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Abstract—Pervasive Information System (PIS) represents a 
new generation of Information Systems (IS) available anytime, 
anywhere in a pervasive environment. In this paper, we 
propose to enhance PIS transparency and efficiency through a 
context-aware intentional service prediction approach. This 
approach allows anticipating user’s future needs, offering and 
recommending him the most suitable service in a transparent 
and discrete way. We detail in this paper our service prediction 
mechanism and present encouraging experimental results 
demonstrating our proposition. 

Keywords-pervasive information system; service orientation; 
intention; context-aware; prediction; clustering; classification  

I. INTRODUCTION  
Pervasive Information Systems (PIS) represent an 

evolution of Information Systems (IS) towards the 
integration of pervasive environments.  Currently, pervasive 
environments are mainly reactive. Decisions are taken solely 
based on the current context. Indeed, research in the 
anticipatory and proactive behavior on pervasive 
environment, notably by the prediction of the user’s future 
situation, is hardly done. By avoiding focusing on the 
prediction, current systems lack an important element in the 
search for transparency and homogeneity. Besides, this 
research does not consider the user’s intentions behind each 
service request. Consequently, many opportunities can be 
offered to the user, even if he/she is not always able to 
understand what is proposed to him and why. Thus, PIS 
remains too complex for the users, who are just interested in 
satisfying their needs (and not on how it is done).  

We believe that in order to achieve transparency 
necessary to handle such pervasive environments, the PIS 
must reduce the user’s understanding effort. They must hide 
the complexity of the multiple available services. This will 
be possible thanks to a user-centered vision. This vision can 
be achieved through a service prediction mechanism capable 
of anticipating future user’s needs, improving system 
proactivity, and thereby contributing to improving the 
transparency necessary for PIS. 

Our purpose is to predict the user’s future intention based 
on his/her context, in order to offer him the most suitable 
service considering his/her incoming needs. This approach 
considers PIS through the notion of intention that can be seen 
as the goal that we want to achieve without saying how to 

perform it [10]. An intention represents a requirement that a 
user wants to be satisfied without really care about how to 
perform it or what service allows him to do so. An intention 
emerges on a giving context. The context represents any 
information that can be used to characterize the situation of 
an entity [5]. 

Based on this information, we propose a context-aware 
intentional service prediction mechanism. The main purpose 
of such approach is to provide to the user a service that can 
fulfill his/her needs in a fairly understandable and non-
intrusive way, reducing user’s understanding effort. This 
prediction mechanism is based on the assumption that, even 
in a dynamic and frequently changing Pervasive Information 
System, common situations can be found. Based on this 
assumption, this prediction mechanism considers a set of 
time series representing observed user’s situations. Thus, we 
are able to track and store these situations in a history, after 
each successful discovery process. By analyzing this history, 
a prediction mechanism can learn user’s behavior in a 
dynamic environment, and therefore deduce his/her future 
intention and the most appropriate service that satisfy it. 

This paper is organized as follows: the section II 
introduces our vision of an user-centered contextual PIS, 
while section III details the proposed context-aware 
intentional service prediction mechanism. The section IV 
presents the implementation and the experiments results of 
the service prediction. The section V presents an overview on 
related works. Finally, we conclude in the section VI. 

II. A USER-CENTERED CONTEXTUAL VISION OF PIS 
In this paper, we introduce our new vision of Pervasive 

Information Systems [11] [15]. This user-centered vision of 
PIS allows focusing on the user’s needs through an 
intentional approach. It considers the PIS and their elements 
both in terms of IS and of pervasive service systems, 
observing their control, intentionality and context-awareness 
requirements. This is in order to ensure the necessary 
transparency and understanding for the design and for the 
development of PIS. 

This vision is characterized by its context orientation, 
which allows a better management of the heterogeneity and 
dynamics that characterize the pervasive environment. 
Moreover, in the perspective to better satisfy user’s needs 
and to be at her/his level, our vision is based on an intention 
orientation. Thus, PIS can, on the one hand, better 



understand the user’s needs, and on the other hand, better 
meet her/his needs in the most appropriate manner.  

