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Abstract

The recent �nancial crisis has highlighted the necessity to introduce mixtures

of probability distributions in order to improve the estimation of asset returns

and in particular to better take account of risks. Since Pearson (1894), these

mixtures have been intensively used in many scienti�c �elds since they provide

very convenient mathematical tools to examine various statistical data and to

approximate many probability distributions. They are typically introduced to

model the choice of probability distributions among a given parametric family.

The coe¢ cients of the mixture usually correspond to the relative frequencies

of each possible parameter. In this framework, we examine the single-period

portfolio choice model, which has been addressed in the partial equilibrium

framework, by Brennan and Solanki (1981), Leland (1980) and Prigent (2006).

We consider an investor who wants to maximize the expected utility of the

value of his portfolio consisting of one risk-free asset and one risky asset. We

provide and analyze the solution for log return with mixture distributions, in

particular for the mixture Gaussian case. The optimal portfolio is characterized

for arbitrary utility functions. Our results show that mixture of distributions

can have signi�cant implications on the portfolio management.



1 Introduction

The recent �nancial crisis has highlighted the necessity to enhance the esti-

mation of observed returns to better take account of risks and improve the

estimation of asset returns. In this sense, introducing mixtures of probability

distributions might help to achieve these aims (see McLachlan and Peel (2000)

for de�nitions and properties of mixture models). The mixture distributions

have been widely used in �nance. For example, in the case of a �nite mixture of

Gaussian distributions, they could price standard and exotic options. Ritchey

(1990) proved that the risk-neutral density of options could be modeled by a

mixture of lognormal densities. Ryden et al. (1998) suggest to introduce hidden

Markov chain to model daily return series, which leads immediately to mixture

models. In a dynamic and �nite mixture setting, Bellalah and Prigent (2002)

provide an extension of the standard Black and Sholes models to price non-

standard and exotic options and analyze the smile e¤ect. Many others studies

uses normal mixture returns to model excess kurtosis and to take account of

the random volatility as in Alexander and Narayanan (2009). The literature

characterizing empirical distributions discusses the utility of such models to �t

�nancial data (see Bellalah and Lavielle, 2002; Hentati and Prigent, 2011) and

local volatility (see Brigo et al. 2002; Alexander, 2004).

In this paper, we examine the single-period portfolio choice model1 , in the

presence of Gaussian mixture log return distributions. We consider an investor

who wants to maximize the expected utility of his terminal wealth, in a static

way2 . The value of the portfolio corresponds to a linear combination of some

speci�ed portfolio of common assets. We provide and analyze the solution for

log return with mixture distributions, in particular for the mixture Gaussian

case. The optimal portfolio is characterized for arbitrary utility functions.

Section 2 provides de�nitions and empirical examples of such Gaussian mix-

1The optimal positioning problem has been addressed in the partial equilibrium framework,
by Brennan and Solanki (1981) and by Leland (1980).

2Due to practical constraints (liquidity, transaction costs...), �nancial portfolios are dis-
cretely rebalanced. For example, the portfolio is rebalanced monthly.
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ture distributions for both an equity index (the MSCI world index) and a hedge

fund index (the HFRX global index).

In Section 3, the optimal portfolio is determined and analyzed. The result is

detailed in particular for CRRA utility functions. We emphasize the comparison

between the optimal solution corresponding to the standard Gaussian case and

the optimal portfolio in the presence of a Gaussian mixture. Finally, Section 4

concludes.

2 Gaussian mixtures

Many studies argue that a three Gaussian mixture is a good approximation of

the empirical distribution: Melick and Thomas (1997) show that such mixture

distribution is a very convenient tool to �t crude oil prices during the Golf�s

war; Bellalah and Lavielle (2002) prove also that, for the main equity �nancial

indices, a three Gaussian mixture is a good approximation of the empirical

distribution. The estimation of the mixture parameters has been examined for

example by Peters and Walker (1978), Redner and Walker (1984), Basford and

McLachlan (1985, 1988) and Leroux (1992). Their methods are usually based

on the local ML estimation with consistent sequences of local maximizers.

