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Abstract. Besides the benefits of flexible processes, practical implementations of 

process aware information systems have also revealed difficulties encountered by 

process participants during enactment. Several support and guidance solutions 

based on process mining have been proposed, but they lack a suitable semantics 

for human reasoning and decisions making as they mainly rely on low level ac-

tivities. Applying design science, we created FlexPAISSeer, an intention mining 

oriented approach, with its component artifacts: 1) IntentMiner which discovers 

the intentional model of the executable process in an unsupervised manner; 2) In-

tentRecommender which generates recommendations as intentions and confidence 

factors, based on the mined intentional process model and probabilistic calculus. 

The artifacts were evaluated in a case study with a Netherlands software compa-

ny, using a Childcare system that allows flexible data-driven process enactment.  

Keywords: intention mining, process mining, flexible processes, process aware 

information systems, process recommendations 

1 Introduction: Intention Mining 

Process Aware Information Systems (PAIS) form a category of information systems, 

highly adopted by organizations, defined by van der Aalst as “software systems that 

manage and execute operational processes involving people, applications, and/or in-

formation sources on the basis of process models” [3]. In flexible PAISs which sup-

port process changes and variations as result of the external and internal environment, 

the primacy of humans has been highly acknowledged [8, 18, 26]. The agency charac-

teristic of process participants, entailing their freedom of decision making during 

process enactments becomes thus central as it impacts the process outcomes. For in-

stance, let’s consider an e-commerce application: when a net surfer adds a product to 

his basket, several choices are offered: he can select another product, handle his bas-

ket, create his customer account etc. Following the flexibility of the studied process, 

the decision making complexity can increase rapidly. An experienced process partici-

pant who is highly aware of the process is able to make a better decision about the 

action to execute next under specific constraints or how to model a process fragment 



at run-time. In contrast, this can be very challenging for a less experienced process 

participant or for a process participant who faces a very dynamic and complex process 

environment [2, 23, 26]. If the resulting problem-prone situation is ignored, the adop-

tion of flexible processes can instead have a negative impact on organizations. 

Consequently, in this paper, we focus on tackling the difficulties of process partici-

pants when enacting flexible processes in PAISs by proposing FlexPAISSeer, a solu-

tion based on intention mining [12]. A PAIS enables the process discovery in a bot-

tom-up manner by capturing events during enactment. Practically, this is realized by 

process mining, whose main goal is “to discover, monitor and improve real process-

es” by transforming the event logs data in valuable knowledge [3]. The mining result 

is most often a process model. Additionally, process mining has been used as a key 

technology in several approaches to support process participants during enactment [1, 

22, 26]. While these solutions integrate process mining successfully, we consider the 

recommendations semantically not rich enough to support effective decision making 

meaning effective criteria identification, development, and analysis of alternatives 

[13]. The recommendations are formulated based on the mined process models which 

are frequently represented as control flows of low level activities. Therefore, to se-

mantically enrich the recommendations, the mined process models must be enriched. 

Through intention mining, we have the ambitious goal of extending process mining 

with a more suitable perspective for supporting humans in decision making, by min-

ing the intentional process model from event logs and by using it for providing rec-

ommendations as intentions and confidence factors. We consider the intention a high-

er abstraction and a logical grouping of activities which captures their hidden goal: 

what the user wanted/want to achieve by following those activities. Human behavior 

is intentional by nature. Hence, making decisions based on intentions is closer to his 

natural reasoning mechanism. This topic has been extensively discussed in philosophy 

[4, 10], artificial intelligence [7, 16] and various areas of information systems, as 

requirements and enterprise engineering [15, 17, 18, 25, 31], and data mining [5, 27]. 

Once the process participant adopts an intention, he acts accordingly to achieve it 

[4]. Hence, the event log contains data about his intention. The research objectives 

regarding the unsupervised intention mining technique are: the identification of the 

data which provides information about intentions and the identification of the inten-

tional cluster of events associated with an intention and its naming. We propose a 

general definition of IntentMiner, applicable for multiple systems while we also iden-

tify domain-specific aspects as the cost function in clustering and the intention nam-

ing. We propose IntentRecommender to predict a set of intentions based on the pro-

cess model and the process participant trace, each having associated a confidence 

factor: a numerical value aggregating the probability of the past occurrence of the full 

or partial sequence of intentions (the trace and each predicted intention).  

