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Introduction

Stochastic dominance as a way for partially ordering probability distributions was introduced in economics and decision theory through some pioneering articles published from the 1960's onwards 1 [START_REF] Quirk | Admissibility and Measurable Utility Functions[END_REF][START_REF] Hadar | Rules for Ordering Uncertain Prospect[END_REF][START_REF] Hanoch | Eciency Analysis of Choices Involving Risk[END_REF][START_REF] Rothschild | Increasing Risk: I. A Denition[END_REF][START_REF] Whitmore | Third-Degree Stochastic Dominance[END_REF]) and spawned later an important body of literature. From the very beginning, emphasis was laid on the equivalence between the attitude toward risk of a decision maker expressed by various types of stochastic dominance, and corresponding classes of utility functions, within an expected utility framework. Called congruence by [START_REF] Fishburn | Continua of Stochastic Dominance Relations for Bounded Probability[END_REF], this equivalence between a partial order, generated by stochastic dominance, and the intersection between complete orders, generated by a class of utility functions, led to the powerful conclusion that preference for a stochastically dominating distribution of such type might be represented by any utility function belonging to a specic class; and, conversely, that a decision maker endowed with any utility function from this class always prefers stochastically dominating distributions of this type. However, no general formulation was given till now.

The rst results [START_REF] Quirk | Admissibility and Measurable Utility Functions[END_REF][START_REF] Hadar | Rules for Ordering Uncertain Prospect[END_REF][START_REF] Hanoch | Eciency Analysis of Choices Involving Risk[END_REF][START_REF] Rothschild | Increasing Risk: I. A Denition[END_REF] related rst degree stochastic dominance (FSD) to the class of nondecreasing utility functions that is, to functions whose rst derivative was non-negative so that distributions 2 . In the last three papers [START_REF] Hadar | Rules for Ordering Uncertain Prospect[END_REF][START_REF] Hanoch | Eciency Analysis of Choices Involving Risk[END_REF][START_REF] Rothschild | Increasing Risk: I. A Denition[END_REF], it was also shown that second degree stochastic dominance (SSD) was linked to the class of non-decreasing concave utility functions whose rst and second derivatives are respectively positive and negative which characterize risk-aversion for expected utility decision makers. This result was extended to a more specic type of risk-aversion, taking skewness into account, by [START_REF] Whitmore | Third-Degree Stochastic Dominance[END_REF], who linked third degree stochastic dominance (TSD) to the class of non-decreasing concave utility functions with positive third derivative, provided the mean of the dominating distribution was at least equal to that of the dominated one. Later on, such attitude toward risk has been named prudence [START_REF] Kimball | Precautionary Savings in the Small and in the Large[END_REF], and unied accounts of the three rst degrees of stochastic dominance could be provided (see, for instance, Thorlund-Petersen 2001).

Again, the result on third degree stochastic dominance was generalized to n-th degree stochastic dominance, which was related to utility functions whose odd and even derivatives are respectively positive and negative, till the n-th degree [START_REF] Fishburn | Continua of Stochastic Dominance Relations for Bounded Probability[END_REF], therefore allowing a broader exploration of these renements of the attitude toward risk involved similarly in higher degree stochastic dominance and in the signing of higher degree derivatives of the utility function, like what was called temperance (4th degree, after [START_REF] Kimball | Precautionary Motives for Holding Assets[END_REF] or edginess (5th degree, Lajeri-Chaherli

2004).

