
HAL Id: hal-00994157
https://paris1.hal.science/hal-00994157v2

Submitted on 26 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Novel Approach for Process Mining : Intentional
Process Models Discovery

Ghazaleh Khodabandelou, Charlotte Hug, Camille Salinesi

To cite this version:
Ghazaleh Khodabandelou, Charlotte Hug, Camille Salinesi. A Novel Approach for Process Mining : In-
tentional Process Models Discovery. Eighth IEEE International Conference on Research Challenges in
Information Science (RCIS), May 2014, Marrakech, Morocco. pp.1-12, �10.1109/RCIS.2014.6861040�.
�hal-00994157v2�

https://paris1.hal.science/hal-00994157v2
https://hal.archives-ouvertes.fr

A Novel Approach to Process Mining : Intentional

Process Models Discovery

Ghazaleh Khodabandelou

Centre de Recherche en Informatique

University Paris 1 Panthéon-Sorbonne

90 Rue Tolbiac, Paris 75013, France

ghazaleh.khodabandelou@malix.univ-paris1.fr

Charlotte Hug, Camille Salinesi

Centre de Recherche en Informatique

University Paris 1 Panthéon-Sorbonne

90 Rue Tolbiac, Paris 75013, France

charlotte.hug, camille.salinesi{@univ-paris1.fr}

Abstract—So far, process mining techniques have suggested
to model processes in terms of tasks that occur during the
enactment of a process. However, research on method engi-
neering and guidance has illustrated that many issues, such
as lack of flexibility or adaptation, are solved more effectively
when intentions are explicitly specified. This paper presents a
novel approach of process mining, called Map Miner Method
(MMM). This method is designed to automate the construction
of intentional process models from process logs. MMM uses
Hidden Markov Models to model the relationship between users’
activities logs and the strategies to fulfill their intentions. The
method also includes two specific algorithms developed to infer
users’ intentions and construct intentional process model (Map)
respectively. MMM can construct Map process models with
different levels of abstraction (fine-grained and coarse-grained
process models) with respect to the Map metamodel formalism
(i.e., metamodel that specifies intentions and strategies of process
actors). This paper presents all steps toward the construction of
Map process models topology. The entire method is applied on
a large-scale case study (Eclipse UDC) to mine the associated
intentional process. The likelihood of the obtained process model
shows a satisfying efficiency for the proposed method.

Index Terms—Intention-oriented Process Modeling; Process
Mining; unsupervised learning

I. INTRODUCTION

Processes are tightly coupled to information systems sup-

porting them. The strong relation between processes and

supporting infrastructures permit a fast-spreading availability

of event logs [1]. The logs provide a basis for what is actually

happening in processes. Process mining field has emerged a

few years ago as a key approach to design business processes

from event logs [2], [3], [4]. Process mining techniques use

the data logs to discover actual process, to measure the

compliance of the real processes with respect to the prescribed

ones, and thereby improve processes design, methods and

tools. Process Mining endeavors to gain insight into various

perspectives, such as the process perspective, the performance

and organizational perspectives. Whereas most process min-

ing approaches specify behaviors in terms of sequences of

tasks and branching, research on intention-oriented process

modeling has shown that the fundamental nature of processes

is mostly intentional. Intentions as a first class concept of

information systems engineering [5] have appeared in the early

80s, in the information systems community [6], [7] as a po-

tential theoretical foundation to determine user’s behavior [8].

Intention models take root in a former work, called Technology

Acceptance Model (TAM) [8], one of the extensions of Theory

of Reasoned Action (TRA) [9] designed to model humans’

behavioral intention, particularly computer usage behavior.

The TRA has proven effective in predicting and explaining

human behavior through various domains. Since the early 90s,

intention-oriented process models have been promoted as a

driving paradigm to study strategic alignment [10], to define

actors and roles, to model organizational changes [11], to

specify the outcome of business process models [12] and name

them, to analyze, to support guidance [13], [14], to describe

intentional services [15], to handle traceability issues [16],

to express pervasive information systems [17], to study users

behavior to identify and name use cases, to tailor methods [18]

or just make them more flexible [19], etc. Further, research

on guidance in method engineering shows that many method

engineering issues, such as rigidity or lack of adaptation, are

solved more effectively when intentions and strategies are

explicitly specified [5].

Many works on intention-oriented modeling indicate how to

express intentions, formalize them in models, relate them with

other concepts, analyze them to solve a series of information

systems engineering issues, such as several scenario-based

techniques [20]. However, intention-oriented process modeling

has largely neglected event logs so far. These event logs

recorded by information systems contain precious information

about the actual enacted processes. They can be used to

provide an insight into the actual processes; deviations can

be analyzed and the quality of models can be improved.

Nevertheless, the major known difficulty is: how to identify

and formalize the intentions from event logs?

Discovery of intentional process models from event logs has

been proposed for the first time in our previous works [21],

[22], [23]. The lack of an automatic method to identify and

formalize users’ intentions from event logs of the process

enactment motivates the contribution of this paper. In this

perspective, this paper presents a method, so-called Map

Miner Method (MMM) that aims at discovering intentions and

strategies from event logs and thereby building the actual Map

process model. MMM can be useful at different stages of the

process model life-cycle, for instance: (i) at the requirements

Code

Baum-Welch Algorithm

Unsupervised

Learning of HMM

Developer

Activities logs

Emission and

Transition Matrices Discovered Coarse-grained

Map Process Model

Map Miner

Algorithm

Deep Miner

Algorithm

Estimated

Strategies

Fig. 1: An overview of Map Miner Method

level, to find users intentions from processes activity logs;

and (ii) at the project management level, to check alignment

between prescribed process models and what stakeholders

actually do. MMM generates intentional models specified with

the Map formalism [5]. This formalism is chosen rather than

other intentional process models such as KAOS or I* [24],

[25] because (a) it allows process variability and multi-process

specification [26], (b) it has already proved effective for

specifying software engineering processes [13], and (c) it

combines intentions and strategies at multiple levels of ab-

straction, which scales well to large and complex processes [5].

Merely, Map process model [26] has proved a powerful tool

to better understand the deep nature of processes, to see how

processes interweave and combine, to abstract processes and

visualize them under man-manageable form, even when they

are extremely complex [5].

In the MMM framework, the nature of intentions highly

depends on the definition of intention in the Map formalism. In

this formalism, an intention is defined as a goal, an objective or

a motivation to achieve with clear-cut criteria of satisfaction,

which can be fulfilled by the enactment of a process [27].

Furthermore, the intentions form the high-level goals (e.g.,

organizational goals) and are explicitly represented in the

models.

The contribution of this paper consists of: (i) first, modeling

users’ strategies in terms of observed activities (event logs)

using Hidden Markov Models (HMMs) [28], (ii) Second, using

estimated strategies and Map formalism, we developed two

particular algorithms (Deep Miner and Map Miner algorithms)

to generate respectively, fine-grained and coarse-grained Map

process models, (iii) Finally, the proposed approach (MMM) is

applied on a large-scale case study, Eclipse UDC (Usage Data

Collector) developers’ logs [29]. The resulting Maps provide

valuable information about the processes followed by the

developers and demonstrate the effectiveness and scalability

of MMM.

