration process, it is important to identify defects and explain the cause of these defects to users [START_REF] Abo | Applying semantic web technology to feature modeling[END_REF].

FMs and ontologies are comparable because both represent concepts of a particular domain and their dependencies [START_REF] Czarnecki | Feature Models are Views on Ontologies[END_REF]. However, FMs only offer a graphical means to represent a particular domain, whereas ontologies also offer an efficient mechanism to reason on domain models.

In this paper, we discuss an approach based on OWL-DL (Web Ontology Language-Description Logic) [START_REF] Mcguinness | OTHERS: OWL web ontology language overview[END_REF] ontology and SQWRL (Semantic Query-enhanced Web Rule Language) [START_REF] O'connor | SQWRL: a Query Language for OWL[END_REF]. The ontologies are formal domain models, which have powerful inference mechanisms. The ontologies are recommended for sharing terminologies and understanding. Therefore, modeling with ontologies offers interoperability, reusability and extensibility. We represent our ontology in OWL-DL because this formalism provides computational completeness and expressiveness for representing knowledge [START_REF] Tsetsos | Personalization based on Semantic Web Technologies[END_REF]. Moreover, we use a rule-based language because the rules are a natural and declarative way to represent knowledge [START_REF] Breitman | Semantic web: concepts, technologies and applications[END_REF]. SQWRL is a rule-based language to extract information from OWL ontologies. Therefore, we use this language to identify dead features in FMs, and some of their causes from the proposed ontology.

Our proposal has two main contributions. First, it provides an ontology that represents FM concepts; second, it identifies and explains in natural language certain causes that produce dead features.

The remainder of the paper is as follows. In Section 2, we give a brief overview of the necessary concepts for understanding the study described herein. Section 3 presents our approach to identify the causes for dead features in FMs. In Section 4, we present the preliminary validation of our proposal. In Section 5, we present related research. Finally, Section 6 presents the conclusions and suggests future research directions.

GENERAL CONCEPTS

Feature Models

Feature Models (FMs) are a notation for representing product line models. Using this notation, a feature is a distinctive element, which is visible to users. Each feature is a node in a tree structure, and the model dependencies are arcs [START_REF] Kang | Feasibility Study Feature-Oriented Domain Analysis (FODA)[END_REF].

The tree structure represents hierarchical organization of the features, wherein only one feature is the model root feature. In addition, except for the root, each feature has a parent feature [START_REF] Kang | Feasibility Study Feature-Oriented Domain Analysis (FODA)[END_REF]. Figure 2 shows a FM, which exemplifies the application of our proposal. Features can have different types of dependencies. Table 1 describes and graphically represents each type of dependency.

After Kang et al. [START_REF] Kang | Feasibility Study Feature-Oriented Domain Analysis (FODA)[END_REF] reported a first notation of FMs, other authors proposed extensions to the original notation [START_REF] Djebbi | Criteria for Comparing Requirements Variability Modeling Notations for Product Lines[END_REF] (e.g., the group cardinality dependency [START_REF] Czarnecki | Formalizing Cardinality-based Feature Models and their Specialization[END_REF]).

Figure 1 shows an UML-based meta-model for a cardinality base FM. This meta-model relates the concepts presented in Table 1.

of Utility Functions, Settings, and Media features, among others. As shows Figure 2, each child feature in the Media feature is optional. Additionally, each child feature in the Utility Functions and Settings features are mandatory. Each dependency connects two features with a unique nomenclature for easy identification.

In order to illustrate our approach, we intentionally introduced in the original model four dead features (MSN, Camera, VGA and Megapixels). For that purpose, we use two additional dependencies (R16 and R17).

Table 1. Types of dependencies in FMs Notation

Type of Dependency Mandatory [START_REF] Kang | Feasibility Study Feature-Oriented Domain Analysis (FODA)[END_REF] Child feature B should be included in all valid products containing the parent feature A and vice versa.

It a feature is mandatory and all its ancestors are also mandatory, then, this feature is a fullmandatory feature [START_REF] Der Massen | Deficiencies in Feature Models[END_REF].

Optional [START_REF] Kang | Feasibility Study Feature-Oriented Domain Analysis (FODA)[END_REF] Child feature B may or may not be included in valid products containing parent feature A.

However, if feature B is included in a product, its parent A should be included too.

Group cardinality [START_REF] Czarnecki | Formalizing Cardinality-based Feature Models and their Specialization[END_REF] Represents the minimum (m) and the maximum (n) number of child features (B...C) grouped in a cardinality (<m..n>) that a product can have when the parent feature (A) is included in the product.

