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ABSTRACT

Research on guidance and method engineering has high-
lighted that many method engineering issues, such as lack of
flexibility or adaptation, are solved more effectively when in-
tentions are explicitly specified. However, software engineer-
ing process models are most often described in terms of se-
quences of activities. This paper presents a novel approach,
so-called Map Miner Method (MMM), designed to automate
the construction of intentional process models from process
logs. To do so, MMM uses Hidden Markov Models to model
users’ activities logs in terms of users’ strategies. MMM
also infers users’ intentions and constructs fine-grained and
coarse-grained intentional process models with respect to
the Map metamodel syntax (i.e., metamodel that specifies
intentions and strategies of process actors). These models
are obtained by optimizing a new precision-fitness metric.
The result is a software engineering method process speci-
fication aligned with state of the art of method engineering
approaches. As a case study, the MMM is used to mine
the intentional process associated to the Eclipse platform
usage. Observations show that the obtained intentional pro-
cess model offers a new understanding of software processes,
and could readily be used for recommender systems.

Keywords
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1. INTRODUCTION
Fueled by the growing presence of events logs in soft-

ware and software engineering platforms, process mining has
emerged a few years ago as a key approach to design soft-
ware processes [29, 32, 33]. Mining software engineering pro-
cesses from logs can be useful for understanding how people
really work, analyzing how actual software engineering pro-
cesses differ from the prescribed ones, and thereby improve
software engineering methods and products. Whereas most
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process mining approaches specify behaviors in terms of se-
quences of tasks and branching, we believe that the funda-
mental nature of processes is mostly intentional. Intention-
oriented software process specification has been promoted
since long ago. In the 80s, intentional models were proposed
in the IS community as a potential theoretical foundation to
determine users’ behavior [9] or in a former work to model
humans behavioral intention, particularly for computer us-
age behavior [1]. Later on, in the early 90s, intention analy-
sis and modeling have been promoted as a driving paradigm
to study strategic alignment, to define actors and roles [35],
to guide requirements elicitation [26], to handle traceabil-
ity [16], to study users behavior to identify and name use
cases, etc. Representing processes by intentions and strate-
gies has proved a powerful tool to better understand the
deep nature of processes, to see how processes interweave
and combine, to abstract processes and visualize them un-
der man-manageable form, even when they are extremely
complex [28].

This paper presents a method, so-called Map Miner
Method (MMM) that aims at discovering users’ intentions
and strategies to construct intentional process models from
event logs. MMM generates intentional models specified
with the Map notation [27, 28]. This notation is chosen
rather than other intentional process models such as KAOS
or I* [35, 8] because (a) it has already proved effective for
specifying software engineering processes [26], (b) it sup-
ports process variability and multi-process specification [27],
and (c) its way of combining intentions and strategies at mul-
tiple levels of abstraction scales well to large and complex
processes [28]. In MMM framework, an intention is defined
as a goal, an objective or a motivation to achieve a goal with
a clear-cut criteria of satisfaction, which can be fulfilled by
the enactment of a process [30]. The intentions are explic-
itly represented and are of high-level of abstraction (e.g.,
organizational goals).

In software engineering context, MMM can be useful at
different stages of the process model life-cycle, for instance:
(i) at the requirements level, to understand users intentions
from software usage activity logs; (ii) at the project man-
agement level, to check alignment between prescribed pro-
cess models and what stakeholders actually do; or (iii) at
the application level, to monitor users and provide run-time
recommendations.

The contribution made in this paper is triple: (i) First,
modeling the users’ activities logs in terms of strategies
(using Hidden Markov Models (HMMs) [25]); unsupervised
learning is used to estimate the parameters of HMM, (ii)
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Figure 1: An overview of the Map Miner Method

Second, using estimated strategies and Map formalism, we
develop Deep Miner and Map Miner algorithms to generate
respectively, fine-grained and coarse-grained Map process
model, (iii) Finally, the entire proposed approach is applied
on two practical datasets; first in a laboratory context, sec-
ond in a large-scale case study by mining the Eclipse UDC
(Usage Data Collector) developers’ logs [10]. The resulting
Maps provided a precious understanding of the processes
followed by the students and the developers, and some feed-
back on the effectiveness and scalability of MMM.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces MMM, which consists in modeling users’
activities in terms of strategies (using HMMs). This sec-
tion also describes Deep Miner and Map Miner algorithms.
Section 3 describes the application of MMM on a dataset re-
sulting from the event logs of Entity/Relationship diagrams
creation. Section 4 represents the large-scale case study with
event logs from Eclipse UDC to find out how developers use
the Eclipse technology. Related works are discussed in sec-
tion 5 and threats to validity in section 6. Finally, section 7
concludes this work and presents its perspectives.