The remainder of this paper is organized as follows. Sec-

tion II introduces MMM, by presenting first how to model

strategies in terms of activities with HMM, then the Deep

Miner and Map Miner algorithms are represented. Section III

represents a large-scale case study with event logs from

Eclipse UDC to find out how developers use the Eclipse

technology. Related works are discussed in section IV and

threats to validity in section V. Finally, section VI concludes

this work and presents its perspectives.

II. MAP MINER METHOD

The key idea of MMM is modeling the users’ behaviors

in terms of their underlying intentions and strategies (i.e., the

alternative ways to fulfill their intentions) from event logs.

MMM uses the Map formalism to model actual processes fol-

lowed by users. According to the Map formalism, intentions

express what users intend to perform during the enactment of

a process [26]. In other words, the enactment of a process is

execution of a sequence of activities that are caused by users’

intentions. According to the fuzzy mechanism of cognitive

processes, an intention causes the performance of one or

several activities at time t. However, intentions can be fulfilled

by combining different activities, which are different ways of

achieving an intention (i.e., strategies). Indeed, in the Map

metamodel, strategies are used to move from one intention

to another. These strategies in turn, are made of one or

several activities. This relationship between the intentions, the

strategies and the activities, represents the top-down reasoning

and acting structure of cognitive processes of human brain.

Nevertheless, only the low-level part of this structure, i.e.,

users’ activities, is observable. The high-level part (strategies

and intentions) is an abstract notion and therefore unobservable

directly.

MMM proposes to trace back this structure to discover the

source, i.e., users’ intentions. To do so, MMM uses the ob-

servable users’ activities traces (a set of event logs), generated

while interacting with information systems. MMM consists of

three phases: (i) First phase: estimating the users’ strategies

from observed activities using HMMs, (ii) Second phase:

generating fine-grained Map process model using estimated

strategies and Map formalism (Deep Miner algorithm), (iii)

Final phase: generating coarse-grained Map process model

from fine-grained one (Map Miner algorithm).

MMM generates the high-level intentions to obtain the

coarse-grained Map and also the low-level intentions to obtain

the fine-grained Map. These low-level intentions are so-called

sub-intentions. They are the finest intentional objects of the

Map metamodel. Each sub-intention is associated to a parent

intention, and one intention is fulfilled if at least one of its

children sub-intention is fulfilled.

This multi-level topology is due to the deep architecture

of the brain. The extensive studies on the visual cortex show

each sequence of cortex zones contains a representation of the

input and also signals flow from one to the other [30]. In other

words, each level of this feature hierarchy represents the input

at a different level of abstraction, with more abstract features

further up in the hierarchy, defined in terms of the lower-level

ones. Therefore, cognitive processes have a deep structure

and humans organize their ideas and concepts hierarchically.

First, they learn simpler concepts and then compose them to

represent more abstract ones [30].

Fig. 1 depicts an overview of MMM. Constructing the Map

process model thereby allows rebuilding the actual process

model, i.e., the model followed by users. Before addressing

the problem of discovering the Map, we briefly explain its

framework.

A. The Map Metamodel

Map is an intentional process metamodel. Map process

model (an instance of Map metamodel) allows representing

process models in terms of users’ intentions and strategies.

Fig. 2 illustrates a Map process model where the nodes repre-

sent the intentions and the edges represent the strategies. A set

of Source Intention, Strategy, Target Intention represents a

section in the Map. Map allows representing flexible process

models, enacted in a dynamic way since the sections of a Map

can be executed non-sequentially and as long as intentions are

not completely fulfilled. For example, on Fig. 2, one way to

fulfill the intention Specify an entity is to select the strategy

S4: By generalization. Thus, confronted to a specific situation

and a particular intention, the Map reveals the alternative

strategies to fulfill the intention. The corresponding section of

this example is Specify an entity, By generalization, Specify

an entity . In the following section, we explain how HMMs

allow modelling strategies with respect to the activities from

event logs.

Specify an

entity

Specify an

association

Start Stop

S1

S2

S3

S4

S5

S6

S7 S8

S9

S10

By completeness

of the model

By completeness

of the entity

By generalization

By specialization
By normalization

By reference

By completeness

of the association
By completeness

(model correct,

complete, coherent)

By normalizationBy decomposition

Fig. 2: An example of Map process model with 4 intentions

and 10 strategies

B. Estimating Hidden Strategies from the Observed Activities

HMMs allow modeling the structure of complex temporal

dependencies between two complementary Markov processes:

hidden and observed processes, given that the observed process

is generated depending on the state of the hidden process.

Generally, the states of hidden process are not visible but

the probability of a given state can be inferred by computing

the Maximum Likelihood of the observed process. It turns

out that the topology of HMMs is particularly adapted to

model the relation between strategies and activities in the Map

formalism. To make it clear, let us consider an example for

a Map process model enacted with 2 strategies and an HMM

realized with 2 hidden states (see Fig. 3). As shown this figure,

strategies are used to move from one intention to another and

are made of one or several activities. For instance, the strategy

1 allows moving from intention a to intention b and it is made

of activities a1, a3 and a4. The same structure can be found in

an HMM, where hidden states are processed sequentially and

generate observations. For instance, hidden state 1 generates

the activities a1, a3 and a4. This similar topology motivates

using HMMs to model users’ strategies with respect to activity

logs. The topology (the order of the Markov process) for

Hidden

State1

Intention bIntention a
Strategy1 Strategy2

a1

a1

a4

a4

a3

a3

a4 a7

a7a4

Hidden

State2

Enactment of a

process with Map

Realization of

 an HMM

Fig. 3: An example of a Map process model enacted with 2

strategies (above) and an HMM realized with 2 hidden states

(below)

MMM framework is formally defined next.

1) Hidden Process as Users’ Strategies: The hidden pro-

cess represents the users’ strategies. Let s s1, . . . , sL SL

be a temporal sequence of users’ strategies of length L. The

topology M1 is chosen for this process, which means that the

strategy sl at step l only depends on the strategy at step ` 1.

This choice is justified by the fact that strategies are performed

in a logical order by users. A homogeneous Markov chain,

which parameters are denoted by T and ⇡, models transitions

between strategies with:

T u, v Pr s` v s` 1 u u, v S, ` 2, L ,

⇡ u Pr s1 u u S.
(1)

The vector ⇡ contains the probabilities of strategy at the initial

state and the matrix T contains the transition probabilities

for the following strategies, i.e., the transition probabilities

from any strategy at step ` 1 to any other strategy at step `

(including itself).

2) Observed Process as Users’ Activities: The observed

process represents the users’ activities. Let a a1, . . . , aL
AL be a temporal sequence of users’ activities of length L.

We choose the model M0 for this process, meaning that the

emission of a`, at a given step `, does not depend on any

previous activity. It only depends on the strategy at the same

time step. The emission probability of an activity a A for a

given strategy u S is given by:

E a, u Pr a u . (2)

The matrix E contains the emission probabilities of any

activity for any strategy.

3) Learning HMMs Parameters: Assuming that S , A and ⇡

are known, the HMM model parameters is fully described by

H E,T , which represents the core information about the

HMM behavior. Since these matrices generate the sequences

of strategies and the observed sequences of activities, they can

be estimated from the sequences of activities. This approach

is known as unsupervised learning and present the desirable

feature of characterizing strategies based only on activities.