If at least one of the child features is included into a product, the parent feature should be included too.

Transverse Dependencies

Requires [START_REF] Kang | Feasibility Study Feature-Oriented Domain Analysis (FODA)[END_REF] Feature B should be included in valid products with feature A. This dependency is unidirectional.

Excludes [START_REF] Kang | Feasibility Study Feature-Oriented Domain Analysis (FODA)[END_REF] Features A and B cannot be in valid products at the same time. This dependency is bidirectional.

Application Example

Figure 2 shows a reduced version of a FM based on the one proposed by Segura for mobile phones [START_REF] Segura | Automated Analysis of Feature Models Using Atomic Sets[END_REF]. In this example, a Mobile Phone is composed

Dead features

Features are distinctive elements that are visible to user [START_REF] Kang | Feasibility Study Feature-Oriented Domain Analysis (FODA)[END_REF]. A feature is dead when it is not present in any product of the product line [START_REF] Der Massen | Deficiencies in Feature Models[END_REF][START_REF] Trinidad | Isolated Features Detection in Feature Models[END_REF][START_REF] Benavides | Automated analysis of feature models 20 years later: A literature review[END_REF][START_REF] Sun | Formal Semantics and Verification for Feature Modeling[END_REF]. When a FM has dead features, the model is not an accurate representation of the domain. Indeed, if a feature belongs to a FM, the feature is important for the domain that we want to represent. Therefore, it should be possible to incorporate that feature in at least one product of the product line [START_REF] Benavides | Automated analysis of feature models 20 years later: A literature review[END_REF].

Ontologies

An ontology is a formal explicit specification for a shared conceptualization [START_REF] Borst | Construction of Engineering Ontologies for Knowledge Sharing and Reuse[END_REF][START_REF] Gruber | Toward Principles for the Design of Ontologies Used for Knowledge Sharing[END_REF]. In the same way that FMs, ontologies help to identify and define the domain basic concepts and the dependencies among them.

Representing information with ontologies aids the identification and definition of the basic terms of a domain. In addition, ontologies represent the dependencies and rules for combining such terms, and provide a common vocabulary for the domain model. Ontologies comprises classes, instances, properties and constraints [START_REF] Horridge | A Practical Guide To Building OWL Ontologies Using The Protege-OWL Plugin and CO-ODE Tools Edition[END_REF].

Classes are the main concepts related to the ontology domain. Instances represent objects in the domain of interest. Properties are object properties or datatype properties: Object properties relate ontology instance among them, whereas data-type properties relate ontology instances with concrete values, for example, an integer value. Finally, constraints describe the restrictions that instances must satisfy in order to belong to a class [START_REF] Horridge | A Practical Guide To Building OWL Ontologies Using The Protege-OWL Plugin and CO-ODE Tools Edition[END_REF].

SQWRL Queries

The Semantic Query-enhanced Web Rule Language (SQWRL) is a language that provides query operations for ontologies represented in OWL [START_REF] O'connor | SQWRL: a Query Language for OWL[END_REF]. A SQWRL query comprises an antecedent and a consequent expressed in terms of OWL classes and properties.

The antecedent defines the criteria that instances must satisfy to be selected, and the consequent specifies the instances to select in the query results [START_REF] O'connor | SQWRL: a Query Language for OWL[END_REF]. each SQWRL uses classes and properties defined in the proposed ontology to query for information of the FM represented as ontology instances. A semantic reasoner, such as JESS (Java Expert System Shell) [START_REF] Friedman-Hill | Java expert system shell[END_REF], executes SQWRL queries.

PROPOSED SOLUTION

In the previous section, we described the basic concepts underlying our work. Following sub-sections present our approach, which uses ontologies and SQWRL to identify certain dead features in FMs, and to explain their causes in natural language.

Ontology-based representation of product line models

Figure 3 shows the OWL ontology to represent the FMs concepts as an ontology. This representation allows us to exploit the semantic relationships among the concepts involved in FMs. For instance, we can ask for features that have the same parent, or features related by mandatory and exclude dependencies at the same time.