2. MAP MINER METHOD
The key idea of MMM is modeling the users’ behaviors

in terms of their underlying intentions and strategies, from
event logs. The strategies are the alternative ways to fulfill
the intentions. MMM uses the Map metamodel to model ac-
tual process followed by users. According to the Map meta
model, intentions express what users intend to perform
during the enactment of a process [27]. In other words, the
enactment of a process is the execution of a sequence of ac-
tivities that are caused by users’ intention. According to
the fuzzy mechanism of a cognitive process, several inten-
tions cause the performance of several activities at the same
time. However, the intentions are not directly related to
the activities; the intentions can be fulfilled by combining
different activities, which are different ways of achieving an
intention, i.e., strategies. Indeed, in the Map metamodel,
strategies are used to move from one intention to another
and are made of one or several activities. This relationship
between the intentions, the strategies and the activities, rep-
resents the top-down structure of reasoning and acting in
cognitive processes of human brain. Nevertheless, only the
low-level part of this structure, i.e., users’ activities, is ob-
servable. The middle and high-level part (strategies and
intentions) are abstract notions and therefore unobservable

directly. MMM proposes to trace back this structure to
achieve the sources, which are users’ intentions. It is im-
portant to define some notions used in this paper. The no-
tion of intention is defined in the introduction. However,
there are also sub-intentions, which are the low-level inten-
tions. They are the finest intentional objects of the Map
metamodel. Each sub-intention is associated to a parent in-
tention, and one intention is fulfilled if at least one of its
children sub-intention is fulfilled. The sub-intentions allow
obtaining the fine-grained Map and the intentions allow ob-
taining the coarse-grained Map.

MMM uses the observable users’ activities traces (a set
of event logs), generated while interacting with Information
Systems. MMM consists of three phases: (i) First phase:
estimating the users’ strategies from observed activities us-
ing HMMs. The topology of HMM permits modeling ob-
served process (users’ activities) in terms of hidden states
(underlying users’ strategies), (ii) Second phase: generat-
ing fine-grained Map process model using estimated strate-
gies along with Map formalism (Deep Miner algorithm), (iii)
Final phase: generating coarse-grained Map process model
from fine-grained one (Map Miner algorithm). Constructing
the Map process model thereby allows rebuilding the actual
process model, i.e., the model followed by users. Figure 1
depicts an overview of MMM.

Before addressing the problem of discovering a Map, the
associated framework is briefly explained in the following
section.

2.1 Map Metamodel
Map is an intentional process metamodel. Map process

model (an instance of Map metamodel) allows representing
process models in terms of users’ intentions and strategies.
Figure 2 illustrates a Map process model where the nodes
represent the intentions and the edges represent the strate-
gies. A set of <Source Intention, Strategy, Target Inten-
tion> represents a section in the Map. Map allows repre-
senting flexible process models, enacted in a dynamic way
since the sections of a Map can be executed non-sequentially
and as long as intentions are not completely fulfilled. For
example, on figure 2, one way to fulfill the intention Spec-
ify an entity is to select the strategy S4: By generalization
which is composed of two activities: create an entity and
create generalization link (see Table 1). Thus, confronted
to a specific situation and a particular intention, the Map
reveals the alternative strategies to fulfill the intention. The
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Figure 2: Map process model for the construction
of E/R diagrams.

2.2 Estimating Strategies from Activities
HMMs allow modeling the structure of complex tempo-

ral dependencies between two complementary Markov pro-
cesses: hidden and observed processes, given that the ob-
served process is generated depending on the state of the
hidden process. Generally, the states of hidden process are
not visible but the probability of a given state can be inferred
by computing the Maximum Likelihood of the observed pro-
cess. The two complementary processes are defined next.

2.2.1 Hidden Process: Users’ Strategies

Let s “ ps1, . . . , sLq P SL be a temporal sequence of users’
strategies of length L. The topology M1 is chosen for hidden
process, which means that the strategy sl at step l only
depends on the strategy at step ℓ´1. This choice is justified
by the fact that strategies are performed in a logical order by
users. A homogeneous Markov chain, which parameters are
denoted by T and π, models the hidden process (strategies)
with:

Tpu, vq “ Pr psℓ “ v|sℓ´1 “ uq @u, v P S, ℓ P r2, Ls,

πpuq “ Pr ps1 “ uq @u P S.
(1)

The vector π contains the probabilities of strategy at the
initial state and the matrix T contains the transition proba-
bilities for the following strategies, i.e., the transition prob-
abilities from any strategy at step ℓ´1 to any other strategy
at step ℓ (including itself).

2.2.2 Observed Process: Users’ Activities

Let a “ pa1, . . . , aLq P AL be a temporal sequence of
users’ activities of length L. We choose the model M0 for
observed process, meaning that the emission of aℓ, at a given
step ℓ, does not depend on any previous observation. It only
depends on the hidden strategy at the same time step. The
emission probability of an observation a P A for a given
strategy u P S is given by:

Epa, uq “ Pr pa|uq . (2)

The matrix E contains the emission probabilities of any
activity for any strategy. Assuming that S, A and π are
known, the HMM model parameters is fully described by
H “ tE,Tu, which represents the core information about
the HMM behavior. The MMM highly relies on the emis-
sion matrix E and the transition matrix T to respectively
characterize the users’ strategies and the structure of the
Map. For these reasons, it is extremely important that these

two matrices precisely match the process under study. To
do so, the coefficients of the two matrices are learned based
on logs produced by the enactment of the process. This pa-
per focuses on unsupervised learning to estimate E and T
since it has been proven to be efficient and offers a higher
performance than supervised learning of HMM [25]. Un-
supervised learning estimates these parameters based only
on traces of activities (without prior knowledge about the
strategies set S). The Baum-Welch Algorithm (BWA) [4] is
most commonly used to learn the parameters of a HMM. The
BWA estimates the HMM parameters that locally maximize
the probability of having these sequences generated by the
HMM. More precisely, the BWA maximizes the likelihood of
H:

H
˚ “ argmax

H

N
ź

n“1

Pr pan|Hq , (3)

where N is number of observed sequences in a dataset con-
taining activities a1, . . . ,aN .

