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Abstract. Learning humans’ behavior from activity logs requires choos-
ing an adequate machine learning technique regarding the situation at
hand. This choice impacts significantly results reliability. In this paper,
Hidden Markov Models (HMMs) are used to build intentional process
models (Maps) from activity logs. Since HMMs parameters require to be
learned, the main contribution of this paper is to compare supervised and
unsupervised learning approaches of HMMs. After a theoretical compari-
son of both approaches, they are applied on two controlled experiments to
compare the Maps thereby obtained. The results demonstrate using su-
pervised learning leads to a poor performance because it imposes binding
conditions in terms of data labeling, introduces inherent humans’ biases,
provides unreliable results in the absence of ground truth, etc. Instead,
unsupervised learning obtains efficient Maps with a higher performance
and lower humans’ effort.

Keywords: Supervised Learning, Unsupervised Learning, Intentional
Process Modeling, Hidden Markov Models

1 Introduction

Fueled by the impressive growth of events logs in organizations, process mining
field has emerged a few years ago as a key approach to design processes [1, 2].
Mining processes from logs can be useful for understanding how humans really
work, analyzing how actual processes differ from the prescribed ones (confor-
mance checking). This allows improving models, methods and products.

Whereas most process mining approaches specify behaviors in terms of se-
quences of tasks and branching [2], research on method engineering and guid-
ance shows that an explicit use of intentions in process models structure could
effectively mitigate the method engineering issues such as rigidity or lack of
adaptation [3–7].

Intention-oriented process modeling emerged at the early 90s, as a driving
paradigm. It allows supporting guidance [8], handling traceability matters [4],
guiding requirements elicitation, surveying strategic alignment [9], defining ac-
tors and roles, specifying the outcome of business process models [10], describing
intentional services [11], diagnosing use cases, analyzing users behavior, cus-
tomizing methods or make them more flexible [3], etc. Defining strategies and
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intentions in process model structure has convinced as a robust mean to identify
and analyze the relationships between processes, to understand the deep nature
of processes, and to visualize any process (simple or complex) under a reduced
and human-understandable form [5]. While intention-oriented process modeling
has a longer tradition, it has largely neglected event logs so far. Map Miner
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Fig. 1. The overview of Map Miner Method

Method (MMM) is a novel approach of process mining, which aims at construct-
ing intentional process models from users’ event logs. As a first step, the MMM
framework uses Hidden Markov Models (HMMs) [12] to estimate users’ strate-
gies. Then, it generates intentional process models (Maps [5]) using Deep Miner
and Map Miner algorithms [13]. This paper focuses on the first part of MMM:
estimating users’ strategies. These strategies can be estimated either with super-
vised learning or with unsupervised learning. While Supervised learning can be
used when there is a priori knowledge about strategies in dataset, unsupervised
learning can be used when there is no such knowledge available. Both learning
approaches aim at characterizing the strategies that correspond the best to the
users’ activities in the event logs. These strategies will then be used to construct
intentional process models. Thus, the choice of learning approach significantly
impacts the discovered model accuracy. Hence, it is important to study limita-
tions, advantages and conditions of use for these learning approaches.

The contribution of this paper is twofold: (i) first, in a theoretical context,
it compares supervised and unsupervised learning of strategies in terms of con-
vergence speed (complexity) and likelihood; and (ii) second, in an experimental
context, it compares the intentional process models obtained with both learning
approaches. The resulting Map process models provide a precious understanding
of these approaches in terms of their performance as well as their conditions of
use. Figure 1 depicts an overview of MMM framework, in which the focus of this
paper is shown in the part of estimating users’ strategies.