We used design science [11] collaborating with 42windmills, a software company 

located in Leiden, the Netherlands. We chose this research method as it addresses the 

relevance and acceptance of our created artifacts in the application domain. Accord-

ingly, this paper is organized as follows: Section 2 describes the FlexPAISSeer ap-

proach and its artifacts design, Section 3 presents the artifacts development and 



demonstration in the case study context, Section 4 details the artifacts evaluation. 

Finally, Section 5 presents the conclusions and future works. 

2 FlexPAISSeer: Enactment Support in Flexible PAISs 

We identified the problem situation could be best tackled with a knowledge manage-

ment approach. Thus, we chose the knowledge management cycle proposed by Wiig 

[28] for the FlexPAISSeer design which distinguished four phases: Build knowledge, 

Hold knowledge, Pool knowledge and Use knowledge. 

IntentMiner is the central component of the Build and Hold knowledge phases. It 

consists of the intention mining technique that creates and embeds knowledge as fol-

lows: it mines all the existing event logs and generates the intentional process model 

enriched with meta-data regarding the frequencies of various process instances (steps 

9, 4, 10-11 in Fig. 1); IntentMiner also transforms the current process instance in the 

intentional process instance to feed IntentRecommender, and uses it for updating the 

intentional process model (steps 1-5 in Fig. 1). 

 

Fig. 1. FlexPAISSeer approach 

IntentRecommender is the central component for the Pool knowledge phase: it assem-

bles and reconstructs the intentional process instance and the process model as rec-

ommendations composed of intentions and confidence factors (steps 6-7 in Fig. 1). 

The Use knowledge phase concerns the Process Participant who can decide to enact 

considering the given recommendations (steps 8). However, the recommendations are 

not enforced, the Process Participant being free to enact the process differently when 

required by the situation at hand.  

Further, we present IntentMiner and IntentRecommender with a focus on our de-

sign decisions and algorithms. The design decisions were created based on extensive 

literature review and interviews with the company before and during the project [9].  



2.1 IntentMiner 

The main design goal of IntentMiner is to discover the intentional process model from 

the traces of the process participants, by both mining their intentions and the flow 

between these intentions. We group these design decisions in the following catego-

ries: input-related and algorithm-related design decisions. 

The input-related design focuses on the identification of the relevant data for min-

ing the intentional process, a logging mechanism and a data extraction mechanism. 

After analyzing other process mining techniques [3], we decided to structure the event 

logs as in Table 1. Moreover, the mechanism extracting the data from the data source 

should produce event logs compliant with the XES standard for storing and exchang-

ing logs [3] as it is the most used in the process mining domain. 

Table 1. The definition of the event structure 

Attribute Description Standard XES extension 

Event Id The event’s unique identifier Yes 

Originator The process participant’s identifier (username or user Id) Yes 

Operation The name of the operation identified by a verb Yes 

Timestamp The date and time information of the produced event Yes 

Entity The name of the entity type handled in the event No 

Trace Id The trace’s unique identifier Yes 

Lifecycle 

Transition 

The name of the event’ state during its lifecycle (applicable 
only for non-momentary events) 

Yes 

Process 

Context 

Extra information, extracted from the system as key/value, 

relevant for intentions discovery (for example the entity Id) 

No 

 

The algorithm-related design is built to mine elementary intentions. We plan to ex-

tend IntentMiner to mine higher level intentions in the future. The IntentMiner algo-

rithm consists of six steps, as shown in Fig. 2. 

 

Fig. 2. The IntentMiner algorithm steps 

We explain the IntentMiner algorithm by means of a semi-formal presentation. A full 

example is shown in section 3.2. Let P be the set of process participants for a specific 

PAIS. An intention I is said to be elementary if there exists a set of activities AI = {a1, 

a2… at}, executed by a process participant p ϵ P such that their consecutive execution 

leads to the achievement of I and only I.  