It is important to highlight the BWA requires the cardi-
nals of N “ |S| and M “ |A| to run. Regarding the set of
activities A can simply be obtained by identifying the differ-
ent activities in the dataset. However, the information about
number of strategies does not exist in the dataset. There-
fore, a heuristic method is used in this paper, which consists
in generating several HMMs models with different numbers
of strategies and observing the associated emission matrices
E. It occurs that as the number of possible strategies in-
creases, the number of different strategies obtained in the
emission matrices reaches a threshold. It means that when
the number of possible strategies is too high, the BWA pro-
duces an emission matrix with several identical strategies.
Consequently, this observed threshold sets the right number
of strategies.

2.3 Deep Miner Algorithm
Once model parameters T and E are estimated by the

BWA, the problem is how to extract a Map process model
which fits actual process model. As a first step into this
direction, we propose a metric which has the interesting
property of taking into account both fitness and precision
to optimize the Map process model, whereas classical met-
rics in process modeling address either fitness or precision
(see [29] for an overview of the existing metrics).

2.3.1 Extracting a Fine-grained Map

We recall that the matrices generated by the BWA are an
emission matrix E, giving the probabilities of generating any
activity while performing a strategy and a transition matrix
T, giving the probabilities of transition between any couple
of strategies ps, s1q P S2.
Clearly, there is a strong link between the transition ma-

trix and the topology of the Map process model we want
to extract. To extract a Map from a transition matrix, the
two following constraints must be verified: (i) any transition
between possible strategies in the transition matrix should
be possible on the Map; (ii) any transition between possible
strategies in the Map should be possible in the transition
matrix.

The first constraint can be seen as a criterion for fitness
since it ensures that all the transitions learned from the
dataset are present in the Map. The second constraint cor-
responds to a criterion of precision since it aims at avoiding



introducing extra-transitions in the Map that are not learned
from the dataset. Our goal is to find the Map that best sat-
isfies both of them. In the next part, we define a metric
which is a trade-off between fitness and precision and also
captures the relative importance of transitions.

2.3.2 Proposed Metric of Fitness and Precision

The topology of a Map m can be defined by the set of its
sections, each comprising a source sub-intention, a strategy
and a target sub-intention. We formally write

m “ pmkqkPt1,...,Ku, (4)

where k denotes the index of a section and K is the total
number of sections of the Map. For each k P t1, . . . ,Ku,
mk “ pi, s, jq P IˆSˆI. The componentmkp1q is the source
sub-intention of section k, mkp2q is the strategy of section
k, and mkp3q is the target sub-intention. On the Map m,
a transition from strategy s to strategy s1 is possible if and
only if there exist pk, k1q P t1, . . . ,Ku2 such that mkp2q “ s,
mk1 p2q “ s1, and mkp3q “ mk1 p1q. In the following, we use
the symbol α to denote if a transition is possible or not in
the Map:

αs,s1 “

$

&

%

1 if Dpk, k1q P t1, . . . ,Ku2 such that mkp2q “ s

mk1 p2q “ s1, and mkp3q “ mk1 p1q,
0 otherwise.

(5)
In the transition matrix T, we only consider as valid tran-

sitions with a probability above a given threshold ε. The
value of ε has to be chosen heuristically, to counter the ef-
fects of noise and artifacts in the dataset. We define:

ωs,s1 “

"

1 if Tps, s1q ě ε,

0 if Tps, s1q ă ε.
(6)

Classically, the criteria of fitness and precision between
T and m can be expressed by the expressions known as
recall and precision. In our context, we define these two
expressions as

RecpT,mq “

ř

s,s1 ωs,s1αs,s1

ř

s,s1 ωs,s1

, (7)

PrepT,mq “

ř

s,s1 ωs,s1αs,s1

ř

s,s1 αs,s1

. (8)

The numerator of both expressions is the number of signifi-
cant transitions in T that are present on the map m, while
the denominators are the number of significant transitions
in T and the number of transitions on m, respectively.

Since our goal is to find a map that fits best the transition
matrix with respect to both recall and precision, we can use
the classical F-measure which expression is:

F1pT,mq “ 2
PrepT,mqRecpT,mq

PrepT,mq ` RecpT,mq
. (9)

2.3.3 Optimization Problem

Now that the proper metric has been defined, we need to
find the Map that maximizes it. The solution of this problem
belongs to the set

M “ argmax
m

F1pT,mq. (10)

Since we want to obtain a Map with the simplest structure,
we choose the solution with the lowest number of sections.

In other words, the solution is

m˚ “ arg
mPM min |m|, (11)

where |m| stands for the number of sections in m. However,
finding m˚ is a difficult task since m generally belongs to
a high-dimension space. Indeed, it can be shown that there

are 2|S|2 possible Maps for |S| different strategies. Conse-
quently, computing all the possible Maps with a brute force
method then comparing their F-measures is not an option.
Instead, we developed an algorithm that solves (11) with a
complexity bounded by |S| ˚ p|S| ´ 1q. This algorithm is
detailed below.

Data: strategy set S, transition matrix T, threshold ε

Result: map m˚

for each strategy s P S do
associate to s a target sub-intention is;

end
for each strategy s P S do

for each strategy s1 P S, s1 ‰ s do
if Tps, s1q ě ε then

create a section from is to is1 with strategy
s1 ;

end

end

end
Algorithm 1: How to obtain a Map from S, T, and ε.