2.1 De�nitions and general properties

Suppose that each observation corresponds to a random vector (X1; :::; Xn),

with respective cdf (F1; :::; Fn). Suppose, for example, that each variable Xi

has a Gaussian distribution with mean mi and variance-covariance matrix �i.

Denote �i (mi;�i) and �ithe i-weight of the mixture. Let � the global mixture

parameter:

� = (�1; ::; �n; �1; ::; �n) (1)

Then, the pdf corresponding to this mixture distribution is given by:

f (x;�) =
nX
i=1

�if (x; �i) ; (2)
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where f (x;�) denotes the pdf of the multivariate Gaussian distributionN [m;�].

The weighting system (�i)i corresponds to a convex combination. We have:

nX
i=1

�i = 1 and 8i 2 f1; ::; ng ; �i > 0 (3)

One explanation of such mixture is the following one: let Y be a discrete

random variable with probability distribution de�ned by:

P (Y = i) = �i; for i = 1; :::; n (4)

Suppose that the conditional distribution of the vector X knowing Y is given

by:LY=iX = N [mi;�i]

Then, we deduce that the pdf of X satis�es: for any x 2 Rn;

fX (x) =

nX
i=1

�i
1q

(2�)
d j�ij

exp

�
�1
2
(x�mi)

T
��1i (x�mi)

�
: (5)

Therefore, we get a Gaussian mixture with global parameter � = f�i;m;�gni=1
since for all i = 1; :::; n; �i > 0 and

nX
i=1

�i = 1:

An in�nite mixture distribution corresponds to a pdf given by:

f (x;�) =

Z
f (x;�) g (y) dy;

where g(.) itself is a pdf. Suppose for example that the conditional distrib-

ution of the vector X knowing Y is given by:LY=yX = N [my;�y]

Then, we deduce that the pdf of X satis�es: for any x 2 Rn,

fX (x) =

Z
1q

(2�)
d j�yj

exp

�
�1
2
(x�my)

T
��1y (x�my)

�
g (y) d (y) ; (6)

where g(:) is the pdf of Y . Therefore, X has a Gaussian mixture distribution.
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2.2 Empirical illustrations

To illustrate Gaussian mixtures, we use the weekly local MSCI world from

December 1993 and August 2013 and the weekly HFRX global index, covering

the period from January1998 until August 2013. To determine the mixture

parameters, we apply the Expected Maximization (EM) algorithm based on

Dempster et al. (1977). We investigate two cases: the two mixture distribution

and the three mixture one.Next table provides the estimation of the mixture

parameters for both �nancial indices. In all the cases, there exists at least a

Gaussian distribution with negative mean and another one with positive mean.

For the three mixture case, one explanation is that there exist three regimes:

the �rst one corresponds to potential signi�cant losses (for example, due to a

�nancial crash), the second one to standard evolution of prices and �nally, the

third one to potential rises of the indices.

M SC I w o rd

E s t im a t e d w e ig h t s o f G M E s t im a t e d m e a n v e c t o r o f G M E s t im a t e d va r ia n c e m a t r i c e o f G M

N o rm a l d i s t r ib u t io n 0 .0 0 0 8 2 2 8 0 7 0 .0 0 0 5 1 6 5 1 1

2G M

0 .6 7 1 0

0 .3 2 9 0

0 .0 0 4 1

- 0 .0 0 5 9

1 .9 7 e - 0 0 4

0 .0 0 1 1

3G M

0 .6 2 6 6

0 .1 5 9 3

0 .2 1 4 1

0 .0 0 2 4

0 .0 0 8 5

0 .0 0 3 1

2 .4 6 3 5 e - 0 0 4

0 .0 0 1 7

3 .1 6 4 e - 0 0 4

H F R I g lo b a l in d e x

E s t im a t e d w e ig h t s o f G M E s t im a t e d m e a n v e c t o r o f G M E s t im a t e d va r ia n c e m a t r i c e o f G M