Symmetrically, characterizations of risk-seeking appeared some years later, giving rise to what was to be called (in spite of an imperfectly xed vocabulary) inverse stochastic dominance 3 . [START_REF] Goovaerts | Insurance Premiums[END_REF] introduced second degree inverse stochastic dominance (SISD), which amounts to what Levy (2006, pp. 126-130) called risk-seeking stochastic dominance (RSSD), as related to the class of non-decreasing convex utility functions (with nonnegative rst and second derivatives). Like in the case of direct dominance, taking skewness into account led to third degree inverse stochastic dominance, which was divided by [START_REF] Zaras | Dominances Stochastiques pour Deux Classes de Fonctions d'Utilité[END_REF] between two types: third degree type 1 inverse stochastic dominance (TISD1), linked to the class of convex utility functions with non-positive third derivative [START_REF] Zaras | Dominances Stochastiques pour Deux Classes de Fonctions d'Utilité[END_REF]) therefore denoting imprudence; and third degree type 2 inverse stochastic dominance (TISD2), which also corresponds to convex utility functions, but with non-negative third derivative [START_REF] Goovaerts | Insurance Premiums[END_REF] which might be interpreted as prudence, like for TSD 4 .

Since the pioneering works of the 1960's and 70's, the concept of stochastic dominance has been subjected to several renements and extensions: quantile approach, introduction of riskless assets, extension to the measure of inequalities, multicriteria decision, almost dominance or fuzzy measures, consistency with non-expected utility theories like rank-dependent utility or cumulative prospect theory, etc. . . A review of this literature can be found in [START_REF] Guo | Stochastic Dominance and Its Applications in Portfolio Management[END_REF], and in the books by [START_REF] Sriboonchitta | Stochastic Dominance and Applications to Finance, Risk and Economics[END_REF] and by [START_REF] Levy | Stochastic Dominance Investment Decision Making under Uncertainty[END_REF]. But what seems to have been the most salient evolution concerns the way the orders generated by stochastic dominance 2 An intuitive knowledge of rst degree stochastic dominance in relation to decision seems to have been widely spread long before the contributions of 1969and 1970[START_REF] Pradier | De Usu Artis Conjectandi in Jure : Quid de Oeconomia (Politica) ?[END_REF] pointed out, Jacob Bernoulli, for instance, argued as early as the very beginning of 18th century, in the fourth part of his Ars Conjectandi, that what may be advantageous in one case, and can never harm, should be preferred [praeferendum est] to what is in no case benecial or harmful, and related this to popular wisdom expressed in a German saying, Hildt es nicht / so schadt es nicht (Bernoulli 1713, p. 320).

were considered. The original approach leads to view stochastic dominance of various types as generating possible partial preference preorders over a set of lotteries. This justies raising the question of the congruence with a class of utility functions within a context of expected utility.

However, once the idea of congruence has been accepted in principle, attention seems to have shifted toward the nature of the concept of stochastic dominance which allows the ecient selection of a lottery among a subset of lotteries, according to some utility functions belonging to the congruent class. Typical of this appraoach is Post and Kopa (2013) paper, which allows for comparing a given lottery with a discrete set of alternative lotteries, or with a set of linear combinations of these lotteries, on the basis of a generalization of the concept of convex stochastic dominance, which Fishburn introduced as early as 1974.

This paper goes a step back to the original approach, acknowledging that the question of congruence has been solved only for the few cases noted above. It follows on from Fishburn's solution, which concerned n-th degree direct stochastic dominance [START_REF] Fishburn | Continua of Stochastic Dominance Relations for Bounded Probability[END_REF]) but gives up this limitation to a specic type of stochastic dominance. Therefore, it rst provides a unifying treatment, now permitting any type of stochastic dominance, direct or inverse, and of any degree, in relation to classes of utility functions dened by the signing of their successive derivatives (section 2). This allows giving general conditions of congruence, that is conditions for the representation of each kind of stochastic dominance by a class of utility functions and reciprocally (section 3).

A formal framework

Denote X and Y two distinct random variables with support [a, b] ⊂ R. Assume that their respective distribution functions, F and G, are absolutely continuous, so that they can be represented by their density of probability functions f and g5 . Stochastic dominance of degree i (i = 1, ..., n) of f over g (X over Y ) amounts to the non-positivity of an index of dominance for each value of x on [a, b]. This index, which is said nal when i = n and intermediary otherwise, is the i-th integral of f (x) -g (x), each step of integration being either from a to x direct dominance or from x to b inverse dominance. The situation usually favored in the literature, where each step of integration from 1 to n is direct, will be termed hereafter complete direct dominance of degree n. Symmetrically, in an expected utility framework, preference given to f over g amounts to the non-negativity of the dierence between expected utilities, E u (f ) -E u (g), which depends on the properties of a utility function u assumed n-th dierentiable expressed in the signs of its successive derivatives, u 1 (x) , ...u n (x).