The Baum-Welch algorithm (BWA) [31] is most commonly

used to learn the parameters of a HMM.

The BWA estimates the HMM parameters that locally

maximize the probability of having the sequences of activities

generated by the HMM. More precisely, the BWA maximizes

the likelihood of H:

H argmax
H

N

n 1

Pr an H , (3)

where N is number of observed sequences in a dataset

containing activities a1, . . . ,aN .

C. Determining the Number of Strategies

The BWA requires the sets A and S to be known or at

least, their cardinality, i.e. S and A for the algorithm to run.

Regarding the set of activities A, it can simply be obtained

by identifying the different activities in the dataset. However,

obtaining the set of strategies S is impossible since there is

no information about strategies in the dataset. There are three

ways to obtain the number of strategies:

This parameter can be chosen by experts. This is inter-

esting since it allows to set the level of complexity of the

model, to meet some a priori expectations of the model.

However, as this choice involves human intervention and

introduces a bias.

Several criteria exist to determine the number of hidden

states, such as Bayesian Information Criterion (BIC) [32].

This metric allows the comparison of HMM models

with different numbers of hidden states, trained on the

same underlying data. BIC penalizes the likelihood of the

model by a complexity factor proportional to the number

of parameters ✓ in the model and the number of training

observations R:

BIC 2 log Pr A H ✓ log R , (4)

where ✓ J2 J F , and J2 and J F represent the

number of parameters in transition matrix and emission

matrix, respectively. Although BIC can ensure a result for

every sequence of activities, this trade-off does not allow

generating the model with the best likelihood when the

model has a high complexity factor.

The method that is used in this paper to set the right

number of strategies is heuristic. It consists in generating

several HMM models with different numbers of strategies

and observing the associated emission matrices. It occurs

that as the number of possible strategies increases, the

number of different strategies obtained in the emission

matrices reaches a threshold. It means that when the

number of possible strategies is too high, the BWA pro-

duces an emission matrix with several identical strategies.

Consequently, we choose to set the right number of

strategies of our model to this observed threshold. This

method has the advantage of being adaptable for different

datasets. The drawback of this method is its computation

complexity.

D. Deep Miner Algorithm

Once model parameters T and E are estimated by the BWA,

the problem is how to extract a Map process model, which fits

actual process model. As a first step into this direction, we

propose a metric which has the interesting property of taking

into account both fitness and precision to optimize the Map

process model, whereas classical metrics in process modeling

address either fitness or precision (see [2] for an overview of

the existing metrics).

1) Extracting a Map from a Transition Matrix: We recall

that the matrices generated by the BWA are an emission matrix

E, giving the probabilities of generating any activity while

performing a strategy and a transition matrix T, giving the

probabilities of transition between any couple of strategies

s, s S2.

Clearly, there is a strong link between the transition matrix

and the topology of the Map process model we want to extract.

To extract a Map from a transition matrix, the two following

constraints must be verified: (i) any transition between possible

strategies in the transition matrix should be possible on the

Map, (ii) any transition between possible strategies in the Map

should be possible in the transition matrix.

The first constraint can be seen as a criterion for fitness since

it ensures that all the transitions learned from the dataset are

present in the Map. The second constraint corresponds to a

criterion of precision since it aims at avoiding introducing

extra-transitions in the Map that are not learned from the

dataset. Our goal is to find the Map that best satisfies both

of them. In the next part, we define a metric which is a trade-

off between fitness and precision and also captures the relative

importance of transitions. Fig. 4 depicts an overview of Deep

Miner algorithm.

2) Proposed Metric of Fitness and Precision: The topology

of a Map m can be defined by the set of its sections, each

comprising a source sub-intention, a strategy and a target sub-

intention. We formally write

m mk k 1,...,K , (5)

Deep Miner

Algorithm

Fine-grained Discovered Map

Estimated

Strategies

Fig. 4: Overview of Deep Miner Algorithm.

where k denotes the index of a section and K is the total

number of sections of the Map. For each k 1, . . . ,K ,

mk i, s, j I S I. The component mk 1 is the

source sub-intention of section k, mk 2 is the strategy of

section k, and mk 3 is the target sub-intention. On the Map

m, a transition from strategy s to strategy s is possible if and

only if there exist k, k 1, . . . ,K 2 such that mk 2 s,

mk 2 s , and mk 3 mk 1 . In the following, we use

the symbol ↵ to denote if a transition is possible or not in the

Map:

↵s,s

1 if k, k 1, . . . ,K 2 such that mk 2 s,

mk 2 s , and mk 3 mk 1 ,

0 otherwise.
(6)

In the transition matrix T, we only consider as valid

transitions with a probability above a given threshold ". The

value of " has to be chosen heuristically, to counter the effects

of noise and artifacts in the dataset. We define:

!s,s
1 if T s, s ",

0 if T s, s ".
(7)

Classically, the criteria of fitness and precision between T

and m can be expressed by the expressions known as recall

and precision. In our context, we define these two expressions

as

Rec T,m
s,s !s,s ↵s,s

s,s !s,s

, (8)

Pre T,m
s,s !s,s ↵s,s

s,s ↵s,s

. (9)

The numerator of both expressions is the number of significant

transitions in T that are present on the map m, while the

denominators are the number of significant transitions in T

and the number of transitions on m, respectively.

Since our goal is to find a map that fits best the transition

matrix with respect to both recall and precision, we can use

the classical F-measure which expression is:

F1 T,m 2
Pre T,m Rec T,m

Pre T,m Rec T,m
. (10)

3) Optimization Problem: Now that the proper metric has

been defined, we need to find the Map that maximizes it. The

solution of this problem belongs to the set

M argmax
m

F1 T,m . (11)

Since we want to obtain a Map with the simplest structure,

we choose the solution with the lowest number of sections. In

other words, the solution is

m arg
m M min m , (12)

where m stands for the number of sections in m. However,

finding m is a difficult task since m generally belongs to a

high-dimension space. Indeed, it can be shown that there are

2 S
2

possible Maps for S different strategies. Consequently,

computing all the possible Maps with a brute force method

then comparing their F-measures is not an option. Instead,

we developed an algorithm that solves (12) with a complexity

bounded by S S 1 . This algorithm is detailed below.

Data: strategy set S , transition matrix T, threshold "

Result: map m

for each strategy s S do

associate to s a target sub-intention is;

end

for each strategy s S do

for each strategy s S, s s do

if T s, s " then
create a section from is to is with strategy s

;

end

end

end
Algorithm 1: How to obtain a Map from S , T, and ".

The first part of algorithm 1 associates a target sub-intention

to each strategy of S . In the second part, if a transition

probability from strategy s to strategy s is above the threshold

", a section is added to the Map from the target sub-intention

of s to the target sub-intention of s . This section ensures that

the transition given by T is also present in the Map. With

this algorithm, recall and precision, defined in (8) and (9),

have the advantage of being equal to 1. Indeed, " defines the

abstraction-level in the Map. When " is close to 0, almost all

the transitions from the unsupervised model are present in the

obtained Map. Consequently, the likelihood of the obtained

Map is high but the Map is hardly understandable by humans

since it has too many sections. However when " increases, the

number of sections, as well as the likelihood of the obtained

Map, decrease. The Map gets more easily understandable by

humans but it is not as accurate in terms of transition.

