
HAL Id: hal-00998729
https://paris1.hal.science/hal-00998729v1

Submitted on 2 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enacting a requirement engineering process with
meta-tools : an exploratory project

Sana Damak Mallouli, Saïd Assar

To cite this version:
Sana Damak Mallouli, Saïd Assar. Enacting a requirement engineering process with meta-tools : an
exploratory project. ICCGI 2013 : The Eighth International Multi-Conference on Computing in the
Global Information Technology, Jul 2013, Nice, France. pp.208. �hal-00998729�

https://paris1.hal.science/hal-00998729v1
https://hal.archives-ouvertes.fr

Enacting a Requirement Engineering Process with Meta-Tools:

an Exploratory Project

Sana Damak Mallouli
Centre de Recherche en Informatique

University of Paris 1 Pantheon Sorbonne
Paris, France

sana.mallouli@gmail.com

Saïd Assar
Institut Mines-Telecom,

Telecom Ecole de Management
Evry, France

said.assar@it-sudparis.eu

Abstract— An engineering process can hardly be described
rigorously because of its dynamic and decision-oriented nature.
Applying goal-oriented modeling for representing such
processes is a promising approach. However, goal-oriented
process models have no clear operational semantics, and
building an enactment engine for such models is a highly
complex task. To avoid building such tools in an ad-hoc
manner and to overcome maintainability and portability
issues, we investigate in this paper the practical feasibility of
meta-CASE and CAME based approaches for constructing an
enactment tool for a goal-oriented model. We describe and
analyze a project in which MetaEdit+, a leading meta-tool, is
tested. Our aim is to evaluate the meta-tool approach and to
explore its possibilities in terms of process model enactment.
During this project, a requirement elicitation process is used as
a preliminary test bed.

Keywords-meta-modeling; intentional process modeling;
meta-CASE; MetaEdit+; execution semantics.

I. INTRODUCTION

Goal modeling is a prominent design paradigm in various
domains such as business process modeling [1], method
engineering [2], and requirements engineering [3]. In the
method engineering context, the highly dynamic and
decision-oriented nature of engineering processes has led to
describe such processes using goal-oriented models [4]. The
main advantage of goal-oriented process modeling is its
ability to go beyond the simple modeling of sequences of
activities as proposed by other notations such as BPMN
(Business Process Model and Notation) or SPEM (Systems
Process Engineering Meta-model). However, how to enact
goal-oriented models and how such enactment can be
specified and implemented are still open research questions.

The general topic of this paper is how to construct a tool
that provides enactment mechanisms for goal-oriented
process models. In previous research projects, our research
team has engineered multiple tools for earlier event-oriented
methods [5], context-oriented [6], and goal-oriented
methodological processes [7]. As these tools were built in an
ad-hoc manner, recurrent problems have shown up.
Maintainability is a key issue: as product and process meta-
models are hard coded, it is very difficult to make the tools
evolve when the meta-models are changed, even slightly.
Portability is a bottleneck too: any evolution of the
underlying technology makes the tool rapidly obsolete unless

large updates are made to the code. Therefore, we have
decided to investigate the possibility of using method
engineering tools to solve these issues.

Meta-CASE and Computer Aided Method Engineering
(CAME) technologies were introduced in the 90's as an
answer to the general problem of providing software support
to method and tool customization and/or creation [8]. These
meta-tools were expected to facilitate and to accelerate the
production of method toolset, and to overcome
maintainability and portability drawbacks. As any other
software artifacts, tools and meta-tools need to be assessed
and evaluated [9]. However, research works that review
meta-CASE/CAME tools are rather limited. Prominent
evaluations are early works by Martiin & al. [10][11].
Although more recent, works in [12][13] are not
fundamentally different from earlier studies. In [12], the
evaluation framework is inspired by Martiin & al. [10], and
the results are limited to general appreciations. The study in
[13] is more detailed, but some studied tools are technically
not available anymore (e.g., Mentor [6]). The novelty lies in
the evaluation framework; it is based on ISO 9126 quality
model with more usability and portability concerns.