The formal framework within which the relation between stochastic dominance and expected utility is investigated results from the denitions of (1) the index and condition of stochastic dominance; (2) the classes of utility functions and of resulting preferences according to expected utility; and (3) a transformation procedure from the degrees of integration of the index of stochastic dominance to the degrees of derivation of the corresponding utility function.

Denition 1. Stochastic dominance

Let A ⊆ [n],
where [n] is the set of integers {1, ..., n}. Then:

(i) The stochastic dominance index of degree i ∈ [n], denoted H i A,n (x)
is dened by6 :

H i A,n (x) = 1 A (i) ˆx a H i-1 A,n (y) dy + (1 -1 A (i)) ˆb x H i-1 A,n (y) dy with H 0 A,n (x) = f (x) -g (x) .
This index is nal if i = n and intermediary if i < n.

(ii) Let f D A,n g denote the stochastic dominance of f over g at nal degree n, direct for all degrees in A and inverse for all degrees not in A. The condition of stochastic dominance of f over g is dened as:

f D A,n g ⇔ ∀x ∈ [a, b], H n A,n (x) ≤ 0
(since the two random variables, X and Y, are distinct, f = g, and strict inequality holds for at least one value of x).

Note. 

1, l, m results from repeated integrations of f (x) -g (x)
, where the rst integration is from a to x 1 , the l-th from a to x l , the m-th from x m to b, and the n-th from a to x:

H n {1,...l,...n} (x) = ˆx a ... ˆb xm ... ˆxl a ... ˆx1 a (f (y) -g (y)) dy ...dx l-1 ...dx m-1 ...dx n-1 . If H n (x) ≤ 0 for each value of x on [a, b],
f is said to dominate stochastically g, directly at nal degree n and at intermediary degrees 1 and l, and inversely at intermediary degree m.

Remark 1. Let A (i) and A \(i) be identical subsets of [n], except that i belongs to A (i) and not to A \(i) . By construction, the following properties always hold:

H i A (i) (a) = H i A \(i) (b) = 0 (a) H i A (i) (b) = H i A \(i) (a) (b) H i A (i) (x) = H i A \(i) (a) -H i A \(i) (x) (c) H i A \(i) (x) = H i A (i) (b) -H i A (i) (x) (d) H i A (1) (x) = -H i A \(1) (x) (e)
Remark 2. Standard literature often favors situations of complete direct stochastic dominance, where the complementary of A, [n] A, is empty. For instance: rst (FSD), second (SSD), third (TSD) and n-th (NSD) degree stochastic dominance respectively correspond to congurations where the bipartitions of [n] are respectively such that A,

[1] A = ({1} , ∅), A, [2] A = ({1, 2} , ∅), A, [3] A = ({1, 2, 3} , ∅) and A, [n] A = ({1, ...n} , ∅).
The possibility that [n] A be not empty (that is, that f stochastically dominates g inversely at some intermediary or nal degree) is typically dealt with in order to explore risk-seeking, through either second degree inverse stochastic dominance (SISD or RSSD -risk-seeking stochastic dominance), where A, [2] A = ({1} , {2} ),

or third degree inverse stochastic dominance, either of type 1 (TSID1) when the third integration is from a to x so that A, [3] A = ({1, 3} , {2} ), or of type 2 (TISD2) when the third integration is from x to b so that A, [3] A = ({1} , {2, 3} ).

The construction of relevant classes of n-dierentiable utility functions u dened on [a, b] obeys the same principles as those which have governed the construction of an index of stochastic dominance. The starting point is the identication of the sets of degrees of derivation of a utility function, corresponding to either positive or negative derivatives.