Thus, we exploit, in our vision, the close relationship 
between the notions of intention, context and service, shown 
in Figure 1. We consider that the satisfaction of the user’s 
intention in a PIS depends on the context in which this user 
is. For us, the environment directly impacts how to meet the 
intentions, and so the choice of services to be performed. 
Therefore, by combining intentional and contextual 
approaches in service orientation, we propose a new user-
centered vision of transparent and non-intrusive PIS that is 
understandable to the user.  

 

 
Figure 1. The close relation between context, intention and service 

 
 In this paper, we present a context-aware intentional 

prediction mechanism, presented in the next section, as a part 
of this vision. This is in order to enhance the PIS 
transparency, efficiency and proactivity through a user-
centered contextual vision of PIS, hiding technical details.  

III. CONTEXT-AWARE INTENTIONAL SERVICES 
PREDICTION MECHANISM 

In this paper, we propose a new an approach for 
predicting the future user’s intention (IU) in a given context 
(CxU). This approach intends for proactively provide a 
service (Svi) that can fulfill the user’s future needs. Indeed, 
this approach is based on the assumption that common 
situations (S) can be detected, even in a dynamic and 
frequently changing Pervasive Information System. Based on 
this assumption, this prediction mechanism considers a set of 
time series representing a user’s observed situation. These 
observations, represented by the triplet <intention, context, 
service>, are time stamped and stored in a database after 
each services discovery process. Thus, by analyzing this 
history (H), the prediction mechanism can learn the user’s 
behavior model (Mc) in a dynamic environment and thus 
deduce its next intention. 

Two main processes compose this intention prediction 
mechanism: the learning process and the prediction process, 
as illustrated in Figure 2. In the learning process, similar 
situations (S) are grouped into clusters, during the phase of 
clustering. These clusters are organized as states of a state 
machine, by the classification phase. It aims at representing, 
from the recognized clusters, the user’s behavior model (Mc) 
based the observed clusters. By interpreting situation 
changes as a trajectory of states, we can anticipate his/her 
future needs. Therefore, the intention prediction process is 
based on the user’s behavior model (Mc), on the current 
user’s intention (IU) and the current user’s context (CxU). 
Based on this information, the prediction process allows 
predicting the user’s future needs.  

 
Figure 2. Service Prediction Mechanism 

Before detailing these processes, we should describe the 
structure of the history used by these processes. This 
represents the trace management, described in next section. 

A. Trace Management 
The history H is composed by all the results obtained by 

the service discovery process [15], thereby forming the 
traces used for prediction. The service discovery process 
compares the current user’s intention (IU) and context (CxU) 
with those proposed by the available services, in order to 
propose user the most appropriate service (Svi). We define 
the notion of situation (Si) as the user’s intention (IU), in a 
given context (CxU), satisfied by a specific service (Svi). 

Si = {< IUi, CxUi, Svi > | ∀	
  i	
  ∈ [1, n], IUi, CxUi, Svi ∈ H ∧ 
TimeStamp (IUi, CxUi, Svi) = ti}             (1) 

The prediction mechanism is based not only on the 
current user’s situation, but also on its previously observed 
situations. These observations are saved for future needs. We 
refer to time series of observed situations as the user’s 
history (H). Each time series represents a time stamped 
observed situation, as illustrate the Table I.  

TABLE I. THE STRUCTURE OF THE USER’S HISTORY 

Time/Date Intention Context Service 
t1 IU1 CxU1 Sv1 
t 2 IU 2 CxU 2 Sv 2 
… .. .. .. 
t i IU i CxU i Sv i 
… .. .. .. 
t n IU n CxU Sv n 

 
Whenever a service is selected, the user’s situation is 

registered on the user’s history in order to keep a trace of the 
user’s past situations. The intention (IU) is represented as an 
XML schema containing two mandatory elements, namely 
the verb and the target. Both verb and target are described by 
ontologies representing respectively significant actions made 
available by PIS and the objects considered by the actions 
[14]. The context (CxU) is also represented as an XML 
schema containing the context description. Such descriptions 
follows an ontology-based context model on which context 
elements are described by an entity (corresponding to the 
entities whose context is observed) and a scope representing 
what is observed (location, memory, etc.) [14]. Finally, the 
service (Svi) represents the name of the service selected to 
satisfy this intention in this context. Services are described 
using an extension of OWL-S we have proposed in [14], in 



which intention satisfied by the service and the context in 
which this intention is considered are described.    