We develop this ontology using the methodology proposed by [START_REF] Noy | Ontology Development 101 : A Guide to Creating Your First Ontology[END_REF]and McGuinness [START_REF] Noy | Ontology Development 101 : A Guide to Creating Your First Ontology[END_REF] with a top-down approach, and we take the FM concepts from the meta-model presented in Figure 1. In our ontology, meta-model classes correspond to classes of the ontology. In addition, we separate the class Feature in classes RootFeature and NotRootFeature to represent that a FM only has one root feature. We represent the attributes of the groupCardinality metamodel class with ontology datatype properties, and we relate ontology classes with ontology object properties. For example, every dependency within the FM comprises an origin and a destination feature. Then, we create the object properties hasDependencySource and hasDependencyDestination to relate the Dependency ontology class with the Feature ontology class. Thus, we can relate each dependency with its feature source and its feature destination. Furthermore, in the optional and mandatory dependencies, the property hasDependencySource identifies the parent feature, and the property hasDependencyDestination identifies the child feature. In the example shown in Figure 2, the Mobile Phone feature is the origin feature of the optional dependency R1, and the Utility Functions feature is the destination feature. Moreover, Mobile Phone is the parent feature of the Utility Functions feature.

Rules for identifying dead features

According to the literature [START_REF] Trinidad | Automated Error Analysis for the Agilization of Feature Modeling[END_REF][START_REF] Benavides | Automated analysis of feature models 20 years later: A literature review[END_REF][START_REF] Trinidad | Abductive Reasoning and Automated Analysis of Feature models: How are they connected[END_REF], misuse of dependency in FMs causes dead features. Our proposal considers that a feature can become a dead feature if a full-mandatory feature excludes an optional feature (see Rule 1), or if the parent feature is a dead feature (see Rule 2). Other cases that cause dead features are outside the scope of this initial proposal.

Rule 1: Full-mandatory feature excludes an optional feature: An optional feature becomes dead when a full-mandatory feature excludes it.

In the example, the Camera feature is optional due to its dependency (R11) with the Media feature. Furthermore, product cannot have the Games and Camera features simultaneously due to the exclude dependency (R17) between both features. Because Games is a fullmandatory feature [START_REF] Der Massen | Deficiencies in Feature Models[END_REF] (i.e., it is present in all products), the Camera feature is a dead feature.

Rule 2:

The parent feature is a dead feature: If a child feature is included during product configuration, the parent feature should be included too [START_REF] Kang | Feasibility Study Feature-Oriented Domain Analysis (FODA)[END_REF]. If the parent feature is already a dead feature, its children features cannot be included in any product. In the example, features VGA and MegaPixels are children of dead feature Camera. Thus, these children features are dead features too.

We use SQWRL to implement the rules proposed in this section. For the sake of space, we only present and explain in the Table 2 the source code of the Rule 1, in which full-mandatory features exclude an optional feature. Nevertheless, both rules have a similar structure.

It is important to highlight that in queries, we use WILDCARD word as an argument that depends on each rule (e.g. in rule 1 WILDCARD belongs to full-mandatory features, while in rule 2 it belongs to dead features). Each statement SQWRL requires a constant value in the argument WILDCARD. Therefore, we create dynamically a SQWRL for each possible value of WILDCARD. For instance, WILDCARD can take seven different values in our application example (see Table 2); hence, we create seven different SQWRL queries.

Table 2. SQWRL query for dead features that satisfy Rule 1.

(1)Excludes(?y) ^ (2)Optional(?w) ^ (3) NotRootFeature(?x) ^ (4) NotRootFeature(WILDCARD) ^ (5)hasDependencySource(?y, WILDCARD)^ (6)hasDependencyDestination(?y,?x) ^ (7)hasDependen cyDestination(?w,?x)-> [START_REF] Sun | Formal Semantics and Verification for Feature Modeling[END_REF]

Values of x

Camera and MSM Both are dead features

Natural Language Explanations

We have a predefined explanation text for each proposed rule to identify dead features. Then, after identifying the dead features that satisfy rules 1 or 2, we explain the defect in natural language, as follows:

a) We determine if the dead feature satisfies rule 1 or rule 2. b) We generate the predefined text that explains rule 1 or rule 2 in natural language. Text to explain rule 1 is "Optional feature featureName is dead because the full-mandatory feature fullMandatoryFeatureName excludes it through the dependency exclusionDependencyName".

Text to explain rule 2 is "Feature featureName is dead because parentFeatureName, its ancestor feature, is a dead feature too" c) We execute a new SQWRL query to get dependencies and features names related to the predefined text, which explains the dead feature. d) We replace information from the FM at hand as needed in the predefined text. Figure 4 shows and example of each explanation applied to our application example.