Each activity ai ϵ A is associated to an event ei ϵ E which is logged during its exe-

cution. Thus, we define the intentional cluster as the set of events CI = {e1, e2… et} 



logged during the consecutive execution of their corresponding activities AI = {a1, 

a2… at}, which leads to the achievement of the elementary level intention I. 

Let L be a log of events ordered by time, recorded for a process participant p ϵ P. 

Practically, L represents a series of events corresponding to a series of activities 

which were executed for realizing a series of intentions. Therefore, the log can be 

transformed in a series of intentional clusters L = {CIk : CIk identifies Ik, for every k, 1 

≤ k ≤ n}. Consequently, the first goal of the IntentMiner algorithm is to mine the in-

tentional clusters and to extract the associated intention out of each cluster.  

As mentioned earlier, each event e is described by a set of attributes, ATe = {atek : 

for some k, 1 ≤ k ≤ m}. This data, contained in the event structure, gives information 

about the realized intention. We define the intentional correlation as a function [23] 

applied on two consecutive events for quantifying the similarity with regard to the 

unknown intention I: f(ati, ati+1) = ∑                               ei, ei+1 ϵ L where                       if                , 0 otherwise and       . The coefficient αk 

is introduced to differentiate the contribution of two attributes to the total correlation 

value. For example, two consecutive events that refer to the same entity instance have 

a much stronger correlation than two events that refer to the same entity type. 

This introduces the third step of the algorithm: discovering the intentional clusters 

[24] with syntactic analysis which consists in the application of the function f on each 

pair of consecutive events belonging to the input log L. In this way, the log is trans-

formed in a series of intentional correlation values. Then, the normalization of the 

series is realized by subtracting from each correlation value the minimum correlation 

value discovered in the set, until this minimum becomes null. 

The fourth step is the trend analysis built on the observation that the progressive 

achievement of the intention [4, 7] is captured by the trend in the correlation values as 

follows: an increasing trend marks the progressive realization of an intention while a 

change in trend from increasing to decreasing or a null correlation value delineates 

two intentions. We analyzed multiple event logs of different applications and ob-

served that two consecutive events belonging to an intention had a similar process 

context and a higher correlation value. Contrarily, if two events were triggered as a 

result of achieving two different intentions, they had different process context and a 

low or null correlation value. The result is the discovery of the intentional clusters. 

Once the intentional clusters are identified, the further step is the intention extrac-

tion and naming by applying the semantic analysis [20] for each CIk, 1 ≤ k ≤ n. A 

predefined knowledge base is created as a decomposition tree (see example in Fig. 4) 

populated with a starting set of known intentions and activities. The activities are 

always positioned in leaves and they could belong to multiple intentions. An intention 

could be standalone or a sub-intention of another intention (high level intention). The 

extracted intention for a cluster is the one on the lowest level in the tree that covers 

the maximum number of known activities of that cluster. The first implication is that 

an intention can be discovered even if not all activities are known in the knowledge 

base. The second implication is that a cluster could represent a different intention 

which is not yet known and stored in the knowledge base. An expert as a process 

administrator being responsible for process definition and implementation should 

review the mined process instance and the intentional clusters to decide if the 



knowledge base should be updated with new intentions or activities. The flow be-

tween intentional clusters describes the flow between intentions, thus obtaining the 

intentional process instance. 

The final step is the aggregation of the mined process instance in the intentional 

process model: new mined intentions and transitions are added, and the transitions 

frequencies are increased. Thus, we obtain the updated intentional process model 

(step 5 in Fig. 1) that is further used by IntentRecommender for providing up-to-date 

recommendations to the process participants. 

2.2 IntentRecommender 

The leading design decision of IntentRecommender was to provide recommendations 

at the intentional level as we considered it could offer a more effective support to 

process participants in making decisions. This enables a more effective support for the 

identification of the decision criteria, the developing of the decision alternatives and 

the analysis of the decision alternatives. 

The second design decision was to provide recommendations according to the as-is 

intentional process model, discovered by IntentMiner instead of using a pre-defined 

process model which might not be exactly followed by the process participants in 

practice. Moreover, IntentMiner transforms the process participant’s partial trace of 

events in a flow of intentions which is given as input to IntentRecommender and is 

also used for updating the intentional process model. 