The remainder of this paper is organized as follows: in Section 2, we introduce
the MMM and a brief definition of Map process models. In Section 3, supervised
and unsupervised learning are described and then formally compared. In Sec-
tion 4, both approaches are applied on two real datasets. Section 4.3 discusses
the results of both approaches as well as the threats to validity. Related works
are investigated in Section 5. Finally, Section 6 concludes this work and presents
the perspectives.
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2 Map Miner Method

MMM automatically constructs intentional process model from users’ event logs.
MMM consists of three phases: (1) it estimates users’ strategies from activity logs
using HMMs, (2) it constructs fine-grained Map process models from estimated
strategies using Deep Miner algorithm (1), and (3) it constructs coarse-grained
Map process models from fine-grained ones using Map Miner algorithm (2) (fig-
ure 1). As mentioned earlier, this paper concentrates only on the first phase of
MMM, i.e., estimating users’ strategies with the Map formalism. Among other
intentional process models such as KAOS [14] or I* [15], we chose the Map for-
malism for several reasons: (a) it combines intentions and strategies at different
abstraction levels, which allows handling large-scale and complex processes [5],
(b) it supports process variability and flexibility by defining different strate-
gies to fulfill a given intention, and (c) it has proven to be effective to specify
business processes, user requirements, systems functionality, engineering meth-
ods, software engineering processes, etc [7]. Next parts explain briefly the Map
metamodel and how HMMs can be adapted to it.

2.1 The Map Metamodel

The Map formalism [7] combines the concepts of intention and strategy with
hierarchical abstraction levels and refinement links. In this framework, an inten-
tion is defined as a goal, an objective or a motivation to achieve with clear-cut
criteria of satisfaction, which can be fulfilled by enacting a process [16]. The
intentions are explicitly represented and form the high-level goals (e.g., organi-
zational goals). A Map process model (an instance of Map metamodel) specifies
the multiple ways of working (i.e., strategies) for fulfilling a set of intentions
during the enactment of a process. For example, on figure 2, one way to fulfill
the intention Specify an entity is to select the strategy S4: By generalization. In
the next section, we explain how strategies can be linked to the activities logs.
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Fig. 2. Map process model for the construction of Entity/Relationship diagrams.

2.2 Estimating Strategies from Activity Logs

Among the techniques to model different aspects of humans’ behavior [17],
HMMs have been proven to be appropriate for modeling the real world process,
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particularly unobservable cognitive states [18], such as underlying users’ strate-
gies. HMMs are stochastic Markov chains used for modeling a hidden sequence
by a finite number of states. More precisely, HMMs consist of two complementary
Markov processes: hidden and observed processes, such that the states of hidden
process generate the symbol of observed process. It turns out that the topology
of HMMs is particularly adapted to model the relation between strategies and
activities in the Map formalism. To make it clear, let us consider an example for
a Map process model enacted with 2 strategies and an HMM realized with 2 hid-
den states (see figure 3). As shown this figure, strategies are used to move from
one intention to another and are made of one or several activities. For instance,
the strategy 1 allows moving from intention a to intention b and it is made of
activities a1, a3 and a4. The same structure can be found in an HMM, where
hidden states generate observations. In other words, hidden state 1 generates
the observations a1, a3 and a4, or hidden state 2 generates the observations a4
and a7. This similar topology motivates using HMMs to model activity logs and
users’ strategies.

Hidden 
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a1
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a4

a4

a3

a3

a4 a7

a7a4

Hidden 

State2

Enactment of a 

process with Map
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Fig. 3. An example for a Map process model enacted with 2 strategies (above) and an
HMM realized with 2 hidden states (below)

Formally, the definition of an HMM is the tuple:H ✏ tS,A,E,T, π✉, where S
is the set of possible hidden states, A represents the set of possible observations,
T is the states transition matrix, i.e., the matrix which represents the proba-
bilities of transition from one state to another, E is the observations emission
matrix, i.e., the matrix which represents the probabilities that a given obser-
vation appears in a given hidden state, and π is the vector made of the initial
probabilities of hidden states. In the MMM framework, the users’ strategies are
modeled by the hidden process and the users’ activities are modeled by the
observed process.