In the history, the traces represent user’s situations (Si) 
recorded at a given time. We introduce the notion of 
observation (OSi), representing a situation of the user Si 
observed at the time ti. 
OSi = {<Si, ti > | ∀i ∈ [1, n], Si ∈ H ∧ TimeStamp (Si )=ti} (2) 

Then, we define the history H as a set of all the observed 
situations OSi ordered according to their time of occurrence.  

H = {OSi}, i ∈ [1,n], with n the history size        (3) 
Thus, maintaining the trace of the user’s observed 

situations helps the learning process in order to deduce the 
user’s behavior model. This learning process will be 
explained in the following section. 

B. Learning Process 
To realize anticipatory and proactive behavior of PIS, we 

need first to dynamically learn about the user and his/her 
behavior in a frequently changing environment. This 
represents an important step for the prediction mechanism.  

The learning process is based on the analysis of the 
history (H). We proceed by grouping the different observed 
situations (OSi) into clusters (CL) of similar situations and 
then, learn the user’s behavior model. It is responsible for 
dynamically determining the user’s behavior model (Mc) 
(classification), which illustrates the user’s habits, from the 
recognized clusters (clustering). It is with that this process is 
triggered independently of the prediction process, and may 
be seen as a background task.  

1) Clustering 
The first phase of our prediction mechanism is the 

clustering of user's traces. As the user interacts daily with 
PIS, some of his/her situations may be recurrent. These 
recurring situations can be expressed with similar contexts 
and intentions. The role of clustering here is to consider the 
relevance of these situations, which can be grouped by 
similarities in clusters. A cluster represents then a set of 
situations, sharing some similarity between their intentions 
and contexts. It gathers recurring and similar situations. The 
cluster analysis allows a better representation of the user's 
habits, because they are more relevant to treat than separate 
situations.  

 

 
Figure 3. The clustering phase  

The input of this phase corresponds to vectors 
representing user’s situations stored in the history (Table I) 
The main role of clustering, as shown in Figure 3, is to detect 
recurrent observations among all situations previously 

observed and grouped in a cluster. A cluster consists of a 
centroid and a set of observations. The centroid represents 
the identifier of the cluster which symbolizes the observation 
the most similar to all the observations grouped in this 
cluster. The centroid is defined by the triplet <IU, CxU, Svi>.  

In fact, the clustering is responsible for determining the 
situation that is the closest to a set of situations 
corresponding to highly similar intentions in quite similar 
context. This provides us with a powerful mechanism to 
evaluate the user's intention. A user can express the same 
intention in a slightly different way by using verbs and 
targets that are semantically similar enough. Based on verb 
and target ontologies, we perform a semantic matching 
between two intentions in order to determine their degree of 
similarity. On the other hand, the user’s context represents 
highly heterogeneous data. Thus, to compare two context 
descriptions, we combine a semantic matching between the 
context elements (scope and entity should be semantically 
similar) and similarity measures that compare the values of 
context element. Therefore, the clustering will help to find 
these situations and represent them by one common situation 
that is closest to all the members of the same cluster. 

In order to fully represent a situation, we attach the 
selected service for the couple <Intention, Context>. We are 
aware that this represents a strong constraint (the concept 
situation is necessarily coupled to a particular service), but it 
opens a significant performance advantage, since it is not 
required to launch the service discovery mechanism during 
the prediction process. Thus, it is important to regularly 
update the clusters in order to have the service that best 
meets the couple intention and context of the situation. 

Once the clustering is completed, recognized clusters are 
then interpreted as states of the user’s behavior model. This 
is the classification phase, presented in the next section. 

2) Classification 
A user’s behavior model intends to reflect the interaction 

between a user and the PIS and its dynamics. Nonetheless, 
the user cannot be accurately described in advance. 
Therefore, a dynamic user’s behavior model is necessary. It 
must be able to adapt to user’s change and take into account 
the probabilistic nature of his behavior. 

 
Figure 4. The classification phase 

From the clusters recognized in the clustering phase and 
the history, the classification step determines and maintains a 
user’s behavior model, as illustrated in Figure 4. This phase 
represents the user’s behavior as a set of states with a 
transition probability. Each state is represented by the 
centroid of a cluster. Each probability is calculated based on 
the history and determines the probability of moving from 



one state to another (i.e. the probability that a situation 
belonging to a cluster A will be followed by a situation 
belonging to a cluster B). 