2G M

0 .8 4 4 9

0 .1 5 5 1

0 .0 0 1 3

0 .0 0 1 5

2 .0 6 1 6 e - 0 0 5

4 .7 5 8 8 e - 0 0 4

3G M

0 .0 6 9 7

0 .4 0 2 2

0 .5 2 8 0

- 0 .0 0 7 6

0 .0 0 1 4

0 .0 0 1 8

0 .0 0 2 6

3 .4 1 9 4 e - 0 0 4

2 .4 0 5 6 e - 0 0 5

Table 1: Gaussian mixture estimates for the MSCI world and HFRX global

indices
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Figure 1. Gaussian mixtures (MSCI and HFRX indices)
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2.3 Portfolio optimization

2.3.1 Buy-and-hold strategy

In what follows, we assume that the risky logreturn has a �nite Gaussian mixture

distribution. Its pdf is equal to:

fX (x) =
nX
i=1

�i; (7)

where fi is the pdf of the distribution N [mi; �i] :Denote �i = mi +
�i
2 :. In

what follows, we assume that the sequence (�i)i is increasing, which is equivalent

to the assumption that the expected returns
R
exfi (x) dx are increasing.

The investor maximizes his expected utility:

MaxwsE [U [VT ]] ;

where VT denotes the portfolio value at maturity T .We have:

VT = V0 �
�
erT + ws

�
eXT � erT

��
The �rst-order condition implies:

E
�
U 0 (VT )

�
eXT � erT

�
= 0

�
which is equivalent to:

nX
i=1

Z
�iU

0 �V0 � �erT + ws �ex � erT ��� �ex � erT � fi (x) dx = 0 (8)

We illustrate how the optimal solutions corresponding respectively to the

Gaussian case and the Gaussian mixture case may di¤er. We assume that

both probability distributions have same expectation and variance. Consider

for instance the three Gaussian mixture case, usually observed on main equity

indices for monthly logreturns. In that case, if the expectation is equal to � and
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the variance to �2 , then we have necessarily:

�1 + �2 + �3 = 1

�1e
c + �2e

�2 + �3e
�3 = �

�1e
2�1

�
e�

2
1 � 1

�
+ �2e

�2

�
e�

2
2 � 1

�
+ �3e

�3

�
e�

2
3 � 1

�
= �2

with � > 0, �i � 0 .

Denote:

S2i = e
2�i (e�i � 1)

From previous relations, we deduce the parameter values �2 and �3 as func-

tion of �1. Since we have:

�2 + �3 = 1� �1;

�2e
�2 + �3e

�3 = �� �1e�1

We get:

�2 =
(e�3 � �)� �1; (e�3 � e�1)

(e�3 � e�2) (9)

��3 =
� (e�2 � �)� �1; (e�2 � e�1)

(e�3 � e�2)

Finally, the coe¢ cient �1;is given by:

�1 =
�2 (e�3 � e�2)� S22 (e�3 � �) + S23 (e�2 � �)

S21 (e
�3 � e�2)� S22 (e�3 � e�1) + S23 (e�2 � e�1)

(10)

Therefore, if there exists a solution ws of Equation 8 in [0,1], then we can

apply the implicit functions theorem. Denote:

F (�1; ws) =
3X
i=1

Z
�iU

0 �V0 � �V0 � �erT + ws �ex � erT ��� �ex � erT � fi (x) dx� ;
(11)

with �2 and �3 as functions of �1 , from Equation 9 (see Appendix for the
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bounds on �1).

We deduce the sensitivity of the optimal weight ws� invested on the risky

asset since we have:
@w�S
@�1

= �
�
@F

@�1

� �
@F

@w�S

�
(12)

Note that the second order derivative of the utility function is negative, since

we assume that the investor is risk averse, so that his utility function is concave.

Thus,
h
@F
@w�S

i
is negative, which implies that w�S is a decreasing function of the

weight �1 if and only if
h
@F
@�1

i
is negative. This latter condition indicates if the

investor prefers (or not) to invest on mixture distributions that overweight the

two Gaussian distributions with higher exponential expectations.