What emerge from these previous studies is that when it
comes to process enactment, there is clearly not enough
empirical knowledge about the use of meta-tool in real cases.
Authors claim that support for process modeling is
insufficient, and that mechanisms for expressing process
enactment are limited or inexistent. So the goal of this paper
is to experiment meta-CASE technology for enacting a goal-
oriented process, and to explore problems and issues related
with such an approach. More precisely, this paper deals with
the following research question: To which extent do meta-
tools provide a viable and satisfying solution to the problem
of building a maintainable and portable enactment engine for
a goal-oriented formalism?

To answer this question, we empirically evaluate through
a lab project MetaEdit+, a well-known meta-tool. This meta-
tool was selected to run the project because it is recognized
as a leading method engineering environment with high level
of technical maturity [13][14]. The project consisted in using
MetaEdit+ to define a goal-oriented formalism and to
construct an enactment tool to support it. Evaluation relied
on inspecting the obtained system at the end of the project,
and on analyzing data gathered along the engineering
process. The evaluation is based on a quality framework that

is synthesized from related works analysis. The framework is
organized around three perspectives (Table 1): the proposed
formalism for expressing the process enactment semantics,
the meta-tools available for specifying the process, and the
obtained target tool for process enactment.

TABLE I. META-CASE EVALUATION FRAMEWORK

Perspective Criteria

Formalism Level of expressiveness for process specification

 Cognitive effort to specify the process part

Meta-tool Suitability for process specification

 Ease of use for process specification

Target tool

 Level of maintainability gains for the target meta tool

 Level of portability gains for the target meta tool

The rest of the paper is structured as follows. In Section

2, we briefly present works that are related to our research.
Section 3 describes the Map formalism on which is based the
project. In Section 4, the project itself is described. Section 5
presents the outcomes of the project in terms of meta-models
and tool specifications, describes the obtained target tool and
illustrates with a requirements elicitation process taken from
the literature. Section 6 reports our evaluation of the project's
outcomes using the quality framework. The paper ends with
concluding remarks in which we discuss the results in regard
with the research question, and we formulate revised
research questions.

II. RELATED WORK

Providing process specification and enactment support is
very important for Software and Method engineering fields.
In this context, the Moskitt4ME approach [23] is a relevant
solution where process models are initially expressed using
SPEM meta-model, then transformed into BPMN models.
The BPMN process description can then be enacted using an
off-the-shelf execution engine called “Activiti Engine”.

Our research question is similar to the issue addressed in
Moskitt4ME approach. However, our solution has two main
particularities: (1) first, we use a goal-oriented process
modeling language to capture fine grained software
engineering processes and to go beyond what SPEM based
approaches can do; (2) second, our target is to design a
CAME tool itself and to adopt meta-models driven
development in order to guarantee maintainability and
portability.

Another recent work dealing with enactment process is
presented in [24]. This work proposes xSPEM tools (i.e.,
executable SPEM) for editing, simulating and verifying
SPEM process models. The approach is based on dynamic
meta-modeling (i.e., the definition of domain specific
languages with behavioral semantics) in order to simulate
and validate models. The basic idea is to extend the meta-
model and assimilate its execution semantics to that of state-
based machines and workflows.

xSPEM allows the simple modeling of sequences of
activities. Thus, it is not well suited to represent engineering
processes. For this reason, we are investigating goal-oriented
process enactment in this paper.

III. THE MAP FORMALISM

Our research work concerns the Map formalism, a goal-
oriented model that is particularly well adapted for
representing engineering processes. Based on the intention
paradigm [15], the Map captures the intentions that a process
is expected to fulfill, together with a set of available
strategies to realize these intentions (Fig. 1a). Each intention
can be realized by one or more strategy, and the process is
represented as a labeled graph with intentions as nodes and
strategies as edges [16]. An edge enters a node if its strategy
can be used to achieve the intention of the node. A section of
the Map is a triplet composed of a source intention, a target
intention and a strategy (e.g., <J, SJK1, K> in Fig. 1a).