Implementation Details

We implemented our approach in two stages. In the first stage, we created the proposed ontology with Protégé 3.4.8 to represent concepts of the FMs meta-model. In the second stage, we developed a tool to integrate our proposed OWL ontology with Java. This integration allows us to manage and query information of each analyzed FM.

The implementation process of our second stage was as follows:

a) We read the proposed ontology in Java.

b) We use Jena [START_REF]Apache Jena[END_REF] to populate and manage the ontology with information of the analyzed FM.

c) We use JESS library, as reasoner engine, to execute from Java SQWRL queries to identify dead features (i.e., features that satisfy the rule 1 or rule 2).

d) We produce a natural language text, which explains the cause of each dead feature. The explanatory text depends on whether the property satisfies rule 1 or rule 2. We complete the explanations from information gather from SQWRL queries.

Figure 4 presents one snapshot of the developed tool with a feedback obtained when we analyzed dead features in our application example. This case comprises features with mandatory, optional, excludes and group cardinality type dependencies. It also comprises an exclusive dependency that does not generate dead features (R18) and additional dependencies that generate dead features.

PRELIMINARY EVALUATION

Correctness

We assessed the correctness of our approach with 5 FMs with 25 features and 5 FM with 50 features. We generated these FMs with the BEnchmarking and TesTing on the analYsis (BeTTy) tool [START_REF] Segura | [END_REF].

We manually tested our approach in three steps. First, we verified that it did not generate false positives. Second, we verified that the proposed solution identified 100% of dead features considered in our two rules. Finally, if the FMs had dead features, we validated that the cause corresponds to the case that produced the defect, and that the filled spaces in the explanation text corresponded to the correct situation for each one of the models.

In the first stage, we manually compared the dead features with the results obtained using FaMa [START_REF] Trinidad | FAMA Framework[END_REF]. We found that our proposal identified the 100% of the dead features that satisfied our rules, with 0% false positive. For the second and third stage, we made a manual inspection of correctness over 2 models (randomly selected) of 25 features and 2 models of 50 features.

We found that our proposal constructed correct explanations; i.e., they corresponded to the cause(s) that originated each defect. Results are available online in https://sites.google.com/site/raulmazo/.

Comparison of results

We compared results obtained in our proposal with the proposals of Trinidad et al. [START_REF] Trinidad | Automated Error Analysis for the Agilization of Feature Modeling[END_REF] and Rincón et al. [31] for the example application.

Table 3 presents the comparison of the results. The first column shows dead features identified by all approaches. The second column shows causes, in natural language, found by our proposal. Finally, the third column shows corrections proposed by Trinidad et al. [START_REF] Trinidad | Automated Error Analysis for the Agilization of Feature Modeling[END_REF] and Rincón et al.

[31] (In this case, both approaches identified the same corrections). The results obtained shows that in the application example all approaches identified the same dead features. However, in other FMs, Trinidad et al. [START_REF] Trinidad | Automated Error Analysis for the Agilization of Feature Modeling[END_REF] and Rincón et al.

[31] could identify other dead features that our approach will not identify. This is because we have not implemented all the cases to identify all dead features. Trinidad et al. [START_REF] Trinidad | Automated Error Analysis for the Agilization of Feature Modeling[END_REF] and Rincón et al.

[31] identify all cases because they use a constraint satisfaction approach. However, our rulebased approach is extensible: we can create new rules for identifying and explaining in natural language other cases of dead features. Regarding explanations, Trinidad et al. [START_REF] Trinidad | Automated Error Analysis for the Agilization of Feature Modeling[END_REF] and Rincón et al.

[31] identify the list of dependencies that must be deleted to remove dead features (Corrections). Our work instead focuses on explaining the cause of each dead feature in natural language. This information helps feature modelers to understand why dead features appear. Therefore, our approach is complementary to proposal of Trinidad et al. [START_REF] Trinidad | Automated Error Analysis for the Agilization of Feature Modeling[END_REF] and Rincón et al.

[31] because the feature modeler could find dead features, their causes in natural language and possible corrections combining those proposals.

RELATED RESEARCH

We divide the research studies on identifying causes for dead features into two types: studies related to using ontologies in product line models, and those related to identifying causes of dead features. For the first type, Wang et al.

[32] Wang et al., (2007)propose representing FMs and their constraints in OWL ontology language.