The first part of algorithm 1 associates a target sub-
intention to each strategy of S. In the second part, if a
transition probability from strategy s to strategy s1 is above
the threshold ε, a section is added to the Map from the tar-
get sub-intention of s to the target sub-intention of s1. This
section ensures that the transition given by T is also present
in the Map. With this algorithm, recall and precision, de-
fined in (7) and (8), have the advantage of being equal to 1.
Indeed, ε defines the accuracy level of the Map. When ε is
close to 0, almost all the transitions from the unsupervised
model are present in the obtained Map. Consequently, the
likelihood of the obtained Map is high but the Map is hardly
understandable by humans since it has too many sections.
However when ε increases, the number of sections, as well
as the likelihood of the obtained Map, decrease. The Map
gets more easily understandable by humans but it is not as
accurate in terms of transition.

2.4 Map Miner Algorithm
Deep Miner algorithm generates the low-level intentions or

sub-intentions shown by ta, b, c, ¨ ¨ ¨ u (figure 3). To extract
high-level intentions from low-level intentions, Map Miner
algorithm has been developed to automatically perform this
task. To do so, Map Miner algorithm uses a clustering al-
gorithm, K-means [14] to group the sub-intentions into the
intentions. Indeed, this multi-level topology is due to the
deep architecture of the brain. The extensive studies on the
visual cortex show cognitive processes have a deep structure
and humans organize their ideas and concepts hierarchically.
First, they learn simpler concepts and then compose them
to represent more abstract ones [5]. Note that the num-
ber of intentions is a parameter that has to be chosen. The
choice of these parameters allows researchers to obtain Maps
with different level of precision. Due to lack of space, this
algorithm will be detailed in a future work.



3. A PROOF OF CONCEPT
To evaluate MMM, we conducted a tailored experiment

with the Master students in computer science of Sorbonne
University. According to the experiment, 66 students cre-
ated Entity/Relationship (E/R) diagrams using the pre-
scribed Map process model (figure 2). Indeed, for this par-
ticular experiment, the students were asked to follow the
prescribed Map while creating their E/R diagrams. Our
goal is to compare the actual Map process model discovered
by MMM to the prescribed Map. Regarding this prescribed
Map, students can select ten strategies to fulfill four inten-
tions, i.e., Start, Specify an entity, Specify an associ-
ation and Stop. From Start, it is possible to progress in
the process by selecting strategies leading to intentions but
once the intention of Stop is achieved, the enactment of the
process finishes. Table 1 represents the activities and re-
lated strategies that the students perform to fulfill the four
intentions. The event logs comprising students’ activities
are recorded by a web-based tool. Once the event logs were
available, MMM has been applied on them to trace back this
procedure and rebuild the Map process model that was actu-
ally followed. Finally, the conformity between the prescribed
Map and the discovered Map is checked (see section 3.1).
This knowledge can be useful to (i) improve the software
used by the students to make the prescribed model easier
to follow, (ii) modify the prescribed model by accounting to
the process the students actually followed.

Table 1: Strategies and related activities
Labels Name of

strategies
Related activities
(activities labels)

S1 By completeness
(model)

Create entity (a1)

S2 By completeness
(entity)

Link attribute to entity (a2)

S3 By normaliza-
tion

Delete Link attribute to entity (a6),
Delete entity (a5), Define primary
key (a7)

S4 By generaliza-
tion

Create entity (a1), Create generaliza-
tion link (a3)

S5 By specializa-
tion

Create entity (a1), Create specializa-
tion link (a4)

S6 By reference {Delete link attribute to entity, Cre-
ate entity, Create association, Link
association to entity} (a8), {Create
association, Link association to en-
tity} (a9)

S7 By decomposi-
tion

{Create association, Link association
to entity} (a9)

S8 By normaliza-
tion

{Delete association,Delete Link
attribute to association}(a10)

S9 By completeness
(assoc.)

Link attribute to association (a11)

S10 By completeness
(final)

Check the model (a12)

3.1 Applying MMM on Dataset
Once the students’ traces are recorded, MMM is applied

to obtain the fine-grained and coarse-grained Map process
models. As a first step, the number of strategies must be
fixed by the heuristic method described in section 2.2. As
a result, we obtain 10 as number of strategies. Then BWA
estimates the parameters of the transition matrix and the
algorithm described in 2.3.3 is then applied to obtain the

structure of a fine-grained Map, i.e., what is the source
sub-intention and the target sub-intention of each strategy
(the sections). As described earlier, the value of ε has to be
set to obtain a trade-off between the accuracy of the Map
and its understanding. Figure 3 depicts the fine-grained
Map (small nodes) for ε “ 0.07 and coarse-grained Map
(large nodes) obtained by Deep miner and Map Miner
algorithms, respectively. What we learn from the obtained
Map is:

‚ Deep Miner algorithm found 9 sub-intentions as well as
intentions Start and Stop. Map Miner algorithm groups
the sub-intentions into the high-level intentions to obtain
coarse-grained Map. The high-level intention are shown by
I 1
2 and I 1

3 (large circle on figure 3). The discovered strategies
for each high-level intention allow identifying the intentions
I 1
2 to Specify an entity and I 1

3 to Specify an association.

‚ There is a number of matches between the new groups of
strategies in the obtained Map and the groups of strategies
in the prescribed Map. For instance, S1 and S1

1, S2 and
S1
1, S10 and S1

10 are made of similar activities. The few
mismatches between prescribed and obtained strategies
indicate that some prescribed strategies were not followed
as intended by the students. This shows how the students
preferred to behave. For instance, in the prescribed Map,
activity a2 is only present in strategy S2 for intention
I2 whereas in the obtained Map, it is present in many
strategies: S1

1, S
1
6, S

1
7, and S1

9 for intentions I 1
2, and I 1

3. The
same phenomenon is true for activity a1. It means that
these particular activities are used by students during the
entire process and not only for a single intention.

