

5th International Conference on Ambient Systems, Networks and Technologies (ANT-2014)

A NEW APPROACH FOR SERVICE DISCOVERY AND PREDICTION ON PERVASIVE INFORMATION SYSTEM

Salma Najar, Manuele Kirsch Pinheiro, Carine Souveyet

Centre de Recherche en Informatique (CRI) Université Paris 1 - Panthéon Sorbonne <u>Manuele.Kirsch-Pinheiro@univ-paris1.fr</u>

Outline

- Motivations
- A vision for Pervasive Information System
- Service discovery
- Service prediction
- Evaluation
- Conclusions & perspectives

Motivations

- New technologies and practices (BYOD, smartphone) expanding Information System (IS)
- A new generation of IS is rising ...
- Pervasive Information System (PIS)
 - IS services available anytime, anywhere
 - Heterogeneity & Transparency
- Evolving IS into PIS demands a new vision
 - Focus on the user's needs, not in the technology
 - Satisfying user's goals according to the context
 - Anticipating user's goals for more proactivity

A vision for Pervasive Information System

- A new user-centric vision for PIS:
 - Services satisfying an intention in a given context

A vision for Pervasive Information System

- Service Discovery:
 - Offering appropriate service according immediate user's intention and context
- Service Prediction:
 - Anticipating user's situation (intention & context)

Service Discovery

- Service discovery
 - Selecting the better ranked service according user's current < intention, context >

Service Discovery

Intention matching

An intention can be represented as [1]:

$$I = \langle verb , target , [parameter]^* >$$

- Semantic matching based on dedicated ontologies
- Target matching
 - Target ontology: possible targets make available by the PIS
 - Level of matching: Exact, Subsume, Plugin, Fail
- Verb matching
 - Verb ontology: significant actions authorized by the PIS
 - Level of matching: Exact, Synonym, Hypernym, Hyponym, Fail

Service Discovery

- Context matching
 - User's context (Cx_u): a set of observed values considering context elements for a given subject $Cx_u = \langle Subject, Context element, [Values] * >$
 - Service required context (CXR_{srv}): a set of conditions expressed over context elements
 - Evaluating the satisfaction $\mathcal{C}_{XR_{srv}}$ with respect to \mathcal{C}_{X_u}
 - Ontology matching for subject and context element
 - Evaluating condition expressed over context values

$$\sum_{i=1}^{n} (w * ContextConditionMatching (cx_i, cx_j))$$

Service Prediction

- Service prediction
 - Proposing next service based on user's history
 - Situation $S_i = \langle I_{ui}, C\chi_{ui}, Srv_i \rangle$
 - Clustering: Similar situations grouped into cluster represented by a centroid
 - Classification: User's behavior model represented by a Markov chain

Service Prediction

- Service prediction
 - Prediction based on the user's behavior model Mc
 - Semantically matching current user's $< I_u$, $Cx_u >$ with states (situations) represented in $\mathcal{M}c$

Finding most similar situation, then its most probable successor

Proposing service associated with next situation

Evaluation

- Evaluating feasibility of proposed mechanisms
 - Scalability and quality (precision & recall)

• Environment:

- Intel Core I5 1.3Ghz and 4Gb RAM
- OWLS-TC2 dataset extended with intention & context descriptions
- Trace database (scenario & random traces)

Results

- Promising results
- Quality depending on the dataset and thresholds

Evaluation

Evaluating feasibility of proposed mechanisms

- Results
 - Promising results
 - Quality depending on the dataset and thresholds

Conclusions & perspectives

Service discovery & prediction

- User-centric approach < intention, context >
- Hiding environment heterogeneity
- Improving proactivity and transparency

Perspectives

- Improving performance by parallel computing
- Experimenting different clustering & classification algorithms
- Experimenting on real data

Questions?

References

- Kaabi R.S., Souveyet C. Capturing intentional services with business process maps. 1st IEEE International Conference on Research Challenges in Information Science RCIS 2007; 309-318
- Dey A. Understanding and using context.
 Personal and Ubiquitous Computing 2001; 5(1):
 4-7