Hidden Process: Users’ Strategies. Let s ✏ ♣s1, . . . , sLq P SL be a temporal
sequence of users’ strategies of length L. The hidden process of strategies is
parametrized by the vector π, π♣uq ✏ Pr ♣s1 ✏ uq ❅u P S and the matrix T such
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that:
T♣u, vq ✏ Pr ♣sℓ ✏ v⑤sℓ✁1 ✏ uq ❅u, v P S, ℓ P r2, Ls, (1)

Observed Process: Users’ Activities. Let a ✏ ♣a1, . . . , aLq P AL be a tem-
poral sequence of users’ activities of length L. The emission probability of an
observation a P A for a given strategy u P S is given by:

E♣a, uq ✏ Pr ♣a⑤uq . (2)

Assuming that S, A and π are known, the HMM model is fully described by
tE,T✉, which represent the core information about the HMM behavior. These
two matrices provide all the necessary information to characterize the strategies
of the Map. Indeed E gives the relation between each strategy and the activities
in the event logs, and T gives the transition probabilities between strategies.
These two matrices have to be learned from the logs and the choice of the learning
approach is crucial to ensure that the strategies are correctly characterized.

3 Learning Approaches to Estimate Users’ Strategies

As discussed in section 2, the characterization of the strategies of the Map com-
pletely relies on the model parameters of the HMM, i.e., the emission matrix E
and the transition matrix T. The learning problem is to find E and T that max-
imize the probability of generating the observed sequences of activities. There
are two learning approaches for estimating these matrices: Supervised or Unsu-
pervised learning. this section discusses in a theoretical context the necessary
conditions for using both approaches as well as their respective performances.

3.1 Supervised Learning

Supervised learning aims at learning E and T. However, the conditions under
which it can be used are very restrictive and the results might be biased.

Conditions of Use. The application of this method requires the knowledge of:
(a) the sets A and S, and (b) some sequences of activities a1, . . . ,aN and their
associated sequences of strategies s1, . . . , sN .

While the knowledge of A and a1, . . . ,aN is generally not an issue (the pos-
sible activities of a given process are usually known and are recorded in traces),
the knowledge of S and s1, . . . , sN is more problematic. Indeed, since strategies
are the cognitive operators, the usual way to obtain the set S is to refer to ex-
perts. Since humans’ judgment is involved, the obtained set S can be biased. We
argue that in a cognitive context such as a humans’ strategy and intention, it is
impossible to properly label the training data, because this information is not
observable. Moreover, humans’ bias [19] is unavoidably introduced into training
data labeling, which significantly impacts the learning process and may produce
incorrect or uninformative process models. Moreover, strategies are usually not
recorded in traces [20]. Applying this learning method implies to conduct exper-
iments specially designed to record traces of activities and traces of strategies.
This condition highly restricts the range of use of this method in large-scale.
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Performance. Given N sequences of activities a1, . . . ,aN and their associated
N sequences of strategies s1, . . . , sN , the aim of supervised learning is to find
the couple ♣E✝,T✝q which maximizes the likelihood of generating a1, . . . ,aN
and s1, . . . , sN :

♣E✝,T✝q ✏ argmax
E,T

N➵
n✏1

Pr ♣an⑤sn,E,Tq (3)

Obtaining the coefficient of T✝ amounts in counting the number of transitions
from one strategy to another and obtaining the coefficients of E✝ amounts to
count the number of occurrences of each activity during each strategy, as shown
below:

T✝♣u, vq ✏
Num♣u, vq➦

wPS Num♣u,wq
, ❅♣u, vq P S

2, (4)

E✝♣u, aq ✏
Num♣a⑤uq

Num♣aq
, ❅u P S, ❅v P A, (5)

where Num♣u, vq denotes the number of transitions from strategy u to strategy v

in the traces s1, . . . , sN , Num♣aq denotes the number of occurrences of activity a

in a1, . . . ,aN and Num♣a⑤uq denotes the number of occurrences of activity a while
the strategy is u, in s1, . . . , sN and a1, . . . ,aN . The computation complexity of
this method is very low since all the coefficients of E✝ and T✝ can be directly
computed from the traces used for learning with (4) and (5).