(a)

(b)

Figure 1. A map example (a), and an illustration of achieved intentions
and candidate sections (b)

Map operational semantics. Beyond precedence
relationships between intention achievements, the
operational semantics of the Map are decision-oriented. The
combination of a past intention achievement, a strategy and
an intention (i.e., the triplet <Jri2, SJL1, L> in Fig. 1b) is
called a candidate section and is a fundamental concept for
expressing the operational semantics. At each execution of a
section, a new set of candidate sections (i.e., sections that can
be executed in the next step) is computed. Given a certain
state of the working products (i.e., the set of product
instances,) and the history of achieved intentions, the
candidate sections computation is done by checking which
sections match with scheduling possibilities [17].

IV. PROJECT OVERVIEW

The chosen meta-tool for the project is MetaEdit+ [18].
Figure 2 presents an overview of the project's main steps.

Figure 2. Overview of the engineering process underlying the exploratory

project

The method engineer defines meta-models (product and
process) using MetaEdit+ Workbench toolset and the

MS Acces

DB

Execute

Data
Exchange

User

interface

Method User

ATM example

Models + code

generator

L’Ecritoire models

(Product & process)

CREWS l’Ecritoire
Specification

Meta-models +

generation scripts

Map meta model +

Execution semantics

MetaEdit+ Workbench

Customize

Method Engineer

GOPRR (Graph, Object, Property, Relationship, Role) meta-
modeling concepts, and specifies generation rules with Merl
scripting language. A customized version of MetaEdit+
editor is automatically constructed (i.e., target tool) this tool
includes code generation functionalities. The method user
can then use this tool to define a product and a process
model, and generates an enactment engine.

The project was run with the requirement elicitation
process underlying CREWS L'Ecritoire [19][7]. Goal
discovery and scenario authoring are complementary
activities with CREWS L'Ecritoire: once a goal is
discovered, a scenario is authored as a possible
concretization of the goal, and can then be followed by
further goal discovery from the authored scenario.

These goal-discovery/scenario-authoring sequences are
repeated to incrementally populate the requirement chunks
hierarchy (a Requirement Chunk (RC) is defined as a <goal,
scenario> couple). The underlying RC elicitation process is
described as a map.

This project was conducted by a group of three persons: a
senior researcher, a PhD student and a master student. The
senior researcher controlled the project, collected data and
provided support all along the project in case of specific
problems. The PhD student defined the Map formalism with
MetaEdit+ and provided assistance in expressing and

validating Map operational semantics. The tasks of the MSc
student were to specify the code generator in MetaEdit+
scripting language for the target platform (VB.NET and MS
Access), and to run CREWS L'Ecritoire case example.

V. PROJECT OUTPUT

A. Meta-Modeling

For the product part, as the Map formalism does not
specify product models, we defined a standard E/R style
product meta-model. This meta-model is simple and is not
presented here for the sake of space. Figure 3 presents the
meta-model for the process part expressed in GOPRR. Boxes
represent objects, diamonds represent relationships, and
circles are roles. Intention and Strategy concepts are defined
as objects. They are connected by two relationships
(Strategy-to-Intention and Intention-to-Strategy) and, beyond
name and identifier, have certain properties necessary for
expressing operational semantics (i.e., “State” attributes).
“Product fragment”, “Product consumption” and “Product
generation” are specific attributes which are added to the
Map definition. They are necessary for expressing the
behavior of a map when it is executed [20], and play an
important role in computing candidate sections.

Figure 3. Map process meta-model defined in GOPRR

B. Target Tool for CREWS L'Ecritoire

The product model is simple; it contains three objects
(i.e., a requirement chunk, a goal and a scenario) and three
links (And, Or, Refine). For the sake of space, details are not
presented here, but interested readers can refer to [16].

Figure 4. CREWS L'Ecritoire process model defined in the target tool

Figure 4 presents the requirement chunks elicitation
process expressed as a map. Three intentions are defined
together with a set of strategies to achieve them; this model
is a slightly simplified version of the original process in [16].

C. Enactment specification

Enactment of a specific map is handled by the generated
Map engine. This engine is a VB.NET program which
manipulates an MS Access DB. The executable code of the
Map engine and the relational structure of the DB are
product dependant, and will be constructed by the code
generator according to the product model (i.e., requirement
chunks) and to the process model (i.e., the map). Indeed, for
each method, a specific Map engine is generated; however,
the code generator is generic.