E. Map Miner Algorithm

Granularity refers to the level of detail of a process model.

While a Map process model with a coarse-grained gran-

ularity represents high-level intentions (e.g., organizational

intentions), a Map process model with a fine-grained granu-

larity provides more detailed intentions, called sub-intentions.

Depending on the situation at hand, one can define the nature

of granularity that is needed. This affects the kind of guidance,

explanation and trace that can be provided [33].

Map Miner

Algorithm

Coarse-grained

Discovered Map

Fine-grained

Discovered Map

Fig. 5: Overview of Map Miner Algorithm.

For instance, project manager or middle managers require

rather coarse-grained process description as they want to gain

an overview of time, budget, and resource planning for their

decisions. In contrast, software engineers, users, testers, ana-

lysts, or software system architects will prefer a fine-grained

process model where the details of the model can provide them

with instructions and important execution dependencies such

as the dependencies between people. Hybrid formalisms such

as Process Weaver [34] uses different notations for coarse-

grained and fine-grained aspects of process.

1) Determining the Level of Abstraction for the Map:

Given that the Map obtained from MMM has a high degree of

precision (in terms of sub-intentions and sections), it can be

useful to extract some higher-level Maps of the same process

from this original Map. An algorithm has been developed to

automatically perform this task and is presented in this section.

It falls into three main parts:

1) The sub-intentions from the fine-grained Map are repre-

sented in a space in which they can be classified into

clusters.

2) A clustering algorithm, namely K-means, is applied on

the sub-intentions in order to group them into clusters of

intentions. Note that the number of intentions is a param-

eter that has to be chosen. The choice of this parameter

allows researchers to obtain Maps with different level of

precision.

3) Finally, a Map is rebuilt from the new groups of intentions

with updated sections.

2) Sub-intentions Representation in the Space: Before clus-

tering sub-intentions into groups of intentions, one needs to

represent each sub-intention in a space that trustfully accounts

for the topology around the sub-intention in the original

Map. Given that each sub-intention is connected to other sub-

intentions by sections, a proper way to represent sub-intentions

is to indicate to which other sub-intentions it is connected.

Since the Map is an oriented graph, a difference is made

between sub-intentions from which there exists a strategy

going to the sub-intention to be represented and sub-intentions

that can be fulfilled with strategies from the sub-intention to

be represented.

From a formal perspective, let us consider a Map with N

sub-intentions. The sub-intention in I is represented by

a vector vn in a space of dimension 2N such that the first

N coefficients correspond to the sub-intentions from which

there is a strategy going to in, and the final N coefficients

correspond to the sub-intentions that can be fulfilled from in.

For all n 1, N , if there exists a section from in to

in then vn n 1, otherwise vn n 0.

For all n 1, N , if there exists a section from in to

in then vn 2n 1, otherwise vn 2n 0.

Since in is implicitly considered to be connected to itself,

we have vn n 1 and vn 2n 1.

Let us consider a fragment of a fine-grained Map with 8

sub-intentions (Fig. 6). The sub-intentions ’a’, ’b’, ,’h’ are

respectively represented by the vectors v1, v2, , v8 in the

space. For instance, we consider the vectors v3 and v5, which

represent ’c’ and ’e’, respectively.

v3 01110000 00100110

v5 01011000 00001110

These vectors are composed of the values ’0’ or ’1’. The

vectors sizes are equal to 16; this size is due to possibilities

of 8 incoming sub-intentions ’a’, ’b’, ,’h’ and 8 outgoing

sub-intentions ’a’, ’b’, ,’h’ (comprising the sub-intention

it-self for both cases). The left side of the vectors defines the

incoming sub-intentions and the right side defines the outgoing

sub-intentions. For instance, in v5 the incoming sub-intentions

are ’b’, ’d’ and ’e’ and the outgoing sub-intentions are ’e’, ’f’

and ’g’. Therefore, in v5 the value of ’1’ is assigned to the

incoming sub-intentions ’b’, ’d’, ’e’ (at the left side) and the

outgoing sub-intentions ’e’, ’f’, ’g’ (at the right side). The

value ’0’ is assigned to the other sub-intentions. In the same

way, in v3 the incoming sub-intentions are ’b’, ’c’ and ’d’ and

the outgoing sub-intentions are to ’c’, ’f’ and ’g’. Therefore, in

v3 the value of ’1’ is assigned to the incoming sub-intentions

’b’, ’c’, ’d’ (at the left side) and the outgoing sub-intentions

’c’, ’f’, ’g’ (at the right side) and the value ’0’ to the other

sub-intentions.

e

c

d g

b
f

h

a

Fig. 6: A fragment of a fine-grained Map with 8

sub-intentions

With this representation, two sub-intentions connected to

similar sub-intentions will be represented with a short distance

between them, while two sub-intentions connected to different

sub-intentions will be represented with an important distance

between them. This way, the clustering algorithm that is ap-

plied on the sub-intentions can group sub-intentions efficiently.

Fig. 5 represents an overview of Map Miner Algorithm.

3) Clustering sub-intentions into high-level intentions:

Once the sub-intentions are represented in the space described

in section II-E2, a clustering algorithm can be applied to group

them into clusters of intentions. In this work, we apply the

K-means [35] algorithm to perform this task. This algorithm

works the following way: given a number K of clusters and a

set of points vn n 1,N , the algorithm determines the gravity

center ck of each cluster k, such that the sum of the distances

from the points to the center of their cluster is minimized. In

other words, it minimizes the sum

1:N

d vn, c vn , (13)

where c vn is the center of gravity which is the closest to

vn. For example, if vn is closer to ck, c vn ck. And d ., .

is a distance between two points.

Said in another way, the K-means algorithm finds K groups

of sub-intentions such that in each group, sub-intentions are

in a same area of the Map.

4) Rebuilding the Map: To obtain a new Map from the clus-

ters of intentions, all the previous sub-intentions are replaced

by the intention of their group. The sections also need to be

updated to take into account the simplified topology of the

Map. We recall that the Map discovered by the Deep Miner

algorithm is denoted by m . Note that the identical sections

have to be removed from the discovered Map. Algorithm 2

shows how to rebuild a coarse-grained Map process models

from K clusters of intentions given that the mapping from sub-

intentions to intentions obtained from K-means is denoted by

g.

Data: Map m , mapping g

Result: Map m

for each section mu, u 1, U do
mu 1 : g mu 1

mu 2 : g mu 2
end

Remove identical sections in m

Algorithm 2: Rebuilding a Map from K clusters of inten-

tions.

III. CASE STUDY: ECLIPSE UDC

This case study aims at reconstructing the Map process

model of Eclipse Usage Data Collector (UDC) develop-

ers [29]. The developers committed their code to a server

hosted by Eclipse Foundation. Eclipse UDC strives for helping

developers and organizations to better understand how the

community uses Eclipse platform [36]. In this perspective,

our contribution is to model the UDC developers’ behaviors in

terms of intentions and strategies while using Eclipse platform.

The obtained Map can help to better understand developers’

behaviors.

The dataset contains 1, 048, 576 event logs from developers

who agreed to send their data back to the Eclipse Foundation.

These data aggregate activities from over 10, 000 Java develop-

ers between September 2009 and January 2010. The activities

are recorded by timestamps for each developer, which allows

knowing when and by whom activities were committed.