The set of training sequences a1, . . . ,aN and s1, . . . , sN , is extremely impor-
tant for the accuracy of the estimation of E✝ and T✝. If the set contains few
traces, or they are not fully representative of all the traces that can be produced
by the process, the HMM model learned out of it might suffer underfitting issues.
From a practical point of view, this issue is common since the conditions to get
usable training traces are complex (resulting in few usable traces).

3.2 Unsupervised Learning

Unsupervised learning estimates the matrices E and T based only on traces of
activities. Since there is almost no prior knowledge on the strategies set S, this
method is significantly less biased than supervised learning but the associated
computational complexity is high.

Conditions of Use. For unsupervised learning, the required knowledge includes
the set of activities A, some traces of activities a1, . . . ,aN and the cardinality
of the set ⑤S⑤, i.e. the number of possible strategies. Regarding strategies, nei-
ther the set S nor some traces of strategies s1, . . . , sN should be known, only
the number of possible strategies is required. This parameter can be chosen by
experts (e.g. as a way to set the level of complexity of the model) or can be set
with techniques such as BIC [21], which makes a trade-off between the likelihood
of the model and its complexity. Similarly to supervised learning, this choice in-
troduces a bias, but given that only the number of strategies is set and not the
strategies themselves, this bias is less important. The advantage of unsupervised
learning is being applicable on datasets comprising only activities traces.
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Performance. The Baum-Welch algorithm (BWA) [22] is the most commonly
used in HMMs framework to estimate the model parameters E and T. It uses the
Expectation Maximization (EM) algorithm [23]. The aim of the EM algorithm
is estimating the maximum a posteriori of the statistical model (with latent
variable) parameters in an iterative way. Given a dataset made of N observed
sequences of activities a1, . . . ,aN , the BWA finds the HMM matrices Ẽ and T̃
that locally maximize the probability of having these sequences generated by the
HMM. More precisely, the BWA maximizes the likelihood of E and T:

✁
Ẽ, T̃

✠
✏ argmax

E,T

N➵
n✏1

Pr ♣an⑤E,Tq (6)

As we mentioned earlier, the number of strategies is required to know the di-
mensions of matrices Ẽ and T̃ since the BWA could not run without Ẽ and T̃
being initialized.

What is interesting to note here is the fact the likelihood is not maximized
depending on some traces of strategies s1, . . . , sN , as it was the case for super-
vised learning. It means that the space in which the likelihood is maximized is
larger than the space for supervised learning. As a consequence,

max
E,T

N➵
n✏1

Pr ♣an⑤E,Tq ➙ max
E,T

N➵
n✏1

Pr ♣an⑤sn,E,Tq . (7)

In other words, the maximum likelihood obtained by unsupervised learning is
always higher than the maximum likelihood obtained by supervised learning
since the latter comes from a constrained space. Unfortunately, the BWA cannot
be guaranteed to converge to the global maximum likelihood since it is only
proved to converge to a local optimum [12]. The limit of convergence depends on
the initialization of the matrices T and E and it is verified by our experimental
results (see section 4), that a simple initialization ofT and E leads to a maximum
likelihood of unsupervised learning higher than supervised learning.

Another difference with supervised learning is the computational complex-
ity. While the complexity of supervised learning is very low, the BWA requires
several iterations to converge to a local optimum. These iterations make un-
supervised learning a more expensive method than supervised learning. The
precise computation of both methods, applied on tow experiments, are given in
section 4.3.