Figure 5 shows the structure of the engine's DB that is
generated for the CREWS L'Ecritoire case. Tables in the
"Process" group are generic and contain the map, those in the
"Trace" group will contain the results of the execution

Intention

Intention identifier:String (unique
Intention name:String
Product-fragment:Collection

Strategy

Strategy Identifier:String (unique
Strategy name:String
Product consumption:Boolean
Product generation:Boolean
Parameters:Collection

START {1}STOP {1}

Link:Intention-to
-Strategy

Link:Strategy-to-
Intention

Exclusion-
constraint

Precedence-
constraint

Intention-
source-part

Strategy-
target-part

Strategy-
source-part

Intention-
target-part

Role-S1Role-S2

Role-Strateg
y1

Role-Strategy2

(product dependant), and those in the "Product" group will
contain product instances (i.e., requirement chunks).

Figure 5. Database structure of the Map engine for CREWS L'Ecritoire

The dependency of the Map engine towards the product
structure impacts also the generated algorithm for candidate
sections computing, which is an essential element in the
enactment process. This calculation is based on the content
of the engine's DB. For each realized intention Ri in the
trace, a set of candidate sections is calculated by linking Ri
to the corresponding intention I in the process map, and
identifying all connecting strategies and connected intentions
which form a possible path from Ri.

Figure 6 presents a screen shot of Map engine execution
for CREWS L'Ecritoire case. From left to right top down, the
1st window contains the list of executed sections, the 2nd
contains the stack of achieved intentions, the content in the
3rd window is static as it contains the sections of the process
map under execution, and the last window contains the
dynamically computed list of candidate sections.

VI. EVALUATION AND DISCUSSION

The quality framework (cf. Table 1) will now be used to
evaluate and discuss the project results and outcomes.
Results are synthesized in Table 2.

A. Formalism and meta-tool

For the process part, suitability and usability are clearly
insufficient. Operational semantics are specified through a
collection of scripts written in Merl (MetaEdit+ scripting
language). These scripts define navigation logic through the
meta-models and output (i.e., generate) instruction in target
code (i.e., VB.NET). This step is very complex, and must be
handled in two sub steps: write, run and debug first the target
code for a sample Map engine DB, and when this code is
satisfying, adapt it and integrate it into Merl generation
scripts. Errors in the generated code are very hard to be
directly corrected in the generating Merl scripts. Although
the meta-tool provides a debugging facility, it is largely
insufficient when the generated code becomes complex. The
cognitive effort for correlating the generated code with
procedures for generating such code (i.e., Merl scripts
writing) was so high that the whole project team needed to
cooperate frequently on this task.

B. Target tool

According to the project team perception, the obtained
Map engine operates correctly and is easy to use, as the
possibilities for interactions are limited to choosing a
candidate section and inputting some data. However, the user
interface is much less attractive although the Map enactment
is made sufficiently clear through textual display windows
(Fig. 6). This can be enhanced; it will however make the
generated code and the generation scripts much more
complex and less portable.

Concerning target tool maintainability, the scoring is
mitigated. Any change to the Map formalism which does not
impact the operational semantics is easily handled with
MetaEdit+'s graphical interface and with small updates to the
generated code. However, if the modification changes the
operational semantics, the impact on the generated code can
then be much larger.

Figure 6. Interface for the generated target tool

The portability issue is strategically more important as it
impacts tool mid and long term existence. The scoring here
is unsatisfactory because, although it is fully possible to
update the generating scripts and the generated code to
accommodate a new version of the target platform (e.g., a
new version of VB) or a different platform (i.e., MySQL
DBMS), the cost of this task is high. However, compared
with an ad-hoc approach, the project is insufficient to get a
real insight about the comparative advantage of using meta-
CASE in terms of portability.