A. Applying MMM on Dataset

In order to apply MMM, it is important to prepare the

dataset. The number of unique developers’ activities per month

exceeds 500 activities. This number contains both the recurring

activities and the non-recurring activities, i.e., activities which

are not frequently performed by developers. These activities

are not representative of the developers’ behavior character-

istics because they have not been repeated enough to be a

behavioral-pattern. For this reason, and also for readability, we

limit this study to the 150 most frequent activities performed

by developers.

Table I contains the list of these activities. Some of these

activities are the commands performed directly by developers;

some of them are the frameworks, plug-ins or built-in fea-

tures of Eclipse used by developers during their development

process. For readability reasons, the prefix org.eclipse of the

activities is removed. The plug-ins and frameworks are shown

in bold letters and the related activities are inside brackets.

Once the dataset is ready, BWA estimates the developers’

strategies. Note that, the number of strategies obtained by

the heuristic method for this case study is 10. The strategies

are represented in table I with their corresponding groups of

activities. Finally, the Maps obtained by Deep Miner and Map

Miner algorithms are shown on Fig. 8 and 9, respectively.

0.01 0.02 0.03 0.04 0.05 0.06
−6250

−6200

−6150

L
o
g
-l
ik
el
ih
o
o
d

ε

0.01 0.02 0.03 0.04 0.05 0.06
20

40

60

N
u
m
b
er

o
f
se
ct
io
n
s
in

th
e
o
b
ta
in
ed

M
a
p

Likelihood of the obtained Map

Likelihood of the unsupervised model

Number of sections in the obtained Map

Fig. 7: The effect of the choice of " on the likelihood and

the number of sections of the obtained Map for the Eclipse

traces.

Fig. 7 depicts the effect of the choice of " on the likelihood

and the number of sections of the obtained Map. As mentioned

earlier, " expresses the level of abstraction for a Map. An

expert can choose the value of " regarding the expected level

of abstraction. In this case study, the value of " is set to 0.06

to have a good trade-off between having a likelihood with a

relative high value and a reasonable number of sections.

Regarding the obtained Map (Fig.s 8 and 9), 22 sub-

intentions are grouped by Map Miner algorithm into 7 groups

of high-level intentions. Note that MMM can discover ac-

curately the beginning and the end of a process; thus the

intentions Start and Stop are clearly determined on the ob-

tained Map. The transition probabilities from one intention to a

S7

S8

S9

S9

S5

S7

Stop

Start

S1

a

c

b

d
h

f

g

e

i

k

l

m

j

o

s
p

n

q
r

t

w

u
S1 S3

S3
S1

S1

S3

S1

S1

S2

S2

S4

S4
S4S4

S4

S4

S2S2

S2

S7

S8

S8

S7

S7

S7
S7

S8

S8

S8

S8

S7

S9

S5

S5
S5

S5

S4

S4

S4

S4
S4

S6

S6

S9

S9

S10

S9

S9

S10

S4

Fig. 8: Fine-grained Map process model obtained with Deep Miner algorithm

TABLE I: Strategies labels and related activities for Eclipse UDC

Strategies labels Activities names

S1 mylyn.context.ui.commands.[Open.context.dialog, AttachContext, interest.Increment,
interest.Decrement], mylyn.monitor.ui, mylyn.team.ui, mylyn.tasks.ui.commands.[OpenTask, AddTaskReposi-
tory, ActivateTask, SearchForTask]

S2 core.[jobs, net, filesystem, resource, runtime, variables, contenttype, databinding.observable],
equinox.p2.ui.sdk.install

S3 mylyn.context.ui.commands.[Open.context.dialog, AttachContext, interest.Increment,
interest.Decrement],team.cvs.ui.[branch, replace, GenerateDiff, ShowHistory, Add, Tag,merg,
compareWithTag], jsch.core, mylyn.[monitor.ui, team.ui, commons.ui, bugzilla.ui]

S4 pde.ui.EquinoxLaunchShortcut.run, equinox.p2.ui.sdk.update, equinox.[ds, simpleconfigurator.manipulator,
frameworkadmin, app, common, directorywatcher, engine, core, metadata.repository, garbagecollector,
ui.sdk.scheduler, repository, preferences, exemplarysetup, registry, updatechecker]

S5 core.[databinding.observable, core.net, core.filesystem, core.resource, core.runtime,
core.variables, core.contenttype], debug.ui.commands.[RunLast, Debuglast, eof, StepOver,
TerminateAndRelaunch, execute, AddBreakPoint, TogglebreakPoint], jdt.debug.ui.

[commands.Execute, commands.Inspect], jdt.junit.[junitShortcut.rerunLast, gotoTest,
junitShortcut.debug], ltk.ui.refactoring.commands.[deleteResources, renameresources,
moveResources], compare.selectPreviousChange

S6 ui.edit.[delete, paste, copy, undo, text.goto.lineEnd, text.contentAssist.proposals,
text.goto.wordNext], ui.file.save

S7 cdt.ui.editor, jdt.junit.[junitShortcut.rerunLast, gotoTest, junitShortcut.debug], team.cvs.ui.[CompareWithRevision,
CompareWithLatestRevisionCommand,
CompareWithWorkingCopyCommand],ui.edit.[delete, paste, copy undo, text.goto.lineEnd,
text.contentAssist.proposals, text.goto.wordNext]

S8 team.ui.[synchronizeLast, teamSynchronizingPerspective, synchronizeAll, applyPatch],
ltk.core.refactoring.refactor.[create.refactoring.script, show.refactoring.history]

S9 mylyn.monitor.ui, mylyn.context.ui, mylyn.commons.ui, team.cvs.ui.[commitAll, Commit, CompareWithRe-
mote, Sync]

S10 mylyn.monitor.ui, mylyn.bugzilla.core, mylyn.bugzilla.ui, team.cvs.ui.[commitAll, Commit, CompareWithRe-
mote, Sync]

strategy are annotated on the arrows. These values correspond to the probabilities that the developers selected a strategy

from a given intention. The values on the loops indicate

the probabilities that the developers continued to perform the

activities related to the looped strategies.

B. Analysis of Obtained Maps

Discovering the Map for developers of Eclipse UDC allows

understanding the developers’ behaviors during the devel-

opment process. As shown by Fig. 9, they have selected

different paths (sequences of strategies) with different prob-

abilities to fulfill their intentions. An expert can analyze these

behaviors in order to understand how, why and with which

probabilities developers make use of different components or

plug-ins of Eclipse: where they follow the best practice of

software development projects and where they deviate from

these rules, which components or plug-ins are more involved

than the others, which paths are more/less taken or where are

system bottlenecks, etc. The Map can also be used to provide

recommendations to developers in order to choose the best

path to fulfill his/her intentions.

C. Strategies and Intentions Naming Procedure

As found in this case study, MMM constructs the topology

of the Map process model from event logs, which means

strategies (the arrows) and where they lead, i.e., intentions

(the nodes). However, the names of strategies and intentions

remain to be inferred. As a first step to this direction, this

paper propose to use the information found in the emission

matrix E. Indeed, E contains the names of activities related

to each estimated strategy. This can be used as a basis for the

construction of ontologies rules.