The third design decision was to provide recommendations that contain infor-

mation about the behavior of other process participants in a similar or identical pro-

cess enactment situation, through a confidence factor [6]. The confidence factor is a 

numerical value attached to the recommendation, which quantifies the match and the 

frequency of the current process participant log based on the known process data. 

Providing recommendations starting from a flow of intentions F = {I1→…→ In}, 

n≥1 is a matter of prediction, having, as prior knowledge, the intentional process 

model. A recommendation is the next predicted intention, Ipredicted, which has attached 

the confidence factor CFIpredicted. We focus further on describing the two main parts of 

IntentRecommender: the prediction and the confidence factor computation. 

The prediction is the identification of the next intentions based on the input flow of 

intentions, F, and the process model. IntentRecommender consists of three steps: 

 Discover the set of intentions, SIpredicted, that are directly reachable from the last 

intention In, n≥1 of the flow F: SIpredicted = {Ipredicted : In→ Ipredicted, n≥1 exists in the 

intentional process model}.   For each Ipredicted ϵ SIpredicted, create the set of predecessors consisting of the inten-

tions found in the flow, sorted by time in descending order, PIpredicted = {In … I1} 

n≥1. However, there are two possible issues. First, the path described by F cannot 

be fully found in the intentional process model. In this case, PIpredicted is modified to 

contain only those intentions which describe an existing flow to Ipredicted in the in-

tentional process model: PIpredicted = {In … Ik}, n, k≥1 and Ik→…→In→Ipredicted exists 

in the intentional process model. Second, an intention could appear several times in 



PIpredicted. In this case, the interpretations could be: (i) an intention was among its 

list of predecessors, thus influencing its future occurrence; or (ii) the flow exposed 

different ways of achieving that intention. By invoking Occam’s razor [18], which 

specifies that the model with the simple assumptions should be selected, we chose 

the interpretation (ii). This implies another constraint on PIpredicted: each intention in 

the sequence of predecessors must be unique and different from Ipredicted.  For each Ipredicted ϵ SIpredicted, compute the confidence factor CFIpredicted (1) having 

the possibility to tune it through the coefficients α and β, 0 ≤ α, β ≤ 1. The process 

administrator can decide the frequency of a certain path is more important through 

α’s value, or the match of a certain path is more important, through β’s value.  

 CFIpredicted = α * P ({Ipredicted} + PIpredicted) + β * L ({Ipredicted} + PIpredicted) / L (F)  (1) 

 P ({Ipredicted} + PIpredicted) = Probabability of Ik→…→In→Ipredicted n, k≥1 occurs (2) 

 L ({Ipredicted} + PIpredicted) = n – k + 2 = Length of Ik→…→In→Ipredicted n, k≥1 (3) 

 L (F) = n = Length of I1→I2→…→ In (4) 

Every time a new process instance is mined, IntentMiner updates the tree TI of each 

intention I with all the paths that lead to it and their frequencies. Based on the data 

maintained in TI we compute the probabilities. The tree has a specific structure: a full 

discovered process instance that describes a path to I is stored in a leaf; then this path 

is recursively decomposed in shorter paths to I by removing one intention from the 

tail until there is nothing left to be removed. For example, let’s consider IntentMiner 

discovers the following process instance: I1→I2→…→ Ik→ …→In. The tree corre-

sponding to the intention Ik is updated as follows: the leaf node n1 = I1→I2→…→ Ik is 

created, then a new node n2 = I2→…→ Ik is created and linked to n1 and so on until 

the root r = Ik→null is reached. During the path decomposition, it might happen that a 

node is already in the tree in which case only the link is created and the node frequen-

cy is incremented. Considering, #TI the total number of mined paths that lead to the 

intention I, we have: 

 P ({Ipredicted} + PIpredicted) = Frequency ({Ipredicted} + PIpredicted) / #TIpredicted (5) 

We compute the confidence factor (1) by using (2-5) and create the recommendation. 

