The recent …nancial crisis has highlighted the necessity to introduce mixtures of probability distributions in order to improve the estimation of asset returns and in particular to better take account of risks. Since Pearson (1894), these mixtures have been intensively used in many scienti…c …elds since they provide very convenient mathematical tools to examine various statistical data and to approximate many probability distributions. They are typically introduced to model the choice of probability distributions among a given parametric family.

 Prigent (2006).

We consider an investor who wants to maximize the expected utility of the value of his portfolio consisting of one risk-free asset and one risky asset. We provide and analyze the solution for log return with mixture distributions, in particular for the mixture Gaussian case. The optimal portfolio is characterized for arbitrary utility functions. Our results show that mixture of distributions can have signi…cant implications on the portfolio management.

Introduction

The recent …nancial crisis has highlighted the necessity to enhance the estimation of observed returns to better take account of risks and improve the estimation of asset returns. In this sense, introducing mixtures of probability distributions might help to achieve these aims (see [START_REF] Mclachlan | Finite Mixture Models[END_REF] for de…nitions and properties of mixture models). The mixture distributions have been widely used in …nance. For example, in the case of a …nite mixture of Gaussian distributions, they could price standard and exotic options. Ritchey (1990) proved that the risk-neutral density of options could be modeled by a mixture of lognormal densities. Ryden et al. (1998) suggest to introduce hidden Markov chain to model daily return series, which leads immediately to mixture models. In a dynamic and …nite mixture setting, [START_REF] Bellalah | Pricing standard and exotic options in the presence of a …nite mixture of Gaussian distributions[END_REF] provide an extension of the standard Black and Sholes models to price nonstandard and exotic options and analyze the smile e¤ect. Many others studies uses normal mixture returns to model excess kurtosis and to take account of the random volatility as in [START_REF] Alexander | Option pricing with normal mixture returns: modelling excess kurtosis and uncertainty in volatility[END_REF]. The literature characterizing empirical distributions discusses the utility of such models to …t …nancial data (see [START_REF] Bellalah | A simple decomposition of empirical distributions and its applications in asset pricing[END_REF][START_REF] Hentati | On the maximization of …nancial performance measures within mixture models[END_REF] and local volatility (see [START_REF] Brigo | Lognormal-mixture dynamics and calibration to market volatility smiles[END_REF][START_REF] Alexander | Normal mixture di¤usion with uncertain volatility: modelling short and long term smile e¤ects[END_REF].

In this paper, we examine the single-period portfolio choice model1 , in the presence of Gaussian mixture log return distributions. We consider an investor who wants to maximize the expected utility of his terminal wealth, in a static way2 . The value of the portfolio corresponds to a linear combination of some speci…ed portfolio of common assets. We provide and analyze the solution for log return with mixture distributions, in particular for the mixture Gaussian case. The optimal portfolio is characterized for arbitrary utility functions.

Section 2 provides de…nitions and empirical examples of such Gaussian mix-ture distributions for both an equity index (the MSCI world index) and a hedge fund index (the HFRX global index).

In Section 3, the optimal portfolio is determined and analyzed. The result is detailed in particular for CRRA utility functions. We emphasize the comparison between the optimal solution corresponding to the standard Gaussian case and the optimal portfolio in the presence of a Gaussian mixture. Finally, Section 4 concludes.

Gaussian mixtures

Many studies argue that a three Gaussian mixture is a good approximation of the empirical distribution: Melick and Thomas (1997) show that such mixture distribution is a very convenient tool to …t crude oil prices during the Golf's war; [START_REF] Bellalah | A simple decomposition of empirical distributions and its applications in asset pricing[END_REF] prove also that, for the main equity …nancial indices, a three Gaussian mixture is a good approximation of the empirical distribution. The estimation of the mixture parameters has been examined for example by Peters and Walker (1978), Redner and Walker (1984), Basford andMcLachlan (1985, 1988) and [START_REF] Leroux | Consistant estimation of mixing distribution[END_REF]. Their methods are usually based on the local ML estimation with consistent sequences of local maximizers.

De…nitions and general properties

Suppose that each observation corresponds to a random vector (X 1 ; :::; X n ), with respective cdf (F 1 ; :::; F n ). Suppose, for example, that each variable X i has a Gaussian distribution with mean m i and variance-covariance matrix i .