Several classification techniques exist: Bayesian network 
(BN) [7], Markov Chain [6], Hidden Markov Model (HMM) 
[19], Support Vector Machines (SVM) [3], etc. Similar to 
[12][20], we consider Markov chains [6] as the more suitable 
method for context classification thanks to its unsupervised 
and online characteristic. Moreover, Markov chains are able 
to classify multidimensional and heterogeneous data, which 
is necessary for classifying intention-context cluster as these 
are proposed on this paper.  

Therefore, Markov [6] chains are the most suitable 
candidates for PIS. It is a well-known method for 
representing a stochastic process in discrete time with 
discrete state space. We represent the Markov chains model 
(Mc) as the doublet Mc = (St, p), with St representing the 
different states and p ∈ [0,1] the transition probability. 

At a given time t, the user is in a state Sti. In PIS, the 
user’s intention and his context may change. Therefore, the 
user moves from the state Sti to Stj. The state Stj represents 
the successor of Sti with a certain probability p. This 
transition probability represents the ratio of the transition 
from Sti to Stj divided by the number of all the possible 
transitions from Sti. This probability is represented in (4).  

        (4) 
The prediction process, described in the next section, is 

mainly based on the results of the classification to predict the 
next user’s intention. 

C. Prediction Process 
The purpose of this prediction process is to predict the 

future user’s intention in order to propose him the next 
service. This way, the user would not have to actively 
request it. This process is triggered when a service discovery 
process is performed successfully. 

 
Figure 5. The prediction process 

As illustrated by Figure 5, the services prediction process 
is based on the user’s behavior model (Mc), which is updated 
during the previous phase of classification. The prediction 
process is, then, responsible to find the state (Sti) from the 
model (Mc), which is the closest (i.e. semantically similar) of 
the current user’s situation, and to deduce the following 
situation, which is the most probable. More specifically, and 
as shown in Figure 6, this process compares semantically, for 

each cluster represented as a state in the model Mc, the 
immediate intention of the user (IU) with the intention of the 
state (centroid of a cluster) (ISti). Then, it compares 
semantically the current user’s context (CxU) with the context 
of the state (CxSti). If the final score (degree of the contextual 
and intentional matching) is acceptable (above a certain 
threshold), then the state is selected as a candidate. Once this 
processing is done on the set of states in the model Mc, and 
then the state having the highest score is retained. The future 
service to be offered to the user represents the service of the 
state, which is held at the end. 

 
Figure 6. The service prediction algorithm 

The Figure 6 details the proposed algorithm for 
predicting the future user’s intention and consequently the 
most appropriate next service. The line 9 of Figure 6 shows 
the first step of the prediction process. It illustrates the 
semantic matching between the intention and context of each 
state of the model with the user’s immediate intention and 
context. First, this step is based on a semantic matching 
between the user's intentions and the intention of the state. 
As mentioned above, an intention consists of a verb and a 
target. The semantic matching of intentions is therefore 
based on ontologies describing these elements in order to 
calculate the matching score between them. Then, the 
algorithm performs a semantic matching between the user's 
context description and the context descriptions of the 
different states of the model. This matching is based on a 
domain-specific ontology and on similarity measures 
between the values of context (see [15] for more details). 

The final matching score represents the sum of the 
intention matching score and the context matching score. 
This information is stored with the state identifier. Going 
through all the states of the model, we can determine the 
state the most similar to the current user’s situation (line 13). 
If a state is identified, the algorithm select the next state 



based on the transition probabilities (line 14). This transition 
probability must exceed a certain threshold. If several 
successor states are retrieved, then the one having the highest 
transition probability is chosen (if there is more than one 
next state having the highest transition probability, then we 
choose arbitrary one of them). By this choice, we derive the 
successor state, which represents the future user’s intention 
in a given context. Thus, we anticipate the user’s future 
needs by offering him the most appropriate service that can 
interest him. 

IV. IMPLEMENTATION AND EVALUATION 
We present in this section the implementation of our 

context-aware intentional service prediction. Then, we 
discuss our experimental results.   