It is important to highlight that the likelihood (3) of the
HMM model is ´2.36e3 (logarithmic scale), which is higher
than the likelihood of the obtained Map (´2.54e3). This is
normal since the Map formalism restricts some transitions
(e.g., from the Stop to the Start) that are generated by the
HMM model.
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Figure 3: Map obtained by MMM for E/R diagrams
experiment.

4. CASE STUDY: ECLIPSE UDC
The goal of this case study is to reconstruct the Map

process model of developers who committed their code to



Eclipse UDC server hosted by Eclipse Foundation [10]. The
Eclipse Foundation provides UDC dataset to help commit-
ters and organizations to better understand how the commu-
nity makes use of Eclipse platform [11]. In this perspective,
our contribution is to model the UDC developers’ behav-
iors in terms of intentions and strategies while using Eclipse
platform. The obtained Map can help to better understand
developers’ behaviors.

The dataset contains 1, 048, 576 event logs from developers
who agreed to send their data back to the Eclipse Founda-
tion. These data aggregate activities from over 10, 000 Java
developers between September 2009 and January 2010. The
activities are recorded by timestamps for each developer,
which allows knowing when and by whom activities were
committed.

4.1 Applying MMM on Dataset
In order to apply MMM, it is important to prepare the

dataset. The number of unique developers’ activities per
month exceeds 500 activities. This number contains both
the recurring activities and the non-recurring activities, i.e.,
activities which are not frequently performed by developers.
These activities are not representative of the developers’ be-
havior characteristics because they have not been repeated
enough to be a behavioral-pattern. For this reason, and
also for readability, we limit this study to the 150 most fre-
quent activities performed by developers. Table 2 contains
the list of these activities. Some of these activities are the
commands performed directly by developers; some of them
are the frameworks, plug-ins or built-in features of Eclipse
used by developers during their development process. For
readability reasons, the prefix org.eclipse of the activities is
removed. The plug-ins and frameworks are shown in bold
letters and the related activities are inside brackets.

Once the dataset is ready, BWA estimates the transition
matrix (developers’ strategies). Note that, once again the
number of strategies obtained by the heuristic method for
this case study is 10. The strategies are represented in ta-
ble 2 with their corresponding groups of activities. Finally,
the Map obtained by Deep Miner and Map Miner algorithms
is shown on figure 5.

Figure 4 depicts the effect of the choice of ε on the likeli-
hood and the number of sections of the obtained Map. As
mentioned earlier, ε expresses the level of abstraction for a
Map. An expert can choose the value of ε regarding the ex-
pected level of abstraction. In this case study, the value of ε
is set to 0.06 to have a good trade-off between having a like-
lihood with a relative high value and a reasonable number
of sections.

Regarding the obtained Map, 22 sub-intentions are
grouped by Map Miner algorithm into 7 groups of high-level
intentions. Note that MMM can discover accurately the be-
ginning and the end of a process; thus the intentions Start
and Stop are clearly determined on the obtained Map. The
transition probabilities from one intention to a strategy are
annotated on the arrows. These values correspond to the
probabilities that the developers selected a strategy from a
given intention. The values on the loops indicate the prob-
abilities that the developers continued to perform the activ-
ities related to the looped strategies.

4.1.1 Naming Strategies and Intentions

As found in E/R diagrams experiment and this case study,
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Figure 4: The effect of the choice of ε on the like-
lihood and the number of sections of the obtained
Map for the Eclipse traces.

MMM discovers the strategies (the arrows) and where they
lead, i.e., intentions (the nodes). In other words, MMM re-
constructs the topology of the Map process model from event
logs; the names of strategies and intentions are not fully au-
tomatically generated. Nevertheless, it is possible to infer
the names of strategies and intentions from the emission ma-
trix E. Indeed, E specifies the activities associated to each
strategy discovered by the MMM (see table 2). Therefore,
based on the names of activities grouped into a strategy and
through a semantic analysis of their properties and interre-
lationships, it is then possible to manually infer the names of
the strategies. In the same way, since the strategies lead to
intentions, the names of intentions can be inferred by analyz-
ing the strategies leading to each intention. For instance, the
main activities grouped into the strategy S5 are ’refactor-
ing.commands’, ’jdt.junit’, ’debug.ui.commands’, etc. From
these activities one can infer the developers wanted to debug,
to refactor and to test a code; thus, the name inferred for
this strategy is by refactoring, testing and debugging. Fur-
ther, the main activities for strategy S6 are ’delete’, ’paste’,
’copy’, ’undo’, etc. This means the developers wanted to
modify a code or a file; the name inferred for this strategy
is by file modification. Since both strategies lead to an in-
tention, we infer that the developers who performed S5 and
S6 intended to Fix a bug. By applying this procedure, the
names of all strategies (denoted on the arrows) and inten-
tions are semi-automatically inferred. The inferred names of
intentions are Start, Initiate the development, Man-
age tasks, Fix a bug, Improve the code, Commit the
code. This naming protocol remains to be fully automated
by building an sophisticated ontology.