TABLE II. PROJECT EVALUATION RESULTS

Perspective Criteria Evaluation result

Formalism Expressiveness Insufficient: execution semantics is

expressed using a large set of
procedural scripts

 Cognitive effort Very high: the language designer must

mentally correlate code generation
actions (i.e., Merl scripts) with

generated code (i.e., VB.net code)

Meta-tool Suitability Low: a simple text editor for
developing generation scripts, there is

no model nor a GUI

 Ease of use Low: the validation of a script is very
hard, with only a limited debugging

facility
Target tool Maintainability

Portability

 Satisfactory in case of modifications to

the PLM that do not alter its execution

semantics; unsatisfactory otherwise,

because of complex changes to code

generation scripts

 Unsatisfactory: moving to a different
target platform induces high level of

changes to code generation scripts

VII. CONCLUDING REMARKS

In this paper, we have reported an experimental
development project dedicated to evaluating the contribution
of meta-CASE to the enactment of Map, a goal-oriented
process modeling formalism. As "building a system in and of
itself does not constitute research", the contribution to basic
research is "the synthesis of new concepts in a tangible
product" [21]. What we learned from this experience is
resumed in the two following. First, providing mechanisms
for enacting a goal-oriented process is possible only if
operational semantics can – at the conceptual level – be
expressed using the execution paradigm underlying a certain
target platform. This is line with recent work about the
necessity to raise the level of abstraction of compilation
techniques up to the modeling phase [22]. Second, in the
Map case, building a generic Map engine is impossible as the
algorithm for candidate section computation is product
dependant. Meta-CASE technology provides thus an
interesting possibility to overcome this problem by
combining CASE customization and the design of adequate
code generators. This opens the door to multiple applications
in the field of Domain Specific Languages, CASE tool
construction and process enactment.

A. Threats to validity

Some threats to the validity of this study are: the
limitation to only one project, the dependence on
participants' background, and the mix between development
team and observation team.

B. Research question revisited

In meta-CASE actual technology, process operational
semantics are expressed in a procedural manner in code
generating scripts, and process enactment is obtained through
the execution of generated code. These specifications are
loosely correlated with the meta-modeling part, they are not
specified in a declarative manner and they cannot be
represented graphically. They are difficult to build and to
validate. Indeed, like in compiler technology, the validity of
the code generator cannot be demonstrated unless some
formal notations are used, or the code generator itself is built
using some generic tool. Thus, we revise our research
question into: How to express in a rigorous manner process
operational semantics at the meta-modeling level of
abstraction in order to facilitate its validation and evolution?
This is the subject of our actual research work. We are
investigating graphical notations for expressing meta-models'
operational semantics.

REFERENCES
[1] I. Bider and P. Johannesson, “Goal-oriented business process

modeling: Guest Editorial,” in Business Process Management
Journal, vol. 10, no. 6, 2005, pp. 621–623.

[2] J. Ralyté and C. Rolland, “An Approach for Method
Reengineering,” in H. S.Kunii, S. Jajodia, and A. Sølvberg,
“Conceptual Modeling,” ER 2001, Berlin/Heidelberg, LNCS,
Springer, vol. 2224, 2001, pp. 471–484.

[3] A. Lapouchnian “Goal-oriented requirements engineering: An
overview of the current research,” University Of Toronto,
Canada, 2005.

[4] S. Si-Said and C. Rolland, “Formalising Guidance for the
CREWS Goal-Scenario Approach to Requirements
Engineering,” in H. Jaakkola,H. Kangassalo, and E.
Kawaguchi, “Information Modelling and Knowledge Bases,”
IOS Press, vol.10, 1999, pp. 172–190.

[5] C. Rolland and al., “The RUBIS system,” in T.W. Olle, A.A.
Verrijn-Stuart, and L. Bhabuta, “Computerized Assistance
During the Information Systems Life Cycle,” North-Holland,
1988, pp. 193–239.

[6] S. Si-Said, C. Rolland, and G. Grosz, “MENTOR: A
Computer Aided Requirements Engineering Environment,” in
CAiSE’96, P. Constantopoulos, J. Mylopoulos, and Y.
Vassiliou, LNCS, Springer, Berlin/Heidelberg, vol. 1080,
1996, pp. 22–43.

[7] C. Souveyet and M. Tawbi, “Process centred approach for
developing tool support of situated methods,” in DEXA’98,
G. Quirchmayr, E. Schweighofer, and T.J.M. Bench-Capon,
LNCS, Springer, Berlin/Heidelberg, vol.1460, 1998, pp. 206–
215.