Denition 2. Utility

Let B ⊆ [n].
Then:

(i) Dene a set U B,n of n-dierentiable utility functions as:

U B,n = u : [a, b] → R such that ∀i ∈ B, ∀x ∈ [a, b] , u i (x) ≥ 0 and ∀i ∈ [n] B, ∀x ∈ [a, b] , u i (x) ≤ 0}
(with for all i, strict inequalities for at least one x).

(ii) Following the expected utility approach, all decision makers whose utility function belongs to U B,n are said to prefer f to g when for each of them, the expected value of the utility of f is not smaller than that of g. Their common preference is denoted

f R B,n g: f R B,n g ⇔ ∀u ∈ U B,n , E u (f ) -E u (g) ≥ 0.
Remark 3. The signing of the derivatives of the utility function is usually linked to some typical attitudes toward risk through the ranking of random variables according to their expected utility.

For instance, it is well-known that increasing utility functions (1 ∈ B) characterize decision-makers with monotonous increasing preferences, whatever their attitude toward risk. When 2 ∈ [n] B, the decision-maker is risk-averse and, conversely, he or she is risk-seeking when 2 ∈ B. The intuitive meaning of 3 ∈ B is this of prudence [START_REF] Kimball | Precautionary Savings in the Small and in the Large[END_REF], so that 3 ∈ [n] B corresponds to imprudence. Higher degrees of derivation are not that easy to interpret. However, 4 ∈ [n] B and 4 ∈ B are currently viewed as, respectively, temperance [START_REF] Kimball | Precautionary Motives for Holding Assets[END_REF]) and intemperance.

Similarly, 5 ∈ B and 5 ∈ [n] B correspond to edginess [START_REF] Lajeri-Chaherli | Proper Prudence, Standard Prudence and Precautionary Vulnerability[END_REF] and to what might be called calmness. Typical utility functions like the logarithmic ones, which give rise to monotone increasing preferences, risk-aversion, prudence, temperance, edginess and so on, are characterized by alternatively positive and negative derivatives, and were sometimes called mixed risk averse utility functions [START_REF] Caballé | Mixed Risk Aversion[END_REF]: B = {1, 3, ...} and [n] B = {2, 4, ...}). Eeckhoudt and Schlessinger (2006) have shown the equivalence between such higher order risk attitudes and preferences over particular classes of lottery pairs, involving zero-mean independent noise random variables.

The relation between stochastic dominance and expected utility is taken up through a relation between two elements A and B of the powerset of [n] . Consider the Procedure AB hereafter, which allocates i (i = 1, ..., n) between B and [n] B as a degree of derivation, according to its belonging, as a degree of integration, to A or [n] A, and to the belonging of i -

1 to B or [n] B: Procedure AB • For all i ∈ A    if i -1 ∈ B, then i ∈ [n] B if i -1 ∈ [n] B or i = 1, then i ∈ B • For all i ∈ [n] A    if i -1 ∈ [n] B or i = 1, then i ∈ [n] B if i -1 ∈ B, then i ∈ B Denition 3. Transformation
The transformation of i = 1, ..., n, as degrees of integration belonging to either A or [n] A, into degrees of derivation belonging to either B or [n] B, is performed by

φ : 2 [n] → 2 [n] , A → φ (A) = B (1)
3 Congruence between stochastic dominance and expected utility

The issue is now that of the conditions of consistency between two partial orders: according to stochastic dominance, D A,n , and to expected utility, R B,n . Though presented dierently, such consistency was called congruence by P. Fishburn (1976, p. 303):

Denition 4. Congruence A stochastic dominance order D A,n and an expected utility order R B,n are congruent when, for each f and g, f D A,n g ⇔ f R B,n g.

It will be shown (Proposition 1) that, provided additional conditions on the bounds of the distributions are satised, congruence is achieved when B is the image of A through the transformation φ dened in (1). The structure of the relation between the orders generated by stochastic dominance and expected utility is further investigated in Proposition 2.