A. Implementation 
The services prediction mechanism, proposed in section 

IV, is based on a history that contain user’s traces, the 
recognized clusters and the user’s behavior model. We feed 
this database by a set of observations stored as traces. These 
observations represent a set of intentions that the services of 
the test collection OWLS-TC2 [16] are able to satisfy in the 
field of travel. Then, we add to these intentions, different 
contextual descriptions and the service identifier that can 
meet this intention in the context of use. We identified 10 
different context descriptions. Then, we assigned arbitrarily 
this context description to the defined intentions. These 
traces were created fictitiously because it was difficult to 
convince companies to provide us their real data (respect and 
protection of privacy). The recognized clusters and the user’s 
behavior model are maintained from this history. 

This services prediction mechanism was implemented 
using Java language. It follows the same implementation 
structure like the service discovery mechanism [15], where 
the implementations of the processes are organized around 
three main implementations of interfaces. The Manager 
interface (IclusteringManager, IClassificationManager and 
IservicePredictionManager) represents the entry point of the 
processes. Then, the PersistenceManager interface (only 
used in the clustering and prediction process) acts as a facade 
between the component that implements the manager 
interface and the ontology directory, which allows access 
and loading ontologies. Finally, the Engine interface 
(IclusteringEngine, IclusteringEngine and Iprediction 
Engine) proposes the necessary methods to implement the 
different proposed algorithms, such as (i) the classification of 
the recognized clusters, (ii) the clustering of the user’s 
situations; and (iii) the prediction of the user’s future 
intention and the most appropriate service.  

The clustering and prediction algorithms 
implementations are based on our OWL-S extended API 
[14], Jena [9] and the reasoner Pellet [18]. These 
impelentations use two classes, namely “ContextMatching” 
to determine the contextual matching score and the 
“IntentionMatching” class to determine the intentional 
matching score. 

B. Evaluation 
As part of our experiments, we deployed our algorithms 

on a machine Intel Core i5 1.3 GHz with 4 GB memory. As 
mentioned earlier in this paper, the evaluation of these 
algorithms has been performed on a semantic directory 
containing a set of domain-based ontologies and on the 
constructed history. 

The purpose of our experiments is to evaluate the 
validity of our algorithms and their feasibility. Two main 
observations emerge from this experiment: (i) Scalability: 
whether the processing time is reasonable; (ii) Result 
quality: whether the algorithm can effectively select the 
most appropriate services. 

In order to evaluate these two measures, we formulate 7 
user’s requests relatives to the travel domain. These request 
are represented by the user’s intention and his current 
context, as illustrates in Table II. 

TABLE II. USER REQUESTS : AN INTENTION EMERGED IN A GIVEN CONTEXT 

 
 
These requests are formalized in different ways. We 

described situations where the elements of the user’s 
intention are not described in the intention ontologies. 
Nevertheless, there are a set of clusters and states of the 
user’s behavior model that can satisfy this intention in the 
current user’s context (Req2 and Req7). In addition, we 
described situations where the elements for the user’s 
intention are described in the intention ontologies. These 
situations are specified in order to demonstrate that the 
threshold setting, defined by the system designer in the 
clustering and prediction algorithms, can eliminate some 
clusters and states even if they are able to satisfy the user’s 
situation (Req1, Req5 and Req6). And finally, we evaluated 
the requests Req3 and Req4, which describe intentions that 



can be satisfied by a set of clusters and states in the current 
user’s context, which represents a complex context. 

We measure the scalability of our algorithms with 
respect to the number of clusters, observations in the history 
and states of the user’s behavior model, by measuring the 
average processing time. 

1) Scalability 
We measure the scalability of our algorithms with 

respect to the number of clusters, observations in the history 
and states of the user’s behavior model, by measuring the 
average processing time. 

The execution time of the clustering algorithm was 
measured by varying the number of clusters already 
recognized in the database between 7 and 186 clusters. This 
time represents the average execution time taken by the 
clustering algorithm to determine which cluster an 
observation belongs. As illustrated in Figure 7, the 
execution time following a polynomial trend of degree three 
varying from 3,6 s for 7 clusters to 6,3 s for 186 clusters. 
However, even if this time is a higher, we can observe that 
despite the fact that we have increased the number of 
clusters over twenty six times, the response time has only 
increased by a little more than one and half times. In 
addition, one of our perspectives is to improve the execution 
time by optimizing our development code by using the Java 
threads, for example. 