[8] S. Kelly and K. Smolander, “Evolution and issues in
metaCASE,” Information and Software Technology, vol. 38,
no. 4, 1996, pp. 261–266.

[9] J.P. Gray, A. Liu, and L. Scott, “Issues in software
engineering tool construction,” Information and software
technology. 2000, Vol. 42, no. 2, pp. 73–77.

[10] P. Marttiin, M. Rossi, V.-P. Tahvanainen, and K. Lyytinen,

“A comparative review of CASE shells: A preliminary
framework and research outcomes,” in Information &
Management, vol. 25, no. 1, 1993, pp. 11–31.

[11] P. Marttiin, F. Harmsen, and M. Rossi, “A functional
framework for evaluating method engineering environments:
the case of Maestro II/Decamerone and MetaEdit+,” in S.
Brinkkemper, K. Lyytinen, and R.J. Welke, “Method
engineering: Principles of method construction and tool
support,” IFIP, Chapman & Hall, London, 1996, pp. 63–86.

[12] I. Van de Veerd and M. Saeki, “An evaluation of
computerized tools for method construction,” Institute of
Electronics, Inf. and Comm. Engineers (IEICE), Tokyo,
Japan, 2007.

[13] A. Niknafs and R. Ramsin, “Computer-Aided Method
Engineering: An Analysis of Existing Environments,” in Z.
Bellahsène and M. Léonard, CAiSE’08, LNCS, Springer,
Berlin/Heidelberg, vol. 5074, 2008, pp. 525–540.

[14] S. Kelly and J.-P. Tolvanen, “Domain-specific modeling:
enabling full code generation,” Wiley-Interscience, IEEE
Computer Society, N.J. Hoboken, 2008.

[15] C. Rolland, “Capturing System Intentionality with Maps,” in
J. Krogstie, A.L. Opdahl, and S. Brinkkemper, Conceptual
Modelling in IS Eng., Springer, 2007, pp. 141–158.

[16] C. Rolland, N. Prakash, and A.Benjamen, “A Multi-Model
View of Process Modelling. Requirements Engineering,”
Requirements Engineering, vol. 4, no. 1, 1999, pp. 169–187.

[17] M.H. Edme, “A proposal for intentional modeling and
guiding of information system usage (in French),” PhD thesis,
University of Paris 1 La Sorbonne, France, 2005.

[18] MetaCASE: http://www.metacase.com/ [retrieved: April

25th, 2013]
[19] C. Rolland, C. Souveyet, and C.B. Achour, “Guiding goal

modeling using scenarios,” IEEE Transactions on Software
Engineering, vol. 24, no. 12, 1998, pp. 1055–1071.

[20] S. Assar, S.D. Mallouli, and C. Souveyet, “A behavioral
perspective in meta-modeling,” in 6th Int. Conf. on Software
and Data Technologies (ICSOFT), Sevilla, Spain, 2011.

[21] J.F. Nunamaker, M. Chen, and T.D.M. Purdin, “Systems
development in information systems research,” Journal of
Management Information Systems, vol. 7, no. 3, 1990, pp.
89–106.

[22] R. Bendraou, J.M. Jezéquél, and F. Fleurey, “Achieving
process modeling and execution through the combination of
aspect and model-driven engineering approaches,” Journal of
Software: Evolution and Process, vol. 24, no. 7, November
2012, pp. 765–781.

[23] M.Cervera, M. Albert, V. Torres, and V. Pelechano, “The
MOSKitt4ME Approach: Providing Process Support in a
Method Engineering Context,” in P. Atzeni, D.Cheung, and S.
Ram, Conceptual Modeling (ER), LNCS, Springer Berlin
Heidelberg, 2012, pp. 228‑241.

[24] R. Bendraou, B. Combemale, X. Cregut, and M.-P. Gervais,
“Definition of an Executable SPEM 2.0,” Proc. 14th Asia
Pacific Software Engineering Conf. (APSEC), 2007, pp. 390-
397.

http://link.springer.com/journal/766