The computation is realized for each intention of SIpredicted (step 7 in Fig. 1). 

3 The Demonstration of FlexPAISSeer 

3.1 Case Study of an Enterprise Software Product 

To demonstrate the validity of our FlexPAISSeer approach, we conducted a revelatory 

single case study [30]. We selected the case company considering its suitability (the 

support of flexible processes through its software product): the Childcare system de-

veloped by 42windmills used by several child day care centers in the Netherlands. 



Childcare is created with the company’s main product: a platform which generates 
software following a model driven approach. The platform together with a Web-based 

application designer enables the customers to design, preview, generate, re-design and 

deploy a wide variety of business applications. 

Even if some processes of the created business application can be automated, most 

of them are flexible, being enacted in a data-centered, human-driven manner. In a 

data-centered approach, the elements that influence the process enactment are entities, 

entity attributes and entity relationships (as shown in Fig. 3). A transition in the pro-

cess enactment is triggered by a change in the entity state through user forms [23]. An 

exploratory interview reported that the high Childcare’s complexity combined with 
the flexible processes support created problems: inexperienced process participants 

often enacted inefficiently the processes or made mistakes because of the scenario 

complexity. 

To ensure the research reliability, construct and internal validity, we defined a case 

study protocol beforehand and we used multiple sources of evidence which were care-

fully documented in a case study database. We conducted exploratory interviews with 

the CTO, the Childcare consultant and the platform architect to deepen the under-

standing of the problem the company was facing, to study more thoroughly the tech-

nical aspects of the product and to validate the suitability of the proposed solution. 

The external validity, concerning the generalization of the results, is more difficult to 

guarantee after a single-case study. However, given the generic type of the adminis-

trative application and the standard technology employed, we can consider the case 

settings as a good representative for an enterprise software product [29]. 

We developed prototypes for both IntentMiner and IntentRecommender using Mi-

crosoft C#.NET language, Visual Studio 2012 and Microsoft SQL Server 2005. We 

choose these technologies to ensure an easier integration of the artifacts with the 

company’s product. Though generic, the prototypes are not officially released as they 

must be integrated and some parts still need improvements. 

3.2 IntentMiner’s demonstration 

IntentMiner is demonstrated for the Request child care process. In Fig. 3, we present a 

partial entity model involved in the registration process. As mentioned, the enactment 

of the Childcare’s processes is based on the entity states transitions. 

 

Fig. 3. Entities involved in the registration process 

In Table 2a, we present a possible process instance of the Request child care process. 

We defined the intentional correlation function (used in Table 2b) to take into account 

the following event attributes: the trace Id (for Childcare being the Child entity Id), 

the entity type and the entity Id (which is stored as contextual information):                                                                                                                          



The intentional correlation for each pair of consecutive events is calculated (syntactic 

analysis, Table 2b). According to the defined rules of trend analysis, the intentional 

clusters are formed (trend analysis, Table 2c). 

Table 2. Exemplification of the IntentMiner algorithm 

(a) Extract  

process partici-

pant log and sort 

by timestamp 

E1 → e2 → e3 → e4 → e5 → e6 → e7 

e1: Read the list of Child entities 

e2: Read the Child entity with Id C1 

e3: Update the Child entity with Id C1 

e4: Read the list of Child entities 

e5: Read the Child entity with Id C2 

e6: Read the list of Parent entities  

e7: Read the list of Child Picker entities 

(b) Apply  

syntactic analysis 

f(e1, e2) = 0.5*0 + 0.3*1 + 0.2*0 = 0.3; 

f(e2, e3) = 0.5*1 + 0.3*1 + 0.2*1 = 1; 

f(e3, e4) = 0.5*0 + 0.3*1 + 0.2*0 = 0.3; 

f(e4, e5) = 0.5*0 + 0.3*1 + 0.2*0 = 0.3; 

f(e5, e6) = 0.5*0 + 0.3*0 + 0.2*0 = 0; 

f(e6, e7) = 0.5*0 + 0.3*0 + 0.2*0 = 0; 