4.2 Developers’ Behavior Analysis
Discovering the Map for Eclipse UDC developers allows

understanding the developers’ behaviors during the devel-
opment process. As shown on figure 5, they have selected
different sequences of strategies with different probabilities,
to fulfill their intentions. An expert can analyze these
behaviors in order to understand how/why developers
make use of different components or plug-ins of Eclipse:
where they follow the best practice of software development
projects and where they deviate from these rules, which
components or plug-ins are more involved than the others,
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Figure 5: The obtained Map for Eclipse UDC.

Table 2: Strategies labels and related activities for Eclipse UDC
Strategies labels Activities names

S1 mylyn.tasks.ui.commands.[OpenTask, AddTaskRepository,ActivateTask, SearchForTask],
mylyn.context.ui.commands.[Open.context.dialog,AttachContext, interest.Increment,
interest.Decrement], mylyn.monitor.ui, mylyn.team.ui

S2 core.[jobs, net, filesystem, resource, runtime, variables, contenttype, databinding.observable],
equinox.p2.ui.sdk.install

S3 mylyn.context.ui.commands.[Open.context.dialog,AttachContext, interest.Increment,
interest.Decrement],team.cvs.ui.[branch, replace,GenerateDiff, ShowHistory,Add,Tag,merg,
compareWithTag], jsch.core,mylyn.[monitor.ui, team.ui, commons.ui, bugzilla.ui]

S4 pde.ui.EquinoxLaunchShortcut.run, equinox.p2.ui.sdk.update, equinox.[ds, simplecon-
figurator.manipulator, frameworkadmin, app, common, directorywatcher, engine, core, meta-
data.repository, garbagecollector, ui.sdk.scheduler, repository, preferences, exemplarysetup,
registry, updatechecker]

S5 core.[databinding.observable, core.net, core.filesystem, core.resource, core.runtime,
core.variables, core.contenttype], debug.ui.commands.[RunLast,Debuglast, eof, StepOver,
TerminateAndRelaunch, execute, AddBreakPoint, TogglebreakPoint], jdt.debug.ui.
[commands.Execute, commands.Inspect], jdt.junit.[junitShortcut.rerunLast, gotoTest,
junitShortcut.debug], ltk.ui.refactoring.commands.[deleteResources, renameresources,
moveResources], compare.selectPreviousChange

S6 ui.edit.[delete, paste, copy, undo, text.goto.lineEnd, text.contentAssist.proposals,
text.goto.wordNext], ui.file.save

S7 cdt.ui.editor, jdt.junit.[junitShortcut.rerunLast, gotoTest, junitShortcut.debug],
team.cvs.ui.[CompareWithRevision, CompareWithLatestRevisionCommand,
CompareWithWorkingCopyCommand],ui.edit.[delete, paste, copy undo, text.goto.lineEnd,
text.contentAssist.proposals, text.goto.wordNext]

S8 team.ui.[synchronizeLast, teamSynchronizingPerspective, synchronizeAll, applyPatch],
ltk.core.refactoring.refactor.[create.refactoring.script, show.refactoring.history]

S9 mylyn.monitor.ui, mylyn.context.ui, mylyn.commons.ui, team.cvs.ui.[commitAll,
Commit, CompareWithRemote, Sync]

S10 mylyn.monitor.ui, mylyn.bugzilla.core, mylyn.bugzilla.ui, team.cvs.ui.[commitAll,
Commit, CompareWithRemote, Sync]



which strategies are more/less taken or where are system
bottlenecks, etc. The obtained Map can also be used to
provide recommendations to developers in order to choose
the best path (strategies) to fulfill his/her intentions. In
this case study, there is no prior model to compare with the
obtained Map. However, MMM has proven to be effective
with the controlled experiment (see 3) and the likelihood
of the obtained Map is higher than the prescribed one.
Hereafter, several observations, from the obtained Map, are
detailed to attest the aforementioned claims in practice.

Observation 1. The developers’ activities involve
the usage of frameworks and plug-ins such as Mylyn,
Equinox, team/CVS, Junit, built-in features of Eclipse
such as Eclipse Core, Debug and API such as ltk (Lan-
guage Toolkit). Figure 6 depicts the usage probabilities of
these frameworks in each strategy. We can also observe
the usage frequency of each framework/plugin/tools among
the strategies. For instance, the usage frequency of Mylyn
framework is 4 times among 10 strategies and its usage
probabilities for strategy S1 is 1 whereas for strategy S5 it
is 0. These values help detecting if any of these frameworks
or tools is underused. For instance, we observe that the
refactoring tool ltk is underused since it has a low usage
probability (see also observation 4).

S1 S9S8S7S6S5S4S3S2 S10

0

0.1

0.4

0.8

0.2

M
yl

yn

Team

1

0.6

Core

Core

M
yl

yn

Equin
ox

U
sa

g
e

 p
ro

b
a

b
il

it
ie

s 

Strategies

Equin
ox

C
o

re
Ju

n
it

lt
k

Ju
n

it

Te
am

Edito
r

D
eb

u
g

M
yl

yn

Te
am

M
yl

yn

lt
k

Team

Figure 6: Usage probabilities of different Eclipse el-
ements for each discovered strategy.

Observation 2. The developers who start a development
process choose one of the 4 first strategies, i.e., S1, S2, S7,
S9. If they already have an ongoing program at hand, they
tend to adopt either the strategy S7: by reviewing and
testing to Improve the code or the strategy S9: by CVS
committing to Commit the code. On the other side,
the developers who start a new development choose either
the S2 strategy: by regular programming activities to
Initiate the development or choose the strategy S1: by
project tracking and team planning to Manage tasks
with probability 0.39 and 0.12 respectively. This observation
suggests that the developers of this case study tend to start
programming by building first the baselines for software
architecture through dividing the programs into different
modules/packages using OSGI-based design. After
decomposing the software into sub-modules, the developers
utilize the strategy S3 : by code/task sharing which
involves mainly Mylyn framework (described in scenario
3) which can be integrated with the Bugzilla bugtracker

system and issue system. Therefore, tasks and the content
of these tasks can be shared among developers. The high
transition probability of this strategy means the developers
tend to share code/task in order to fulfill Manage tasks.