3.3 Summary of the Two Learning Approaches

In table 1, we present a theoretical comparison of the two learning approaches,
based on the properties defined in sections 3.1 and 3.2. Regarding the conditions
of use, unsupervised learning can be applied on any dataset comprising traces
of activities, contrary to supervised learning which can be applied under more
restrictive conditions. This makes unsupervised learning the most convenient
method for a practical use. However, since unsupervised learning is only proved



8 Khodanbandelou et al.

Table 1. Theoretical comparison of supervised and unsupervised learning

Traces for
learning

A-priori
knowledge

Convergence speed
(complexity)

Likelihood of the
estimated parameters

Supervised
learning

Activities,
Strategies

Set of activities,
Set of strategies

Fast (one iteration) Maximum over a re-
strained set

Unsupervised
learning

Activities Set of activi-
ties, Number of
strategies

Slow (several iterations) Local maximum

to converge to a local maximum, it is not guaranteed to provide an estimated
model with a better likelihood than supervised learning. In order to investigate
about this point, we compare both approaches on the same datasets in the
following section.

4 Comparison of the Approaches in Experiments

To compare the supervised and unsupervised learning in a experimental con-
text, we conducted two tailored experiments with the Master students of com-
puter science of Sorbonne University: Entity/relationship (E/R) diagrams and
E-shopping. Due to lack of space, we only show and analyze in details the strate-
gies obtained for E/R diagrams in the current section. In section 4.3, the results
of the two learning approaches for the two experiments are compared in terms
of several comparison criteria, such as performance (indicated by the likelihood
to generate the activities in the event logs), humans efforts, convergence speed,
and computation complexity. Note that the traces used for this comparison have
to be compatible with both learning approaches. Indeed, they have to comprise
traces of activities and corresponding traces of strategies. Although strategies are
generally not accompanied recorded logs, we intentionally asked the students par-
ticipating in the experiments to label their traces of activities to indicate which
strategies they followed. The traces of activities are recorded by a web-based tool.

✌ E-shopping experiment: we guided students through a prescribed inten-
tional process model to buy a present. We recorded 90 traces of activity produced
by 90 students for which we know the sequence of selected strategies. The size
of each trace varies between 6 and 40 activities. Note that with both learning
approaches, all the traces are used for training.

✌ The Entity/Relationship diagrams experiment: according the inten-
tional process model given by figure 2, 66 students created E/R diagrams. Here
again, all the traces are used for training for both learning approaches. Regard-
ing to this model, students can select ten strategies to fulfill three intentions,
i.e., Specify an entity, Specify an association and Stop. From Start, it is possible
to progress in the process by selecting strategies leading to the intentions but
once the intention of Stop is achieved, the enactment of the process finishes.
To fulfill an intention following a strategy, students have to carry out activities.
There are 12 unique activities related to the process. Table 3 gives the name of
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the strategies, related activities and the corresponding labels. The size of each
trace varies between 3 and 68 performed activities. Table 2 illustrates a frag-
ment of some event logs of the E/R diagrams experiment. Each row represents

UserID TraceID Timestamps StrategyLabel Activities ☎ ☎ ☎

45 7 31/10/12 14:54:00 1 Create entity ☎ ☎ ☎

22 1 31/10/12 15:14:00 4 Create generalization link ☎ ☎ ☎

12 8 31/10/12 14:54:00 7 Create association ☎ ☎ ☎

45 7 23/10/12 09:41:00 2 Link attribute to entity ☎ ☎ ☎

☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎

Table 2. A fragment of some event Log of E/R diagrams experiment

an activity, with its corresponding labeled strategy, its timestamps, the trace
ID, and the ID of the user who performed the activity. A trace of activities is
the ordered (by timestamps) sequence of activities that a user performed. In
sections 4.1 and 4.2, the MMM is applied on this dataset with both supervised
and unsupervised learning and strategies and associated Maps are discussed.