(c) Apply  

trend analysis 

CI1 = {e1, e2, e3}   CI2 = {e4, e5}    CI3 = {e6}   CI4 = {e7} 

e1 and e2 have a correlation higher than 0 and are grouped in CI1. The correlation of 

e3 with e2 is higher than its correlation with e4, thus e3 is added to CI1 too. The first 

change in trend is identified (the decrease from 1 to 0.3) so CI2 is formed, to which 

e4 is added. Further, the correlation of e5 with e4 is higher than its correlation with 

e6 so e5 is added to CI2. The change in trend (the decrease from 0.3 to 0) marks the 

creation of CI3 consisting of e6. Finally, because the correlation of e6 with e7 is 

zero, CI4 consisting of e7 is built. 

(d) Apply  

semantic analysis 

I1 (Update Child entity) → I2 (Read Child entity) → I3 (Read Parent entities) → I4 

(Read ChildPicker entities) 

 

Once we discover the intentional clusters, we identify the intention associated with 

each of them (semantic analysis, Table 2d). For this, we pre-defined a knowledge 

base during the Childcare analysis. For each entity type, a decomposition tree based 

on Fig. 4 was created. The intention composition is generic for all the Childcare enti-

ties because of the software’s nature, being model driven generated. 

 

Fig. 4. Intention composition for semantic analysis 

The tree contains five elementary intentions (Create entity, Read entity, Read entities, 

Update entity, and Delete entity) and seven activities (Update relation, Update field, 

Create relation, Search entity, Search entities, Show popup and Show report). 



3.3 IntentRecommender’s demonstration 

The IntentRecommender algorithm is also demonstrated further. The inputs consist of 

the intentional process model in Table 3, and the trees associated to each intention (dis-

covered with IntentMiner). The process relates to the Childcare registration, as only this 

part was mined during the experiments. When the process participant invokes Inten-

tRecommender, the input trace is extracted. The intentional process instance does not 

necessary match the intentional process model as our goal is process discovery and not 

conformance checking [3]. 

Table 3. Recommendation algorithm – running example 

Intentional process model: 

 

(a) Process participant’s intentional process instance: 

F: It1 (Read parent list) → It2 (Read parent) → It3 (Create child) → It4 (Create child picker) 

(b) Discover the set of intentions directly reachable from the last intention, It4: 

SIpredicted = { Ip1 (Create child picker link), Ip2 (Update child), Ip3 (Read child) } 

(c) Compute the confidence factor exemplified for Ip3 (Read child) : 

PIp3     = { It4, It3, It2 } 

CFIp3  = 0.5 * P ({Ip3} + PIp3) + 0.5 * L ({Ip3} + PIp3) / L (F) 

           = 0.5 * P (Ip3 ← It4 ← It3 ← It2) + 0.5 * 3 / 4  

where P (Ip3 ← It4 ← It3 ← It2) is calculated according to the formula (5), considering the infor-

mation extracted from TIp3 (Frequency (Ip3 ← It4 ← It3 ← It2) and #TIp3) 

 

The first step of the algorithm consists in the identification of the last intention of the 

process participant: It4 (Table 3a). Further, the intentions that are directly reachable 

from It4 are identified in the model (SIpredicted in Table 3b). The path to Ip3 is formed 

according to the input trace and, then, the longest sub-sequence of this path found in 

the model is extracted (PIp3 in Table 3c). Based on this maximal sequence, the confi-

dence factor is calculated and the first recommendation R3: (Ip3, CFIp3) is formulated. 

We repeat step (c) for the other left intentions – Ip1 and Ip2, in a similar manner. 



4 Preliminary evaluation of FlexPAISSeer 

The evaluation of the artifacts consisted in an experiment with 10 participants, inter-

acting with Childcare [9]. Previous experience was not required, though we provided 

a tutorial about the application usage in advance. The participants had to be able to 

express themselves in English and to have basic computer skills. An experiment last-

ed around two hours and consisted of two parts. In the first part, we evaluated Intent-

Miner. The process participants were asked to perform different tasks while they were 

verbalizing their intentions in the presence of the interviewer. The second part fo-

cused on the IntentRecommender’s evaluation through structured interviews. 