Observation 3. The developers who have the intention
to Manage tasks choose the strategies S1 and S3. Regard-
ing Table 2, the activities related to these strategies involve
Mylyn framework which is the task and application lifecycle
management (ALM) framework for Eclipse. It helps the
developers to work efficiently with many different tasks such
as bugs, problem reports or new features. It monitors users’
activities and preserve the context of the task-at-hand
to focus the Eclipse UI on the related information. For
instance, while working on a current task, if the developers
have to work on another task, e.g., an occurred bug,
Mylyn preserves the context of the current task. Thus,
the developers can work on another task without losing
the context of previous task. This procedure is discovered
in the obtained Map of Eclipse. The activities of the
developers while they Manage tasks are interrupted (e.g.,
for an urgent bug) and they choose the strategy S5 to Fix
a bug. To switch to the previous task, they first commit
and report the bug then they continue managing tasks. We
can deduce the Mylyn framework has reliable and relevant
functionalities for developers and it is not underused since
they work with it 47% (transition probability of 0.47) of
their time and they use it frequently (Figure 6).

Observation 4. When the activities of the develop-
ers during Manage tasks are interrupted, they choose
strategy S5 to Fix a bug. The procedure of fixing a bug
may involve refactoring existing code, writing unit tests,
editing and modifying involved code and finally fixing the
affected code. The strategy S5 : by refactoring, testing
and debugging represents this procedure. This strategy
is defined as a best practice to fix a bug, which means the
developers who adopt this strategy respect the guidelines of
software development. However, they perform this strategy
with probability 0.22 whereas they prefer to Fix a bug
by file modification with a higher transition probability
(0.33). Moreover, Figure 6 shows a low usage frequency and
usage probability for ltk (Language Toolkit) which is an
API for automated refactoring in Eclipse-based IDEs. This
means the developer prefer refactoring manually instead
of using the refactoring and debugging tools of Eclipse
provided for this purpose. This confirms some results of
empirical research [22, 31, 13, 34] that refactoring tools
are seldom used and that they are not developers-friendly
enough.

Observation 5. Bug fixing includes debugging and
refactoring of different software modules. Once developers
have fixed a set of bugs, they choose either strategy S8: by
patch applying with probability 0.05 or strategy S7: by
reviewing and testing with probability 0.07 to fulfill the
intention of Improve the code. This observation means
when debugging and refactoring have an impact on different
parts of the program, the developers improve their code by
patch applying. If debugging and refactoring change the
program locally, they manually changes the code and send
it for reviewing and testing. The probabilities describe
that the developers tend to modify the codes manually.



Observation 6. The Map can be used as a behavioral
pattern to build recommender system for assisting devel-
opers in their daily development tasks. For example, this
recommender system can suggest developers to avoid some
problematic paths/strategies which might deviate from or-
ganizational best practices and to take some more effective
paths/strategies. For instance, since the procedure of refac-
toring and debugging might affect the code in different parts
of the program, it is recommended to check the coherence
integrity of the program. To do so, after fixing a bug, the
developers can be recommended to take the strategy S4: by
OSGI-based design to Initiate the development, to
check if the refactoring and debugging have been impacted
the OSGI-based design (e.g., if the dependencies between
the modules are changed, etc).

4.3 Process Improvement
The obtained Map also helps improving the software us-

ability in different areas [3]. The Map can help the novice or
unfamiliar users learning system features by making the task
of learning easier, by using the Map obtained from previ-
ous development process as a guideline. For instance, when
their intentions are known, they can be recommended which
strategies and activities might be useful to fulfill their inten-
tions. Since the intentional topology of a Map makes it user-
friendly, it can help software designer designing systems that
enable users to be more efficient in their operations. This
can be done by adapting the system to the users’ needs or
by assisting users step by step while the enactment of a pro-
cess. Using a Map increases also the users’ confidence and
satisfaction in the enactment of a process. All these points
contribute to improving the usability of the software prod-
ucts.

5. RELATED WORK
The workflow models approaches propose to discover pro-

cess models from event logs generated during process en-
actment. However, they model users’ behaviors in terms of
activities [32, 33, 7, 21] and overlook the underlying users’
intentions and strategies. Intention Mining is a new field of
research that does not exceed a few works [23, 2]. These
works differ from our approach because they look for a sin-
gle user’s intention underlying a single event log while our
approach proposes to infer common users’ intentions during
enactment of a process to achieve the ultimate process goal.
HMMs are commonly applied in many fields such as speech
recognition [17] and bioinformatics [12]. HMMs are used for
model discovery by Cook et al. [7, 15]. This work concludes
that the Ktail and Markov methods are more promising than
RNet method to be used in practical applications. However,
these works do not address the intentional dimension of pro-
cesses that cause the activities performance. Application of
HMMs in Intention Mining has been proposed and applied
for the first time in our previous works [18, 19, 20].

Finite State Machine (FSM) is used in some works to
model users’ behaviors [6, 21]. While our approach models
hidden states as users’ strategies, FSM is a simple automa-
ton and is not appropriate to model cognitive processes.