In their proposal, the authors represent each feature as an ontology class, and each dependency as an ontology property. Their study identifies inconsistencies in particular FMs configurations and provide explanations for inconsistencies. However, their approach does not analyze the FM itself to identify the shortcomings, but each particular configuration.

In [START_REF] Abo | Applying semantic web technology to feature modeling[END_REF] Abo et al. propose two SWRL rules to validate model consistency. The first one detects features that excludes and requires the same feature, and the second one detects cycles in the FM, i.e, feature x requires feature y, and feature y requires feature x. Authors define inside ontology, as an antecedent, each situation that creates an inconsistency, and define as the consequence, the elements involved. Our work as the proposal of Abo et al. [START_REF] Abo | Applying semantic web technology to feature modeling[END_REF] uses ontology to represent FM in a formal way. However, additionally to use the ontology for formal representation, we use ontologies for two different purposes: (a) we exploit the ontological representation to perform dynamic SQWRL in FMs (i.e. Table 2); and (b) we explain defects in natural language. This is possible due to integration of our approach with Java. Abo et al. [START_REF] Abo | Applying semantic web technology to feature modeling[END_REF] implemented their proposal only in Protégé-OWL, therefore they do not have those advantages.

Lee et al.

[33] Lee, Kim, Song, & Baik (2007) use ontologies to represent FMs and to analyze their variability and commonality. However, they use ontologies to analyze the semantic similarity of the FM, whereas that our approach uses ontologies to identify dead features and explain their causes.

Regarding the second category, several works were carried out to automatically identify dead features (and other defects) on [START_REF] Der Massen | Deficiencies in Feature Models[END_REF][START_REF] Salinesi | Defects in Product Line Models and how to identify them , En: Software Product Line -Advanced Topic[END_REF][START_REF] Thüm | SAAK: FeatureIDE: An extensible framework for featureoriented software development[END_REF][START_REF] Mazo | VariaMos : a Tool for Product Line Driven Systems[END_REF]. However, none of these works deals with identification of causes that explain in natural language why each dead feature occurs.

Trinidad et al. [START_REF] Trinidad | Automated Error Analysis for the Agilization of Feature Modeling[END_REF] present an automated method for identifying and explaining defects, such as dead features in FMs. For Trinidad et al. [START_REF] Trinidad | Automated Error Analysis for the Agilization of Feature Modeling[END_REF], an explanation is the minimal subset of dependencies that should be modified to remove the defect. They implemented their approach transforming FMs into a diagnostic problem and then into a constraint satisfaction problem. This Implementation is available in FaMa [START_REF] Trinidad | FAMA Framework[END_REF], an Eclipse Plug-in for automatic analysis of FMs.

Rincón et al.

[31] propose a method to identify corrections in FMs. In this approach, authors transform FMs into a constraint problem, then they identify all minimal corrections subsets (MCSes) [34] of dependencies that could be modified to correct each dead feature of the FM. This approach like FaMa [START_REF] Trinidad | FAMA Framework[END_REF], identify the list of dependencies that entail the fewest changes to fix the defect, but also identify others set of dependencies that imply more changes and fix the defect. This information provides more complete information about how to correct each dead feature.

Trinidad and Ruiz-Cortés [START_REF] Trinidad | Abductive Reasoning and Automated Analysis of Feature models: How are they connected[END_REF] Trinidad & Ruiz-Cortes, (2009)use abductive reasoning to identify dead features and their causes. Unfortunately, the authors did not describe a method or algorithm to support their proposal.

Constraint satisfaction techniques are not enough to explain causes of a dead feature in natural language because, for instance, the structure needed to provide these explanations, is lost when authors transform the models into constraint programs. In fact, explanations generated by Trinidad et al. [START_REF] Trinidad | Automated Error Analysis for the Agilization of Feature Modeling[END_REF] and Rincón et al. [31] are not the causes that explain why a feature is dead, but corrections to apply in order to remove the defect.

CONCLUSIONS AND DISCUSSION

In this paper, we present an approach, which takes advantage of the inherent characteristics of ontologies, in order to identify dead features in FMs and explain certain causes of that defect in natural language. We use OWL to create an ontology to represent the FMs and their dependencies, and SQWRL as an ontology query language. We validate our proposal through the implementation and application of two SQWRL rules on a well-known case study and ten other FMs.

Our approach, in contrast to the black box-like approaches found in literature, can be easily extended with other rules to identify and explain other causes that create dead features.

Although ontologies were initially proposed for the semantic web, given their expressive power and formal semantics, they are useful in product lines to support identification of defects in feature models and to obtain information to produce explanations in a human understandable form.