Concerning the execution time of the classification 
algorithm, it is measured by varying the number of 

observations already grouped in clusters in the database 
between 10 and 200 observations. This time represents the 
average execution time taken by the classification algorithm 
to dynamically update the user’s behavior model. As 
illustrated in Figure 7, the execution time follows a 
polynomial trend ranging from 39 ms for 10 observations to 
398 ms for 200 observations. However, even if this 
algorithm does not take much time to dynamically update 
the Markov chains, we can notice that rose almost 10 times 
by increasing the number of observations of twenty times. 
Thus, introducing the parallel processing in the algorithm 
can also optimize this. 

Finally, the execution time of the prediction algorithm is 
measured by varying the number of states in the user’s 
behavior model, stored in the database, between 7 and 168 
states. This time represents the average execution time set to 
predict the next service that satisfies a future user’s intention 
according to his immediate intention and current context. As 
illustrated in Figure 7, the execution time following a 
polynomial trend of degree three from 2,04 s for 7 states to 
5,28 s for 168 states. We increased the number of states over 
twenty five times, while the execution time has only 
increased by two and half times. This allows us to validate 
the feasibility and scalability of our algorithm. However, 
these results can be optimized, such as the last two 
algorithms of clustering and classification.

 

 
Figure 7. Clustering, classification and prediction algorithms performances

These results allow us to deduce that our algorithms 
provide a good scalability. However, the performance of our 
algorithms, especially the clustering and prediction is rather 
average. But, we remain confident since these algorithms 
can be optimized in order to improve the execution time. 
These optimizations are one of our short-term perspectives. 

2) Result Quality  
In order to measure the quality of the result, we cover the 

two most useful quality metrics: precision and recall. These 
two measures are defined in terms of a set of retrieved item 
and a set of relevant items. The precision represents how 
well a system retrieves only the relevant services, while the 
recall measures the ability of a system to retrieve all the 

relevant service [21]. The definition of recall and precision 
measures are defined as follows: 
 

  
We consider that the precision and recall metrics are 

important factors in the analysis of the learning (clustering 
and classification) and prediction mechanisms. The results 
presented in Figure 8 indicate that the three algorithms have 
a satisfying level of precision. The mean precision of the 
clustering and prediction algorithms is around 88%, whereas 
the classification algorithm is 100%.  

These results indicate that the clustering algorithm is 
more likely to recognize the right cluster that represents the 



user’s observation. The classification algorithm represents 
exactly the dynamics of the user. The prediction algorithm, 
meanwhile, has a higher chance to select the most 
appropriate service that satisfy the future user’s intention in a 
similar context to his current context. However, this good 
results of precision are accompanied by less interesting 
results (but still satisfaying) on recall, as illustrated in Figure 
8. We observe that the average rate of the recall, for the 
clustering and prediction algorithms, is around 75%. 

These results can be explained, for example, by the 
evaluation of situations where the elements of intention are 
not described in ontologies, while it exists in the database 
clusters/states similar to that intention in the user’s context. 
In this case, clustering algorithms and prediction algorithms 
returns any results. This affects the results quality and return 
a recall of 0%. In addition, when situations are described by 

intentions whose verbs and/or targets are fairly generic or 
specific, some clusters/states that can respond to the trace or 
to the immediate user’s intention in the current context will 
not be selected. Thus, in some cases we obtain reminders that 
are below 25%. 

The analysis of these results, illustrated in Figure 8, 
demonstrates that our proposition presents a more interesting 
result with a higher quality. However, it is important to note 
that we cannot get that good results only if the system 
designer: 1) establishes a rich and complete description the 
different ontologies used; and 2) choose the best threshold 
setting. We believe that our service prediction mechanism 
allows selecting the most appropriate future service. And that 
is due to both its intentional approach, which is more 
transparent to users, and contextual approach that limits 
clusters and states to those that are valid.  

 
Figure 8. Quality of result of the Clustering and prediction algorithms 

V. RELATED WORK 
In order to supply users with the desired services, 

different research on context prediction and context based 
recommendation systems are proposed. Mayrhofer [12], Sigg 
et al. [20] and Meiners et al. [13], for example, propose 
major contributions towards generic context prediction. 
Mayrhofer [12] proposes an unsupervised classification, 
which tries to find previously unknown classes from input 
data. Sigg et al. [20] provide an alignment method based on 
typical pattern and on alignment technique in order to deduce 
missing low-level context information. Moreover, Meiners et 
al. [13] present a generic and structured context prediction 
approach based on (1) the incorporation of the domain 
knowledge at design time and  (2) the selection of multiple 
exchangeable prediction techniques.  