Several experimental works address the developers’ be-
havior in the software engineering field [22, 31, 21]. In [22],
improvements for the user interface of automated refactoring
are proposed by instructing several participants to apply the

Extract Method refactoring on several open source projects.
In [31], the focus is on Eclipse UDC refactoring histories to
understand why developers underuse automated refactoring.
However, these approaches are based on statistical reports
and do not consider underlying users’ intentions during the
development.

6. THREATS TO VALIDITY
There are four main issues that threat the validity of the

proposed approach. First, the mined Map may suffer from
underfitting problems if the number of activities sequences
used to estimate the parameters of the HMM is not high
enough. Indeed, these sequences have to capture all the
possible behaviors while enacting the process under study
to produce an accurate Map. Second, the BWA requires
an important number of iterations to converge to a result.
For instance, it converges at 9, 986 learning iterations for
the E/R diagrams experiment and 20, 237 learning itera-
tions for the Eclipse case study. Moreover, it cannot always
be guaranteed to converge to the global maximum likeli-
hood. Third, although the MMM automatically discovers
the topology of the Map process model, the names of strate-
gies and intentions are still inferred semi-automatically. The
manual part of this naming procedure introduces a human
bias. Fourth, the M1M0 topology chosen for the HMM is
the most sophisticated topology allowing the use of an algo-
rithm such as BWA or equivalent algorithms. More complex
topologies may actually be more appropriate to model some
processes. However, there is no known algorithm to estimate
the parameters of these topologies, as BWA does for M1M0.
For this reason, the scope of MMM is limited to the M1M0

topology.

7. CONCLUSIONS
This paper has presented the Map Miner Method (MMM),

a method for automating the construction of an intentional
process model from users’ activities logs. Constructing an
intentional process model from event logs is a novel approach
to model processes. It helps understand the users’ intentions
and strategies while using software products. Further, it can
help software designers adapting the products functionalities
to better meet users’ needs, therefore making products more
user-friendly. On the other hand, the intentional model can
assist any user (novice or experimented) by providing rec-
ommendations to choose the next step of a process.

The main contribution of this work is to build from theory
a method which fully constructs the topology of an inten-
tional model, only based on users’ activity logs. This makes
the method easily applicable to any dataset, as long as it
is made of users’ traces of activities. In this paper, MMM
was validated by a controlled experiment (creation of E/R
diagrams by students) and then by a large-scale case study
(developers of Eclipse UDC).

Although the MMM automatically discovers the topology
of the intentional model, the names of strategies and in-
tentions are still inferred semi-automatically. This could be
fully automated by building a more sophisticated ontology.
In addition, we are developing an ProM [24] plug-in which
will allow modeling processes in intentional manner.
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generation of software behavioral models. In Software
Engineering, 2008. ICSE’08. ACM/IEEE 30th
International Conference on, pages 501–510. IEEE,
2008.

[22] E. Murphy-Hill and A. Black. Breaking the barriers to
successful refactoring. In Software Engineering, 2008.
ICSE’08. ACM/IEEE 30th International Conference
on, pages 421–430. IEEE, 2008.

[23] K. Park, T. Lee, S. Jung, H. Lim, and S. Nam.
Extracting search intentions from web search logs. In
ITCS, 2010 2nd Intl. Conf. on, pages 1–6. IEEE, 2010.

[24] ProM. http://processmining.org, 2013.

[25] L. Rabiner and B. Juang. An introduction to hidden
markov models. ASSP Magazine, IEEE, 3(1):4–16,
1986.

[26] C. Rolland. Modeling the requirements engineering
process. In Information Modelling and Knowledge
Bases V: Principles and Formal Techniques: Results
of the 3rd European-Japanese Seminar, Budapest,
Hungary, May, pages 85–96, 1993.

[27] C. Rolland, N. Prakash, and A. Benjamen. A
multi-model view of process modelling. Requirements
Engineering, 4(4):169–187, 1999.

[28] C. Rolland and C. Salinesi. Modeling goals and
reasoning with them. In Engineering and Managing
Software Requirements, pages 189–217. Springer, 2005.

[29] A. Rozinat, A. A. de Medeiros, C. W. Günther,
A. Weijters, and van der Aalst. Towards an evaluation
framework for process mining algorithms. 2007.

[30] P. Soffer and C. Rolland. Combining intention-oriented
and state-based process modeling. In Conceptual
Modeling–ER 2005, pages 47–62. Springer, 2005.

[31] M. Vakilian, N. Chen, S. Negara, B. A. Rajkumar,
B. P. Bailey, and R. E. Johnson. Use, disuse, and
misuse of automated refactorings. In Software
Engineering (ICSE), 2012 34th International
Conference on, pages 233–243. IEEE, 2012.

[32] W. Van der Aalst, T. Weijters, and L. Maruster.
Workflow mining: Discovering process models from
event logs. Knowledge and Data Engineering, IEEE
Transactions on, 16(9):1128–1142, 2004.

[33] W. M. Van der Aalst and W. van der Aalst. Process
mining: discovery, conformance and enhancement of
business processes. Springer, 2011.

[34] Z. Xing and E. Stroulia. Refactoring practice: How it
is and how it should be supported-an eclipse case
study. In Software Maintenance, 2006. ICSM’06,
pages 458–468. IEEE, 2006.

[35] E. Yu. Modelling strategic relationships for process
reengineering. Social Modeling for Requirements
Engineering, 11:2011, 2011.