Table 3. Strategies and related activities

Labels Name of strategies Related activities (activities labels)

S1 By completeness (model) Create entity (a1)

S2 By completeness (entity) Link attribute to entity (a2)

S3 By normalization Delete Link attribute to entity (a6), Delete entity (a5), De-
fine primary key (a7)

S4 By generalization Create entity (a1), Create generalization link (a3)

S5 By specialization Create entity (a1), Create specialization link (a4)

S6 By reference {Delete link attribute to entity, Create entity, Create associ-
ation, Link association to entity} (a8), {Create association,
Link association to entity} (a9)

S7 By decomposition {Create association, Link association to entity} (a9)

S8 By normalization {Delete association,Delete Link attribute to
association}(a10)

S9 By completeness (assoc.) Link attribute to association (a11)

S10 By completeness (final) Check the model (a12)

4.1 Supervised Learning for MMM

First, we apply supervised learning on activities traces, to estimate the strategies,
as explained in section 2. Since, we had the advantage of setting up the experi-
ments, we were able to record students’ strategies sequences in addition to their
activity sequences (labeling the activities). This allows estimating the strategies
by supervised learning. The inputs of the algorithm are the activities traces and
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their related strategies. The matrices E and T can then be computed, and pro-
vide the relation between strategies and activities and the transition probabilities
between strategies, respectively. Since the learning was supervised, the relations
between the strategies and the activities are in line with table 3. However, the
transitions between strategies indicate that these latter have not been followed
exactly as they were prescribed. By successively applying the Deep Miner algo-
rithm and the Map Miner algorithm to the transition matrix T, we extract a
Map which emphasizes this phenomenon. This Map is displayed in figure 4.
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S1
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S3

S4
S5

S10By completeness of  

the model
By completeness of  

the entity

By specializationBy normalization

By completeness of 
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 (model correct,
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By completeness of  

the entity

S7

By decomposition
By generalization 

By reference

By decomposition

S7

S6
S9

S8

Stop

Specify an 

association
S2

S1

By completeness of  

the model

Fig. 4. Map process model obtained by supervised MMM

Therefore, it is possible to detect students’ deviations from the prescribed
Map. In particular, S4 is never taken by students and S7 is chosen in the wrong
section. Regarding the strategies S1 and S2, they have selected by students from
intention Specify an association to intention Specify an entity. This is not shown
in the prescribed Map. However, these transitions are not surprising since they
are allowed by the intrinsic semantic of the Map process model. Indeed, a given
user can return to an intention already fulfilled to start another section.

4.2 Unsupervised Learning for MMM

By applying unsupervised learning on the activities traces, we discover a dif-
ferent set of strategies and a different Map process model. We recall that in
this case, no strategies sequences are necessary as inputs to run the learning
algorithm. Consequently, only the traces of activities are necessary used. the
discovered strategies are detailed in table 4. In particular, from the emission
matrix E, we obtain the relation between strategies and activities. Contrary to
supervised learning, since no prior information about strategies is available, the
names of strategies and intentions are not known. However, based on the names
of activities, it is possible to discover the main topics of the strategies. Through a
semantic analysis the strategies name can be inferred. As for supervised learning,
a Map can be extracted from the estimated transition matrix T, it is displayed in
figure 5. Except Start and Stop, two intentions denoted by I ✶

2 and I ✶
3 are inferred.

The comparison of this Map with the one obtained from supervised learning is
made in the next section.
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S’1
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S’5

S’8

S’9 S’10

S’4
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S’9

S’10

S’1

S’7

I’3

Start Stop

Fig. 5. Map process model obtained by unsupervised MMM

Table 4. Intentions, Strategies and Activities obtained by unsupervised learning for
ER diagrams.

Intentions Code Activities
Strategies Topics obtained

by MMM

Start Ñ I✶

2
S✶

1
a1 (0.94) entity, creation, specify

I✶

2

S✶

1
a1 (0.94) entity, creation, specify

S✶

2
a2 (0.88), a1 (0.09) attribute, entity, creation

S✶

3
a2 (0.09), a3 (0.13), a4 (0.39), a5 (0.40) entity, delete, creation, specialize