Table II illustrates the topics found by E for each estimated

strategy as well as manually inferred names for the strate-

gies. The inferred names of strategies are manually inferred

through a semantic analysis of the topics found by E, their

properties and interrelationships. For instance, the main activ-

ities grouped into the strategy S10 are ’mylyn.bugzilla.core’,

’mylyn.bugzilla.ui’, and ’CompareWithRemote’. From these

activities one can infer the developers who performed these

activities wanted to update the issues on the Bugzilla bug-

tracker. Therefore, the name inferred for this strategy is By

updating issue tracking. Further, the main activity for strategy

S9 is ’team.cvs.ui.commitAll’, which means the developers

wanted to commit their code to a CVS (Concurrent Versions

System) server; thus, the name inferred for this strategy is

By CVS committing. In the same way, since the strategies

lead to intentions, the names of intentions can be inferred by

analyzing the strategies leading to each intention. In this paper,

we do not infer the names of intentions, we assign to them

only the labels, such as Intention 1, Intention 2, . The

names of intentions as well as the strategies remains to be

fully automated by building sophisticated ontologies.

IV. RELATED WORK

Process mining approaches propose to discover process

models from event logs generated during process enact-

ment [3], [4], [37], [38]. The idea to apply process mining in

workflow processes context was introduced by Agrawal [39].

At the same time, Datta proposed to discovery of business

process models [40]. Cook et al. investigated similar issues

in the context of software engineering processes [37]. The

majority of the process mining techniques focus on process

models discovery based on observed event logs [3], [39],

[37], [40], [41], [42], [43]. Process mining techniques are not

limited to only process models discovery, for instance, social

networks and other organizational models can be discovered

from event logs [44], [45]. An overview of the early work in

this domain is given in [46].

Inference methods infer process models with a tradeoff

between accuracy and noise robustness. Cook compares in [47]

three inference algorithms of RNet [48], Ktail [49] and Markov

models [50] for process discovery. The latter two are consid-

ered as the most promising approaches. Markov models is a

hybrid approach (i.e., a statistical and algorithmic approach),

looking at the neighboring past behavior to define the future

state. It is robust to noise with a controllable complexity. Later,

Cook and Wolf in [51], [52] proposed some techniques for

concurrency detection and a measure to quantify the variance

between behaviors and process models. ↵-algorithm [3] was

proposed by Van der Aalst et al. to rebuild the causality in

the Petri nets workflow from the existent relations in the event

log. ↵-algorithm takes the event logs as input, rebuilds process

models by using simple XOR, AND splits and joins; thereby

creates the workflow nets as output. ↵-algorithm cannot handle

noise and certain complicated routing constructs of workflow

nets, such as loops and long-term dependencies, particularly

during complex situations [1]. Another approach is directed

acyclic graphs [39], which proposes to transform the events

into dependency graphs or workflow graphs using directed

acyclic graph, representing events and their causal relations

without loop. The approach of Agrawal deals with problems of

finding a workflow graph creating event logs and defining the

edge conditions. However, using this kind of graphs to model

the processes is delicate as loops exist in process models. To

tackle this challenge, this approach tries to count the tasks

frequencies and then fold the graph. Nevertheless, the results

are partially satisfying and the model does not completely

fit the actual process. Approach of genetic algorithm [53]

provides process models (Petri nets) built on causal matrix,

i.e., input and output dependencies for each activity. This

technique tackles problems such as noise, incomplete data,

non-free-choice constructs, hidden activities, concurrency, and

duplicate activities. Nevertheless, it requires the configuration

of many parameters to deal with noise and irrelevant data,

which is a complex task. Inductive workflow acquisition [54]

aims at finding the best Hidden Markov Models (HMMs) [28]

that reflect the process models acquisition out of workflow

models as well as their adaptation to requirements changes.

This consists of two steps: induction and transformation steps.

This approach supports appearing the same tasks at several

times in the model (duplicate tasks). It is similar to the

approach of directed acyclic graphs due to the presence of

the splits and joins in the transformation step. However, all

0.39

S1

S3

S2

S3

S7

 S7

S7

S8
S8

S8

S9

S9

S9

S5

S5

S5

S2

S4
S4

S6

S7

Stop

Start

0.47

0.11

0.36

0.51
0.10

0.19

0.17

0.19
0
.0

7 0
.0

5

0.09 0.30

0
.4

1

0.2
0

0.53

0.22

0.33

0.49

0.06

0.51

 S10

S1

0.12
a c

b

d h

f

g

e

i k

l
m

j

o

s

p
n

q

r

t w

u

Intention1

Intention2

Intention3

Intention4

Intention5

0.13

Fig. 9: Coarse-grained Map process model obtained with Map Miner algorithm

TABLE II: Strategies labels, topics and inferred strategies names for UDC Eclipse

Strategies labels Topics obtained by E Inferred strategies

names

S1 OpenTask, AddTaskRepository, ActivateTask, SearchForTask, Open.context.dialog, At-
tachContext, interest.Increment, interest.Decrement, mylyn.monitor.ui, mylyn.team.ui

By project tracking and
team planning

S2 jobs, net, filesystem, resource, runtime, variables, contenttype, databinding.observable,
equinox.p2.ui.sdk.install

By regular programming
activities

S3 Open.context.dialog, AttachContext, interest.Increment, interest.Decrement, branch, re-
place, GenerateDiff, ShowHistory, Add, Tag,merg, compareWithTag, jsch.core, moni-
tor.ui, team.ui, commons.ui, bugzilla.ui

By code/task sharing

S4 EquinoxLaunchShortcut.run, equinox.p2.ui.sdk.update, simpleconfigurator.manipulator,
frameworkadmin, app, common, directorywatcher, engine, core, metadata.repository,
garbagecollector, ui.sdk.scheduler, repository, preferences, exemplarysetup, registry,
updatechecker

By OSGI-based design

S5 databinding.observable, core.net, core.filesystem, core.resource,
core.runtime, core.variables, core.contenttype, RunLast, Debuglast, eof, StepOver, Termi-
nateAndRelaunch, execute, AddBreakPoint, TogglebreakPoint, debug.commands.Execute,
commands.Inspect, junitShortcut.rerunLast, gotoTest, ltk.ui.refactoring.commands.
deleteResources, renameresources, moveResources, compare.selectPreviousChange

By refactoring, testing and
debugging

S6 delete, paste, copy, undo, text.goto.lineEnd, text.contentAssist.proposals,
text.goto.wordNext, ui.file.save

By file modification

S7 cdt.ui.editor, junitShortcut.rerunLast, gotoTest, delete, paste, copy, undo,
text.goto.lineEnd, text.contentAssist.proposals, junitShortcut.debug, Compare-
WithWorkingCopyCommand, team.cvs.ui.CompareWithRevision, CompareWithLat-
estRevisionCommand

By reviewing and testing

S8 synchronizeLast, TeamSynchronizingPerspective, synchronizeAll, applyPatch, cre-
ate.refactoring.script, show.refactoring.history

By patch applying

S9 mylyn.monitor.ui, mylyn.context.ui, mylyn.commons.ui, team.cvs.ui.commitAll, Com-
mit, CompareWithRemote, Sync

By CVS committing

S10 mylyn.monitor.ui, mylyn.bugzilla.core, mylyn.bugzilla.ui, team.cvs.ui.commitAll, Com-
mit, CompareWithRemote, Sync

By updating issue tracking

process mining techniques aim at modeling users’ behaviors

in terms of activities and overlook the underlying humans’

cognitive operators, such as intentions and strategies. A similar

technique to HMMs is Finite State Machine (FSM), which

is used in some works to model users’ behaviors [49], [38].