4.1 IntentMiner’s evaluation 

We evaluated IntentMiner following the Confusion matrix approach, built on the 

concept of instances classification, realized by a classifier system [14]. In our context, 

the classifier system was IntentMiner and the instance was the discovery/existence of 

an intention. An intention discovery was classified as positive when IntentMiner dis-

covered it from event logs and negative otherwise (Classified instance, Table 4). An 

intention existence was positive if the process participant confirmed he had that inten-

tion and negative otherwise (Actual instance, Table 4). 

Table 4. Confusion matrix for intention mining 

 

Results of the case study 

Classified instance 

Negative: an intention I is 

not discovered 

Positive: an intention I is 

discovered 

Actual 

instance 

Negative: the process participant 

does not have the intention I 

#TN (the number of true 

negative instances): 0 

#FP (the number of false 

positive instances): 47 

Positive: the process participant 

has the intention I 

#FN (the number of false 

negative instances): 3 

#TP ( the number of true 

positive instances): 105 

 

The participants verbalized 108 intentions out of which 105 (#TP) were correctly 

discovered by IntentMiner and 3 (#FN) were not. IntentMiner discovered 152 inten-

tions out of which 47 (#FP) were negative as the process participants did not have 

those intentions. The number of true negative instances was always 0. Since a process 

participants had no intention and did not act accordingly, there were no logs based on 

which the intention could be mined. 

Given an intention discovered by IntentMiner, the average precision (Precision = 

#TP / (#TP + #FP)) of being correct was 0.69. Furthermore, IntentMiner mined the 

process participants’ intentions in 0.97 cases. This was measured by the average re-

call (Recall = #TP / (#TP + #FN)). These results are very satisfactory for a first time use 

of our unsupervised intention mining technique. Khodabandelou et al. [12] reported 

an average recall of 0.93 and an average precision of 0.97 for their supervised inten-

tion mining technique based on Hidden Markov Models. The precision was consider-

ably better given the fact the classifier was trained in advance. 



For getting more insights into how we could improve IntentMiner, we analyzed 

thoroughly each log and noticed two recurring issues. First, IntentMiner discovered 

several intentions even if the activities behind them were not intended for that, but for 

higher intentions. For example, Explore the Childcare application was mined as read-

ing different entities. Second, several activities were triggered by the system on behalf 

of the process participant thus were mined as process participant’s intention. Every 

time a new Child entity was created, an empty ChildPicker entity was also created by 

the system; these events were mined as two separate intentions but in reality it was 

only one intention: Create Child entity.  

In conclusion, the functional requirements of IntentMiner were completely satis-

fied as proved by its usage without errors in the experiments. IntentMiner can be used 

for mining intentional processes but a further review of the results by the process 

administrator is required as they might not be completely precise. 

4.2 IntentRecommender’s evaluation 

Unit tests were used for validating the IntentRecommender functionality. The non-

functional evaluation of IntentRecommender was reduced to the following phases: 

1. The non-functional evaluation of IntentMiner as the quality of the produced output 

(used as input for IntentRecommender) influences the quality of the recommenda-

tions. This was covered in section 4.1. 

2. The analysis of the perceived effectiveness of recommendations as intentions and 

confidence factors on decision making support by the process participants.  

The second phase consisted in a structured interview based on a questionnaire. It had 

various conceptual scenarios inspired from Childcare which required the process par-

ticipants to make decisions. Besides, there were also general and confidence factors-

related questions. The hypotheses guiding the evaluation of IntentRecommender were: 

H1: The recommendations given as intentions improve the support for decision 

making by improving the support for the criteria identification. 

H2: The recommendations given as intentions improve the support for decision 

making by improving the support for the alternatives formulation. 

H3: The recommendations given as intentions improve the support for decision 

making by improving the support for the alternatives analysis. 

H4: The confidence factors included in the recommendations improve the support 

for decision making. 

In the first scenario, without any recommendations, the participants were asked to 

identify what they believed they should do next. The participants identified the high 

level intention (to update the child planning) without problems. When asked to give 

details about the specific process steps, they were able to cover only a part of them 

(even if they were revealed in the tutorial provided in the beginning). After the first 

set of recommendations as activities was given, most of the participants chose the 

option that was aligned with their previously identified intention except for two: one 



changed his intention from updating the child to updating the planning and the other 

stated that his new decision was based on the confidence factors.  