S✶

4
a1 (0.11), a2 (0.54), a8 (0.25)

delete, creation, attribute, entity,
association

S✶

5
a5 (0.1), a6 (0.63), a7 (0.28) primary key, creation, entity

I✶

2
Ñ I✶

3

S✶

6
a1 (0.15), a2 (0.79) creation, entity, attribute, link

S✶

8
a1 (0.09), a2 (0.81), a9 (0.08)

association, entity, link, attribute,
creation

S✶

9
a1 (0.37), a9 (0.19), a11 (0.34)

creation, association, entity, at-
tributes

I✶

3
Ñ I✶

2
S✶

4
a1 (0.11), a2 (0.54), a8 (0.25)

delete, creation, attribute, entity,
association

I✶

3

S✶

7
a9 (0.83), a10 (0.05), a11♣0.05q

link, creation, delete, entity, asso-
ciation

S✶

8
a1 (0.09), a2 (0.81), a9 (0.08)

association, entity, link, attribute,
creation

S9 a1 (0.37), a9 (0.19), a11(0.34)
creation, association, entity, at-
tributes

I✶

3
Ñ Stop S✶

10
a9 (0.08), a12 (0.87) check, model, coherent

I✶

2
Ñ Stop S✶

10
a9 (0.08), a12 (0.87) check, model, coherent

4.3 Discussion and Threats to Validity

It is interesting to discuss the results obtained in previous sections from both
quantitative (models likelihood, algorithm convergence, complexity) and quali-
tative (models interpretation) points of view.

✌ Adopting a qualitative point of view, for the E/R diagrams experiment, al-
though some strategies from the prescribed Map and the Map obtained by unsu-
pervised learning are similar (S1 and S✶

1, S2 and S✶
2, S10 and S✶

10, S7 and S✶
7), most

strategies from unsupervised learning cannot be exactly identified to prescribed
strategies. It is not due to a poor compliance of the Map obtained by unsuper-
vised learning but due to the supervised learning assumption, i.e. the prescribed
Map is actually followed by students. This assumption is not true. Indeed, dur-
ing the enactment of the process, students may deliberately or accidentally not
follow the prescribed Map. Consequently, assuming that the prescribed model is
followed by students creates a bias in the definition of strategies and intentions.
In addition, there is no ground truth for labeling the activities sequences. Con-
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sequently, the labeling could be flawed as it is a subjective process. Moreover,
assigning the labels to the strategies and intentions constrains the discovered
Map to a limited space which leads to poor performance of supervised learn-
ing. This phenomenon can be verified with the deviations of students detected
by obtained Maps. Whereas the Map obtained by supervised learning detected
only two deviations (S4 and S7), the Map obtained by unsupervised learning
detected five deviations which are not the same as the supervised learning ones
(S✶

1, S
✶
4, S

✶
8, S

✶
9, S

✶
10).

✌ The log-likelihood of the strategies estimated by unsupervised learning in both
experiments is higher than supervised learning (see table 5). In other words, the
strategies estimated by unsupervised learning have a higher chance to generate
the activities observed in the event logs. It makes unsupervised learning more
trustworthy than supervised learning. Note that this result is in line with the
theoretical study performed in section 3.

Table 5. Practical comparison of supervised and unsupervised learning.

Experiments Learning Traces for
learning

A-priori
knowledge

Convergence
speed
(complex-
ity)

The estimated
parameters
Log-likelihood

E/R diagrams
Supervised
learning

66 traces of
activities,
66 traces of
strategies

set of activities,
set of strategies

1 iteration ✁2.54e3

Unsupervised
learning

66 traces of
activities

set of activities,
number
of strategies

9, 986
iterations

✁2.36e3

E-Shopping
Supervised
learning

90 traces of
activities,
90 traces of
strategies

set of activities,
set of strategies

1 iteration ✁2.81e3

Unsupervised
learning

90 traces of
activities

set of activities,
number
of strategies

4, 325
iterations

✁1.69e3

✌ From a cost-benefit and human-centric point of view, cognitive tasks are time-
consuming and labor intensive. Since the methodology of labeling activities can-
not be generalized to common event logs, this is one serious drawback for su-
pervised learning. Thus, the cost of labeling the data for supervised learning
approach is quite high as it involves the students’ commitment to label and
comment their activities at each step of the process. In comparison, the only hu-
mans’ effort for unsupervised learning is to choose the number of strategies for
the intentional process model. Nevertheless, the unsupervised learning requires a
minimal humans’ intervention and it allows obtaining intentional process models
that match the actual enacted process. The drawbacks of unsupervised learning
are a higher computation complexity and the need to automate the naming of
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obtained strategies and intentions.