Denote i (m i ; i ) and i the i-weight of the mixture. Let the global mixture parameter:

= ( 1 ; ::; n ; 1 ; ::; n ) (1)
Then, the pdf corresponding to this mixture distribution is given by:

f (x; ) = n X i=1 i f (x; i ) ; (2) 
2 where f (x; ) denotes the pdf of the multivariate Gaussian distribution N [m; ].

The weighting system ( i ) i corresponds to a convex combination. We have: n X i=1 i = 1 and 8i 2 f1; ::; ng ; i > 0

One explanation of such mixture is the following one: let Y be a discrete random variable with probability distribution de…ned by:

P (Y = i) = i ; f or i = 1; :::; n (4) 
Suppose that the conditional distribution of the vector X knowing Y is given by:L

Y =i X = N [m i ; i ]
Then, we deduce that the pdf of X satis…es: for any

x 2 R n ; f X (x) = n X i=1 i 1 q (2 ) d j i j exp 1 2 (x m i ) T 1 i (x m i ) : (5) 
Therefore, we get a Gaussian mixture with global parameter = f i ; m; g

n i=1
since for all i = 1; :::; n; i > 0 and

n X i=1 i = 1:
An in…nite mixture distribution corresponds to a pdf given by:

f (x; ) = Z f (x; ) g (y) dy;
where g(.) itself is a pdf. Suppose for example that the conditional distribution of the vector X knowing Y is given by:L Y =y

X = N [m y ; y ]
Then, we deduce that the pdf of X satis…es: for any

x 2 R n , f X (x) = Z 1 q (2 ) d j y j exp 1 2 (x m y ) T 1 y (x m y ) g (y) d (y) ; (6)
where g(:) is the pdf of Y . Therefore, X has a Gaussian mixture distribution. (1977). We investigate two cases: the two mixture distribution and the three mixture one.Next table provides the estimation of the mixture parameters for both …nancial indices. In all the cases, there exists at least a Gaussian distribution with negative mean and another one with positive mean.

For the three mixture case, one explanation is that there exist three regimes:

the …rst one corresponds to potential signi…cant losses (for example, due to a …nancial crash), the second one to standard evolution of prices and …nally, the third one to potential rises of the indices. In what follows, we assume that the risky logreturn has a …nite Gaussian mixture distribution. Its pdf is equal to:

f X (x) = n X i=1 i ; (7) 
where

f i is the pdf of the distribution N [m i ; i ] :Denote i = m i + i 2 :
. In what follows, we assume that the sequence ( i ) i is increasing, which is equivalent to the assumption that the expected returns R e x f i (x) dx are increasing.

The investor maximizes his expected utility:

M ax ws E [U [V T ]] ;
where V T denotes the portfolio value at maturity T .We have:

V T = V 0 e rT + w s e X T e rT
The …rst-order condition implies:

E U 0 (V T ) e X T e rT = 0
which is equivalent to:

n X i=1 Z i U 0 V 0 e rT + w s e x e rT e x e rT f i (x) dx = 0 (8) 
We illustrate how optimal solutions corresponding respectively to the Gaussian case and the Gaussian mixture case may di¤er. We assume that both probability distributions have same expectation and variance. Consider for instance the three Gaussian mixture case, usually observed on main equity indices for monthly logreturns. In that case, if the expectation is equal to and the variance to 2 , then we have necessarily:

1 + 2 + 3 = 1 1 e c + 2 e 2 + 3 e 3 = 1 e 2 1 e 2 1 1 + 2 e 2 e 2 2 1 + 3 e 3 e 2 3 1 = 2 with > 0, i 0 .
Denote:

S 2 i = e 2 i (e i 1)
From previous relations, we deduce the parameter values 2 and 3 as function of 1 . Since we have:

2 + 3 = 1 1; 2 e 2 + 3 e 3 = 1 e 1
We get:

2 = (e 3 ) 1; (e 3 e 1 ) (e 3 e 2 ) (9) 3 
= (e 2 ) 1; (e 2 e 1 ) (e 3 e 2 ) Finally, the coe¢ cient 1; is given by:

1 = 2 (e 3 e 2 ) S 2 2 (e 3 ) + S 2 3 (e 2 ) S 2 
1 (e 3 e 2 ) S 2 2 (e 3 e 1 ) + S 2 3 (e 2 e 1 )

Therefore, if there exists a solution w s of Equation 8 in [0,1], then we can apply the implicit functions theorem. Denote:

F ( 1 ; w s ) = 3 X i=1 Z i U 0 V 0 V 0 e rT + w s e x e rT e x e rT f i (x) dx ; (11) 
with 2 and 3 as functions of 1 , from Equation 9(see Appendix for the bounds on 1 ).