After the intention behind the recommended set of activities was revealed, 9 of 10 

participants agreed that the decision making was easier in that case motivating the 

answer as follows: the intention helped to clarify the activities to be performed, 

helped to validate an intention adopted in advance and provided information about the 

context. One participant disagreed with the added value by invoking the efficiency in 

following activities without reasoning about intentions (step by step guidance).  

Consequently, it was shown that the recommendations as intentions improved the 

support for the criteria selection (H1) in two ways: by the intention realization when 

the process participants adopted the suggested intention and made the decision ac-

cordingly; by the intention validation when the process participants checked if the 

suggested intention was the same with the one they already formulated in their mind. 

The aim of the next scenario was to compare the decision making support when 

recommendations were given as intentions and then as activities. 7 of 10 participants 

found the set of recommendations given as intentions helpful for supporting the deci-

sion making while 3 disagreed: two preferred a step by step guidance and one found it 

hard to make the decision because there were too many recommendations in the set. 

Analyzing the collected data, we noticed that most of the participants wanted support 

in interacting with the application and preferred the recommendations as intentions to 

recommendations as activities. Thus, H2 and H3 seemed to be supported. 

The final questions were focused on the confidence factors. 6 of 10 participants 

disagreed that the numerical values attached to each recommendation influenced their 

decision. The main invoked reason was that there was no re-assurance the other par-

ticipants enacted the process more efficiently or more effectively, to follow their be-

havior. Nevertheless, the other 4 participants agreed with the usefulness of the confi-

dence factors and mentioned that their decision was influenced completely (following 

the others behavior) or partially (checking if the others reasoned similarly) by this. 

Consequently, H4 could not be verified based on the existing data. 

5 Conclusion and future works 

In this paper, our main goal was to create an improved approach for supporting pro-

cess participants during flexible processes enactment, by offering recommendation 

based on an intentional process model. As process mining captures accurately how 

real life processes are enacted, we created IntentMiner to discover intentional process 

models automatically from event logs. The intentional process model was integrated 

in IntentRecommender, which after the evaluation in a case study, demonstrated its 

contribution to the problem solving. To sum up with, we consider the largest contribu-

tion of this research is the thorough study of the intentionality in the context of pro-

cess enactment and its integration with process mining. 

We intend to improve the evaluation of this approach as the evaluation of the arti-

facts was realized for only one case study with 10 participants. According to Yin [30] 

a more accurate evaluation should include at least 3 case studies. We will then con-



duct more case studies including other software products in different organizational 

settings. With more participants, we could do quantitative evaluation too. 

IntentMiner can be improved to mine more accurately the intentions. The semantic 

analysis can be supported by ontologies and semantic annotations of the event logs 

which should also enable the mining of the non-functional intentions. Moreover, other 

machine learning algorithms for clustering can be explored, as self-organizing maps 

or genetic algorithms. IntentMiner in its current form requires several adaptations for 

being re-used by other applications (selection of event attributes relevant for the syn-

tactic analysis, redefinition of the correlation function according to the selected event 

attributes, adaptation of the hierarchy of intentions for semantic analysis). These 

changes – triggered by specific cases – should be formalized in a method and sup-

ported by a tool to ease future adaptations. The intentional process models produced 

by IntentMiner are not as flexible as Map intentional process models [25]. We do not 

consider parallel intentions and refinement of intentions. Producing more complex 

intentional process models is one of our next steps. A ProM plugin for IntentMiner 

and IntentRecommender should be further developed. Official XES extensions also 

have to be proposed to integrate the concepts of process context and entity (Table 1). 

Finally, IntentRecommender can be extended with an inference mechanism based 

on the Dynamic Bayesian Network [21], a more suitable probabilistic model for pro-

cesses. This would allow an intention to be in its list of predecessors when calculating 

the confidence factors. The prototype should be released in a stable version and inte-

grated in a PAIS to allow its runtime evaluation. 
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