✌ The BWA cannot be guaranteed to converge to the global maximum likelihood
(see section 3.2). The convergence depends on the initialization of the matrices
T and E and it converges at 9, 986 learning iterations for E/R diagrams and at
4, 325 learning iterations for E-shopping. The supervised algorithm converges in
the first iteration.

✌ While the complexity of the BWA is high due to its requirement to several
iterations until the convergence to a local optimum, complexity of supervised
learning is very low. Table 5 presents a summary of both learning approaches
for tow experiments.

5 Related Work

To the best of our knowledge, there is no work comparing supervised and un-
supervised learning for process model discovery from event logs. For this reason
we position our work with respect to process mining techniques. Process mining
approaches propose to model users’ behaviors in terms of activities [2]. These
techniques aim at recovering the original workflow from event logs, which con-
taining the traces of processes enactments. Process mining approaches use dif-
ferent algorithms and techniques, such as classification and learning techniques
to extract the information from event logs [24–27]. Some of these techniques are
investigated hereafter.

Inference methods infer process models with a tradeoff between accuracy and
noise robustness. Cook compares in [28] three inference algorithms of RNet [29],
Ktail [30] and Markov models [31] for process discovery. The latter two are
considered as the most promising approaches. Genetic algorithm [27] provides
process models (Petri nets) built on causal matrix, i.e., input and output de-
pendencies for each activity. This technique tackles problems such as noise, in-
complete data, non-free-choice constructs, hidden activities, concurrency, and
duplicate activities. Nevertheless, it requires the configuration of many param-
eters to deal with noise and irrelevant data, which is a complex task. Directed
acyclic graphs [32] proposes to transform the events into dependency graphs
or workflow graphs using directed acyclic graph, representing events and their
causal relations without loop. However, using this kind of graphs to model the
processes is delicate as loops exist in process models. To tackle this challenge,
this approach tries to count the tasks frequencies and then fold the graph. Nev-
ertheless, the results are partially satisfying and the model does not completely
fit the actual process. However, all these approaches neglect the underlying hu-
mans’ cognitive operators such as users’ strategies and intentions. In process
mining field, HMMs are used in context of inductive workflow acquisition [26] to
model a workflow or in [25] as a conformance checking technique. Each state of
HMMs corresponds to a task node. The event logs can be observed and gener-
ated into workflow nets by inductive learning. This approach supports appearing
the same tasks at several times in the model (duplicate tasks). It is similar to
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the approach of directed acyclic graphs [32] due to the presence of the splits
and joins in the transformation step. However, the works using HMMs do not
consider the hidden states as the cognitive states such as intentions/strategies.

6 Conclusions

In this paper, we have compared the supervised and unsupervised learning ap-
proaches, in both theoretical and practical contexts, to understand which ap-
proach allows discovering underlying users’ strategies optimally. Applied on a
real dataset to obtain Map process models, the results demonstrate that sev-
eral issues hinder the application of supervised learning in modeling humans’
cognitive process, such as considerable humans’ involvement in terms of data
labeling, introducing inherent humans’ biases and lack of accurate ground truth.
Therefore, we deduce from our study that unsupervised learning offers better
results than supervised learning to discover intentional process models (Maps).

Although the MMM automatically discovers the topology of the intentional
model, the names of strategies and intentions are still inferred semi-automatically.
However, the logical relations between activities, strategies and intentions estab-
lished in the intentional model could be exploited to build an ontology to fully
automate the process of inferring the names of strategies and intentions. In addi-
tion, we are developing an ProM [33] plug-in which will allow modeling processes
in intentional manner. This provides our community to have a vision of processes
from an intentional angle.
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