While our approach models hidden states as users’ strategies,

FSM is a simple automaton and is not appropriate to model

cognitive processes.

V. THREATS TO VALIDITY

Four main issues may threat the validity of the proposed

approach. First, the quality of discovered Map process models

depends on the number of activities sequences used to estimate

the parameters of the HMM. Indeed, these sequences have to

capture all the possible behaviors while enacting the process

under study to produce an accurate Map. If this number is not

high enough, the discovered Map process models may suffer

from underfitting problems. Second, for the complex data the

BWA requires an important number of iterations to converge to

a local optimum. For instance, it converges at 20, 237 learning

iterations for the Eclipse case study. Moreover, it cannot

always be guaranteed to converge to the global maximum

likelihood. Third, currently the most sophisticated topology of

HMMs that allowing the use of an algorithm, such as BWA

or equivalent algorithms, is the M1M0 topology. However,

this topology is not always the more appropriate to model

some processes. Nevertheless, there is no known algorithm

to estimate the parameters of the more complex topologies.

For this reason, the scope of MMM is limited to the M1M0

topology. Fourth, as mentioned earlier, although the MMM

automatically discovers the topology of the Map process

models, the names of strategies and intentions are still inferred

semi-automatically. Inferring these names manually introduces

a human bias.

VI. CONCLUSIONS

This paper has presented a novel approach of process

mining, called the Map Miner Method (MMM). The main

contribution of this work is to build from theory a method,

which fully constructs the topology of an intentional process

model (Map), only based on users’ activity logs. Whereas

process mining techniques focus how a process is enacted,

MMM focuses on why a process is enacted and what a process

must do. MMM helps understanding the users’ intentions and

strategies while enacting processes. This allows discovering

actual process models and checking the conformance of the

models. MMM requires only users’ traces of activities (event

logs) as inputs. This makes the method easily applicable to

any dataset. In this paper, MMM was applied on a large-

scale case study (developers of Eclipse UDC), which demon-

strates its scalability. This paper focused on discovery of

Map process model topology. In other words, the proposed

method finds the relationships between activities to discover

the strategies and where they lead, i.e. the intentions. However,

the names of these strategies and intentions are still inferred

semi-automatically. Indeed, the proposed method is able to

extract automatically some topics related to each strategy. This

establishes a preliminary base to infer manually the names

of strategies and intentions. In the future, this procedure can

be fully automated by building more sophisticated ontologies

from these discovered topics. These ontologies should take

into account the context in which the processes are enacted as

well as the situation at hand. This makes the discovered Map

more context-sensitive.

This paper mainly focused on discovery of intentional

process models. However, the usefulness of the MMM is not

only limited to process discovery. In the future the discovered

process models can be useful for multiple concerns. For

instance, at the project management level, it allows checking

the alignment between prescribed process models and what

stakeholders actually do; or at the application level, monitoring

users and provides run-time recommendations. This helps

improving the software usability by using anterior developers’

activities as a guideline by assisting the novice or unfamiliar

users learning system features by making the task of learning

easier. For example, when users’ intentions are known, they

can be recommended which strategies and activities might

be useful to fulfill their intentions. This guideline is adapted

to the users’ context taking into account the experiences of

previous users and actual users’ intentions. These phases can

be automated and integrated as modules of MMM. Further-

more, the discovered Map enables users to be more efficient

in their operations by adapting the system to the users’ needs.

Assisting users step by step using a Map increases their

confidence and satisfaction in the enactment of a process.

All these points contribute to improving the usability of the

software products.

So far, the tools in process mining fields represent the

process in terms of activities. To offer an intentional vision

on processes, the implemented tool in this thesis will be

plugged into ProM toolkit [55]. This allows the extraction of

knowledge about a process from its process execution logs in

an intentional manner.

REFERENCES

[1] A. Rozinat, “Process mining conformance and extension,” Ph.D. disser-
tation, Technische Universiteit Eindhoven, 2010.

[2] A. Rozinat, A. A. de Medeiros, C. W. Günther, A. Weijters, and W. M.
van der Aalst, Towards an evaluation framework for process mining

algorithms. Beta, Research School for Operations Management and
Logistics, 2007.

[3] W. Van der Aalst, T. Weijters, and L. Maruster, “Workflow mining:
Discovering process models from event logs,” Knowledge and Data

Engineering, IEEE Transactions on, vol. 16, no. 9, pp. 1128–1142, 2004.

[4] W. M. Van der Aalst and W. van der Aalst, Process mining: discovery,

conformance and enhancement of business processes. Springer, 2011.

[5] C. Rolland and C. Salinesi, “Modeling goals and reasoning with them,”
in Engineering and Managing Software Requirements. Springer, 2005,
pp. 189–217.

[6] E. B. Swanson, “Management information systems: appreciation and
involvement,” Management Science, vol. 21, no. 2, pp. 178–188, 1974.

[7] B. Christie, “Face to file communication: A psychological approach to
information systems,” 1981.

[8] F. D. Davis, R. P. Bagozzi, and P. R. Warshaw, “User acceptance
of computer technology: a comparison of two theoretical models,”
Management science, vol. 35, no. 8, pp. 982–1003, 1989.

[9] I. Ajzen and M. Fishbein, “Belief, attitude, intention, and behavior: An
introduction to theory and research by martin fishbein; icek ajzen,” 1975.

[10] L.-H. Thevenet and C. Salinesi, “Aligning is to organization’s strategy:
the instal method,” in Advanced Information Systems Engineering.
Springer, 2007, pp. 203–217.

[11] C. Rolland, P. Loucopoulos, V. Kavakli, S. Nurcan et al., “Intention
based modelling of organisational change: an experience report,” Pro-

ceedings of Evaluation of Modeling Methods in Systems Analysis and

Design, 1999.

[12] C. Salinesi and C. Rolland, “Fitting business models to system func-
tionality exploring the fitness relationship,” in Advanced Information

Systems Engineering. Springer, 2003, pp. 647–664.

[13] C. Rolland, “Modeling the requirements engineering process,” in In-

formation Modelling and Knowledge Bases V: Principles and Formal

Techniques: Results of the 3rd European-Japanese Seminar, Budapest,

Hungary, May, 1993, pp. 85–96.

[14] R. Deneckère and E. Kornyshova, “Process line configuration: An
indicator-based guidance of the intentional model map,” in Enterprise,

Business-Process and Information Systems Modeling. Springer, 2010,
pp. 327–339.

[15] C. Rolland, M. Kirsch-Pinheiro, and C. Souveyet, “An intentional ap-
proach to service engineering,” Services Computing, IEEE Transactions

on, vol. 3, no. 4, pp. 292–305, 2010.

[16] M. Jarke and K. Pohl, “Establishing visions in context: towards a model
of requirements processes,” in ICIS, 1993, pp. 23–34.

[17] S. Najar, M. Kirsch-Pinheiro, and C. Souveyet, “Towards semantic mod-
eling of intentional pervasive information systems,” in Proceedings of

the 6th International Workshop on Enhanced Web Service Technologies.
ACM, 2011, pp. 30–34.