We deduce the sensitivity of the optimal weight ws invested on the risky asset since we have:

@w S @ 1 = @F @ 1 @F @w S (12) 
Note that the second order derivative of the utility function is negative, since we assume that the investor is risk averse, so that his utility function is concave.

Thus, h @F @w S i is negative, which implies that w S is a decreasing function of the weight 1 if and only if h @F @ 1 i is negative. This latter condition indicates if the investor prefers (or not) to invest on mixture distributions that overweight the two Gaussian distributions with higher exponential expectations.

To study the sign of h @F @ 1 i , we note that:

@ @ 1 " 3 X i=1 Z i f i (x) # = 1 (e 3 e 2 ) g (x) 
; where g (x) = (e 3 e 2 ) f 1 (x) (e 3 e 1 ) f 2 (x) + (e 2 e 1 ) f 3 (x)

Then, the sign of h @F @ 1 i is the same as: Z U 0 V 0 e rT + w s e x e rT e x e rT g (x) dx;

which depends mainly on the parameters of the three Gaussian distributions.

Numerical illustrations

To illustrate previous results, we use data the weekly local MSCI world from from December 1993 and August 2013 and the weekly HFRX global index, covering the period from January1998 until August 2013 (see Section 2).

We consider an investor with CRRA utility function given by , where denotes the relative risk aversion. Results for the optimal weight invested on the risky asset are displayed in For both cases, we note that taking account of mixture models leads to higher investment on the risky asset. A similar result is also true for CARA utility U (x) = ae ax ( with a > 0) and for utility with loss aversion as in Kahneman and Tversky (1992) U (x) = x 1 1 for x < 0 and ( x) 1 1 for x < 0 with x < < 1 and > 1). Such empirical examples show that, for a given utility function, there exists signi…cant di¤erences for the optimal portfolio when mixtures are taken into account, even if return expectations and variances are equal.

Conclusion

Using Gaussian mixtures allows to …t well empirical distributions. This kind of probability law is commonly used in …nancial modelling, through …nite (regime switching due to economic variables, for instance) or in…nite mixture (Lévy processes, Arch type models...). We show in this paper how it can be possible to optimize a portfolio, in this framework, and in a static way, since portfolio rebalancing takes place in discrete time. The main conclusion is that optimal portfolios for standard Gaussian case and mixture model case can di¤er very sig-ni…cantly, even if the risky …nancial returns have same expectation and standard deviation. Therefore, the mean-variance criterion is a not convenient criterion in the presence of mixture of distributions. Finally, the positivity condition on the weights i is equivalent to: 
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 32 Empirical illustrations To illustrate Gaussian mixtures, we use the weekly local MSCI world from December 1993 and August 2013 and the weekly HFRX global index, covering the period from January1998 until August 2013. To determine the mixture parameters, we apply the Expected Maximization (EM) algorithm based on Dempster et al.
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 1 Figure 1. Gaussian mixtures (MSCI and HFRX indices)

This condition is equivalent to: e 2 e 3 e 1 1 e 3 e 2 e 1 e 2 e 1 = 0 If > e 3 ; M ax 0; e 2 e 3 e 1 ; e 2 e 2 e 1 = e 2 e 2 e 1 (b) M in 1; e 3 e 3 e 1 ; e 3 e 2 e 1 = e 3 e 3 e 1
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	Relative	MSCI	MSCI	HFRI	HFRI
	Risk Aversion	Gaussian case	Mixture case	Mixture case	Mixture case
	0.5	100%	100%	100%	100%
	2	100%	100%	100%	100%
	5	100%	100%	60%	100%
	10	60%	100%	30%	100%
	20	30%	100%	15%	100%

Table 2 :

 2 Optimal risky asset weight for the MSCI world and HFRX global indices

The optimal positioning problem has been addressed in the partial equilibrium framework, by[START_REF] Brennan | Optimal portfolio insurance[END_REF] and by[START_REF] Leland | Who should buy portfolio insurance[END_REF].

Due to practical constraints (liquidity, transaction costs...), …nancial portfolios are discretely rebalanced. For example, the portfolio is rebalanced monthly.