These context prediction approaches try to predict user’s 
next context based on the user’s current context and history. 
However, none of these works consider the services a user 
invokes on a given context, neither the real need behind it. 
Against these work, we focus first on the real user’s needs 
and try to anticipate it by predicting his future intentions in 
similar context. This is in order to propose him the most 
suitable service that can interest him.  

Concerning the second aspect, we have many 
contributions on recommendation systems, which aim to 
propose services based on the user’s context. Adomavicius & 

Tuzhilin [1] and Panniello et al. [17] propose to categorize 
recommendation approaches into three categories: 1) pre-
filtering, where the contextual information is used to filter 
out irrelevant ratings before they are used for computing 
recommendations; (2) post-filtering, where the contextual 
information is used after the standard non-contextual 
recommendation methods; and (3) contextual modelling, 
where the contextual information is used inside the 
recommendation algorithms with the user and item data.  

For example, Baltrunas and Ricci [2] introduce a 
technique for context-aware collaborative filtering called  
“Item Splitting”. In this approach, items experienced in two 
alternative contextual conditions are “split” into two items, 
which are then used in the rating prediction algorithm. 
Moreover, Cremonesi et al. [4] propose a technique that 
relies on classical and post-filters recommendation based on 
contextual information. This technique use association rules 
to identify the most significant correlations between context 
and item. These rules are then used to filter the predictions 
performed by traditional recommender systems. Recently, 
Hussein et al. [8] introduces a software framework for the 
development of context-aware and hybrid recommenders. 
They introduce the Hybreed framework based on Dynamic 
Contextualization approach. 

All these works try to anticipate user’s needs in order to 
offer him more transparency. Hence, most recommendation 
systems propose a next service to users based solely on their 



context information, without considering the user’s 
requirements behind a service, i.e., its intentions. They 
propose available services to the user, ignoring why this 
service is needed. 

VI. CONCLUSION 
Nowadays, our environment is characterized by the 

evolution of pervasive technologies. However, PIS that 
derived from using IS on pervasive environments still 
complex, requiring an important user’s understanding effort.  

Therefore, we propose a user-centered vision of PIS 
based on a context-aware intentional prediction approach, in 
order to hide PIS complexity. This approach allows us to 
anticipate the future user’s needs. By this approach, we 
believe contributing to the improvement of PIS transparency 
and productivity through a user-centered view.  

Thus, we propose an intentional prediction mechanism 
guided by the context. This prediction mechanism allows: (i) 
clustering similar user’s situations in a set of clusters, (ii) 
learning the user’s behavior model according to recognized 
clusters and user’s history (iii) deducing the user’s future 
intention based on his behavior model and on his current 
context and intention. 

The, we implement the service prediction mechanism. 
This service prediction mechanism is evaluated according to 
two aspects. The first one is the scalability, which allows 
analysing the feasibility of the proposed mechanism 
especially with respect to the growing of the service 
repository. The second one is the result quality based on two 
measures in services field called precision and recall. These 
two measures are used to analyse whether our mechanism 
really reached its goal. The experiments demonstrate that our 
algorithms can be able to find, in a reasonable time, the most 
appropriate results that can fulfill user’s intention in a given 
context, with the lowest rate of “false-positive”. But, to in 
order to have a good result, the system designer should 
describe the different ontologies used in a rich and complete 
manner and choose the best threshold setting. 

This intention prediction mechanism highlights the 
anticipatory and proactive behavior of our proposed vision of 
PIS. We strongly believe that an intentional prediction 
approach can answer to transparency and homogeneity 
requirements, necessary for fully acceptation of PIS.  
Moreover, evaluating the user acceptation of the proposal 
requires applying it in a real case study. Such evaluation 
should consider the final user’s point of view. It should 
consider the user acceptance, considering the prediction 
mechanism, as well as the level of transparency perceived by 
these users. As a future work, we expect to evaluate our 
approach in a large-scale in order to validate its usefulness 
and compare it with the existing techniques.   
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