We are currently extending this approach to identify other causes to explain dead features and other defects on FMs (e.g., false optional features or void FM).

Other future directions include validating performance, accuracy, and scalability of the proposed approach for application to industrial cases.

Figure 1 .

 1 Figure 1. FM meta-model based on the one proposed byMazo et al.[START_REF] Abo | Applying semantic web technology to feature modeling[END_REF]

Figure 2 .

 2 Figure 2. Summary of a mobile phone FM based onSegura's proposal[START_REF] Segura | Automated Analysis of Feature Models Using Atomic Sets[END_REF]

Figure 3 .

 3 Figure 3. Proposed ontology to represent FMs

Figure 4 .

 4 Figure 4. Snapshot corresponding to results generated from analyzing our FM running example

Rule 1: Consequent result

 sqwrl:selectDistinct(?x)

	selectDistinct(?x):Optional feature, which is excluded by a full-mandatory feature.

Example Value:Camera ,MSM Rule 1: Antecedent construction

			NotRoot Feature (WILDCARD)	In this rule, WILDCARD correspond to full-mandatory features	Utility Functions, Settings, Calls, Messaging,Games, Java support, OS
			has Dependency Destination (?w,?x)	Data are restricted, so x corresponds to features destination of optional dependencies	Value of x Media, MP3, Camera,Voice,Data,SMS, MSM,VGA, Megapixels
			has Dependency Source (?y, WILDCARD)	Data are restricted, so y corresponds to excludes dependencies whose mandatory source feature is full-	Values of y R16,R17
			has Dependency Destination (?y,?x)	Data are restricted so x now corresponds to features excluded by the dependency y.
	SQWRL instruction	Definition	Example Value
	Excludes(?y)	Excludes dependencies	R16,R17,R18
	Optional(?w)	Optional dependencies	R3,R9,R15,R19,R20
			Utility Functions, Settings,
			Calls, Messaging, Games,
			Java support, OS, Media,
	NotRoot Feature (?x)	Features non-root of the FM	MP3,MP4, Camera,Voice, Data,SMS,MSM,VGA,
			Megapixels

Table 3 .

 3 Comparison our proposal vs other approaches

			Trinidad et
	Dead feature	Our proposal	al. [4] Rincón et al. [31]
		Causes in natural language	Corrections
		Optional feature Camera is dead because	R1
	Camera	the full-mandatory feature Games excludes it through the dependency	R6
		traversal_Games_TO_Camera	R17
	MSN	Optional feature MSN is dead because	R2
		the full-mandatory feature Java support excludes it through the dependency	R7
		traversal_ MSN _TO_ Java support	R16
			R1
	Mega	Megapixels is dead feature because Camara its ancestor feature is dead	R6
	pixels	feature too	R17
			R19
			R1
	VGA	VGA is dead feature because Camara its ancestor feature is dead feature too	R6 R17
			R19

 and Ruiz-Cortés, A., BeTTy: benchmarking and testing on the automated analysis of feature models , En: Proceedings of the Sixth International Workshop on Variability Modeling of Software-Intensive Systems. ACM, New York, NY, USA, pp. 63-71, 2012.[31] Rincón, L.F., Giraldo, G.L., Mazo, R., Salinesi, C. and Diaz, D., Subconjuntos Minimos de Correccion para explicar caracteristicas muertas en Modelos de Lineas de Productos. El caso de los Modelos de Caracteristicas , En: Proceedings of the 8th Colombian Computer Conference (CCC). Armenia-Colombia, 2013.[32] Wang, H., Li, Y., Sun, J., Zhang, H. and Pan, J., Verifying feature models using OWL. Web Semantics:Science, Services and Agents on the World Wide Web.,5, pp. 117-129, 2007. [33] Lee, S., Kim, J., Song, C. and Baik, D., An Approach to Analyzing Commonality and Variability of Features using Ontology in a Software Product Line Engineering , En: Proceedings of the Fifth International Conference on Software Engineering Research, Management and Applications. IEEE, pp. 727-734, 2007.[34] Liffiton, M. and Sakallah, K., Algorithms for Computing Minimal Unsatisfiable Subsets of Constraints. Journal of Automated Reasoning., 40, pp.1-33, 2008.

ACKNOWLEDGMENTS

We perform this research under the project "Formation, evolution, and consistency of solutions based on the concept of product lines in organizations". This project is part of the scientific cooperation program between France and Latin America.