[18] J. Ralyté, R. Deneckère, and C. Rolland, “Towards a generic model
for situational method engineering,” in Advanced Information Systems

Engineering. Springer, 2003, pp. 95–110.

[19] I. Mirbel and J. Ralyté, “Situational method engineering: combining
assembly-based and roadmap-driven approaches,” Requirements Engi-

neering, vol. 11, no. 1, pp. 58–78, 2006.

[20] C. Rolland, C. B. Achour, C. Cauvet, J. Ralyté, A. Sutcliffe, N. Maiden,
M. Jarke, P. Haumer, K. Pohl, E. Dubois et al., “A proposal for a scenario
classification framework,” Requirements Engineering, vol. 3, no. 1, pp.
23–47, 1998.

[21] G. Khodabandelou, “Contextual recommendations using intention min-
ing on process traces,” in Proceedings of 7th Intl. Conf. on RCIS, 2013.

[22] G. Khodabandelou, C. Hug, R. Deneckère, and C. Salinesi, “Process
mining versus intention mining,” in Enterprise, Business-Process and

Information Systems Modeling. Springer, 2013, pp. 466–480.

[23] G. Khodabandelou, C. Hug, R. Deneckere, C. Salinesi et al., “Supervised
intentional process models discovery using hidden markov models,” in
Proceedings of 7th Intl. Conf. on RCIS, 2013.

[24] E. Yu, “Modelling strategic relationships for process reengineering,”
Social Modeling for Requirements Engineering, vol. 11, p. 2011, 2011.

[25] A. Dardenne, A. Van Lamsweerde, and S. Fickas, “Goal-directed re-
quirements acquisition,” Science of computer programming, vol. 20,
no. 1, pp. 3–50, 1993.

[26] C. Rolland, N. Prakash, and A. Benjamen, “A multi-model view of
process modelling,” Requirements Engineering, vol. 4, no. 4, pp. 169–
187, 1999.

[27] P. Soffer and C. Rolland, “Combining intention-oriented and state-based
process modeling,” in Conceptual Modeling–ER 2005. Springer, 2005,
pp. 47–62.

[28] L. Rabiner and B. Juang, “An introduction to hidden markov models,”
ASSP Magazine, IEEE, vol. 3, no. 1, pp. 4–16, 1986.

[29] Eclipse. (2013) Filtered udc data.

[30] Y. Bengio, “Learning deep architectures for ai,” Foundations and

trends R© in Machine Learning, vol. 2, no. 1, pp. 1–127, 2009.

[31] L. E. Baum, T. Petrie, G. Soules, and N. Weiss, “A maximization
technique occurring in the statistical analysis of probabilistic functions
of markov chains,” The annals of mathematical statistics, vol. 41, no. 1,
pp. 164–171, 1970.

[32] K. P. Burnham and D. R. Anderson, Model selection and multi-model

inference: a practical information-theoretic approach. Springer, 2002.

[33] C. Rolland, “A comprehensive view of process engineering,” in Ad-

vanced Information Systems Engineering. Springer, 1998, pp. 1–24.

[34] C. Fernstrom and L. Ohlsson, “Integration needs in process enacted en-
vironments,” in Software Process, 1991. Proceedings. First International

Conference on the. IEEE, 1991, pp. 142–158.

[35] J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means
clustering algorithm,” Journal of the Royal Statistical Society. Series

C (Applied Statistics), vol. 28, no. 1, pp. 100–108, 1979.

[36] Eclipse. (2013) Usage data collector. http://eclipse.org/org/usagedata/.

[37] J. E. Cook and A. L. Wolf, “Discovering models of software processes
from event-based data,” ACM Transactions on Software Engineering and

Methodology (TOSEM), vol. 7, no. 3, pp. 215–249, 1998.
[38] D. Lorenzoli, L. Mariani, and M. Pezzè, “Automatic generation of

software behavioral models,” in Software Engineering, 2008. ICSE’08.

ACM/IEEE 30th International Conference on. IEEE, 2008, pp. 501–
510.

[39] R. Agrawal, D. Gunopulos, and F. Leymann, Mining process models

from workflow logs. Springer, 1998.
[40] A. Datta, “Automating the discovery of as-is business process mod-

els: Probabilistic and algorithmic approaches,” Information Systems

Research, vol. 9, no. 3, pp. 275–301, 1998.
[41] B. F. van Dongen and W. M. van der Aalst, “Multi-phase process mining:

Building instance graphs,” in Conceptual Modeling–ER 2004. Springer,
2004, pp. 362–376.

[42] A. J. Weijters and W. M. van der Aalst, “Rediscovering workflow models
from event-based data using little thumb,” Integrated Computer-Aided

Engineering, vol. 10, no. 2, pp. 151–162, 2003.
[43] J. Herbst, “A machine learning approach to workflow management,” in

Machine Learning: ECML 2000. Springer, 2000, pp. 183–194.
[44] W. M. Van Der Aalst, H. A. Reijers, and M. Song, “Discovering social

networks from event logs,” Computer Supported Cooperative Work

(CSCW), vol. 14, no. 6, pp. 549–593, 2005.
[45] M. Song and W. M. van der Aalst, “Towards comprehensive support for

organizational mining,” Decision Support Systems, vol. 46, no. 1, pp.
300–317, 2008.

[46] W. M. van der Aalst, B. F. van Dongen, J. Herbst, L. Maruster,
G. Schimm, and A. Weijters, “Workflow mining: a survey of issues
and approaches,” Data & knowledge engineering, vol. 47, no. 2, pp.
237–267, 2003.

[47] J. E. Cook and A. L. Wolf, “Automating process discovery through
event-data analysis,” in Software Engineering, 1995. ICSE 1995. 17th

International Conference on. IEEE, 1995, pp. 73–73.
[48] S. Das and M. C. Mozer, “A unified gradient-descent/clustering archi-

tecture for finite state machine induction,” in NIPS. Morgan Kaufmann,
1994, pp. 19–26.

[49] A. W. Biermann and J. A. Feldman, “On the synthesis of finite-
state machines from samples of their behavior,” Computers, IEEE

Transactions on, vol. 100, no. 6, pp. 592–597, 1972.
[50] L. E. Baum and T. Petrie, “Statistical inference for probabilistic

functions of finite state markov chains,” The annals of mathematical

statistics, vol. 37, no. 6, pp. 1554–1563, 1966.
[51] J. E. Cook and A. L. Wolf, Event-based detection of concurrency. ACM,

1998, vol. 23, no. 6.
[52] ——, “Software process validation: quantitatively measuring the cor-

respondence of a process to a model,” ACM Transactions on Software

Engineering and Methodology (TOSEM), vol. 8, no. 2, pp. 147–176,
1999.

[53] A. A. De Medeiros and A. Weijters, “Genetic process mining,” in
Applications and Theory of Petri Nets 2005, volume 3536 of Lecture

Notes in Computer Science. Citeseer, 2005.
[54] J. Herbst and D. Karagiannis, “Integrating machine learning and work-

flow management to support acquisition and adaptation of workflow
models,” in Database and Expert Systems Applications, 1998. Proceed-

ings. Ninth International Workshop on. IEEE, 1998, pp. 745–752.
[55] EUT, “Prom,” urlhttp://www.processmining.org/prom/start, Nov. 2013.