To study the sign of
h
@F
@�1

i
, we note that:

@

@�1

"
3X
i=1

Z
�ifi (x)

#
=

1

(e�3 � e�2)g (x) ;

where

g (x) = (e�3 � e�2) f1 (x)� (e�3 � e�1) f2 (x) + (e�2 � e�1) f3 (x)

Then, the sign of
h
@F
@�1

i
is the same as:

Z
U 0
�
V0 �

�
erT + w�s

�
ex � erT

��� �
ex � erT

�
g (x) dx;

which depends mainly on the parameters of the three Gaussian distributions.

2.3.2 Numerical illustrations

To illustrate previous results, we use data the weekly local MSCI world from

from December 1993 and August 2013 and the weekly HFRX global index,

covering the period from January1998 until August 2013 (see Section 2).

We consider an investor with CRRA utility function given by , where denotes

the relative risk aversion. Results for the optimal weight invested on the risky
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asset are displayed in Table 2.

Relative

Risk Aversion

MSCI

Gaussian case

MSCI

Mixture case

HFRI

Mixture case

HFRI

Mixture case

0.5 100% 100% 100% 100%

2 100% 100% 100% 100%

5 100% 100% 60% 100%

10 60% 100% 30% 100%

20 30% 100% 15% 100%
Table 2: Optimal risky asset weight for the MSCI world and HFRX global

indices

For both cases, we note that taking account of mixture models leads to

higher investment on the risky asset. A similar result is also true for CARA

utility U (x) = �ae�ax( with a > 0) and for utility with loss aversion as in

Kahneman and Tversky (1992) U (x) = x1�

1� for x < 0 and �(�x)1��
1� for x < 0

with x <  < 1 and � > 1). Such empirical examples show that, for a given

utility function, there exists signi�cant di¤erences for the optimal portfolio when

mixtures are taken into account, even if return expectations and variances are

equal.

3 Conclusion

Using Gaussian mixtures allows to �t well empirical distributions. This kind of

probability law is commonly used in �nancial modelling, through �nite (regime

switching due to economic variables, for instance) or in�nite mixture (Lévy

processes, Arch type models...). We show in this paper how it can be possible

to optimize a portfolio, in this framework, and in a static way, since portfolio

rebalancing takes place in discrete time. The main conclusion is that optimal

portfolios for standard Gaussian case and mixture model case can di¤er very sig-

ni�cantly, even if the risky �nancial returns have same expectation and standard

deviation. Therefore, the mean-variance criterion is a not convenient criterion

in the presence of mixture of distributions.
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Appendix: Conditions on weights (bounds on �1;)

From Equation 9, we examine now the positivity condition on the weights

�i :

1. 0 � �1 � 1

2. 0 � �2 � 1() 0 � (e�3 � �)� �1 (e�3 � e�1) � e�3 � e�2

This condition is equivalent to:

e�2 � �
e�3 � e�1 � �1 �

e�3 � �
e�3 � e�1

3. 0 � �3 � 1 () 0 � � (e�2 � �) + �1 (e�2 � e�1) � e�3 � e�2 with

(e�2 � e�1) > 0

This condition is equivalent to:

e�2 � �
e�3 � e�1 � �1 �

e�3 � �
e�2 � e�1

Consequently, the positivity condition on the weights �i is equivalent to:

Max

�
0;
e�2 � �
e�3 � e�1 ;

e�2 � �
e�2 � e�1

�
� �1 �Min

�
1;
e�3 � �
e�3 � e�1 ;

e�3 � �
e�2 � e�1

�

But, since e�1 < e�2 < e�3 , we get:

(a) If � > e�2 ;Max
�
0; e�2��

e�3�e�1 ;
e�2��
e�2�e�1

�
= 0

If � > e�3 ;Max
�
0; e�2��

e�3�e�1 ;
e�2��
e�2�e�1

�
= e�2��

e�2�e�1

(b) Min
�
1; e�3��

e�3�e�1 ;
e�3��
e�2�e�1

�
= e�3��

e�3�e�1

Finally, the positivity condition on the weights �i is equivalent to:

(e�2 � �)+

e�2 � e�1 � �1 �
(e�3 � �)
e�3 � e�1

.
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