The following lemma shows that each possible allocation of the degrees of integration corresponds through φ to an allocation of the degrees of derivation, and reciprocally:

Lemma 1. ∀A ∈ 2 [n] , ∃B ∈ 2 [n] : B = φ (A)
and ∀B ∈ 2 [n] , ∃A ∈ 2 [n] : B = φ (A).

Proof. Check with Procedure AB that φ in (1) is a bijection of 2 [n] into itself.

A general condition for congruence between stochastic dominance and expected utility orders is presented in the following proposition.

Proposition 1. For all A, B ∈ 2 [n] such that B = φ (A), the two following propositions are equivalent for all f and g: 1. f R B,n g (expected utility). 2. f D A,n g (stochastic dominance)

and, if n ≥ 3, for all i = 2, ..., n -1:

H i A,n (γ i ) ≤ 0 (where γ i = 1 A (i) b + (1 -1 A (i)) a)
(conditions on upper or lower bounds).

Proof. See Appendix.

An intuitive interpretation of Proposition 1 is that provided conditions on bounds are satised, the partial order on random variables generated by any type of stochastic dominance, say D A,n , is identical to the intersection between all the complete preference preorders on random variables underlying all the possible utility functions belonging to U B,n , when B = φ (A). Proposition 1 may also be viewed as establishing a link between subjective assessments and objective properties. It means that on the one hand, what all possible decision makers, characterized by a utility function from the same class, have in common evidently rests on their respective subjective preferences; but, on the other hand, this common ranking of random variables may alternatively be viewed as model-free, that is, as depending only on some objective properties of the distribution functions expressed in stochastic dominance.

We know that in the case of complete direct n-th degree stochastic dominance, the conditions on upper bounds can be viewed as algebraic combinations of the dierences between the successive moments around zero of the distributions [START_REF] Jean | The Identication of Stochastic Dominance Ecient Sets by Moment Combination Orderings[END_REF]. A typical illustration, anticipated by [START_REF] Whitmore | Third-Degree Stochastic Dominance[END_REF], is that in order to have congruence between complete direct third degree stochastic dominance (A = {1, 2, 3}) and the class of increasing concave utility functions with a nonnegative third derivative (B = {1, 3}), the dierence between means (rst moments), E (f )-E (g),

had to be non-negative 7 . The conclusion of [START_REF] Jean | The Identication of Stochastic Dominance Ecient Sets by Moment Combination Orderings[END_REF] still holds in the case of Proposition 1 where dominance is not necessarily direct at each step since, by construction, the value of any index of dominance at the relevant bound is itself an algebraic sum of some complete direct dominance indices of equal and smaller degrees at the upper bound: any index of degree i at the relevant bound is therefore a linear combination of the dierences between the moments around zero j M f (0) -j M g (0) of all degrees j from 1 to i -1. 

B 1 = φ ({1}) = {1}
that is with monotonous non-decreasing preferences, entailing universal preference for the dominating random variable, whatever the decision maker's attitude toward risk.

7

Recall that E (f ) -E (g) ≥ 0 is already a consequence of complete direct stochastic dominance at degrees 1 or SSD (second degree stochastic dominance: [START_REF] Hadar | Rules for Ordering Uncertain Prospect[END_REF][START_REF] Hanoch | Eciency Analysis of Choices Involving Risk[END_REF][START_REF] Rothschild | Increasing Risk: I. A Denition[END_REF] (mean preserving spread subcase MPS)) corresponds to

A 2 = {1, 2}, and was acknowledged congruent with

B 2 = φ ({1, 2}) = {1}
that is with monotonous non-decreasing preferences and risk-aversion.

TSD (third degree stochastic dominance: Whitmore 1970) corresponds to A 3 = {1, 2, 3},

and was acknowledged congruent with

B 3 = φ ({1, 2, 3}) = {1, 3}
that is with monotonous non-decreasing preferences, risk-aversion, positive skewness-seeking and negative skewness-aversion (typically, a decision maker interested in insuring his or her house, and in buying public lotteries tickets). This corresponds to what is usually called prudence since [START_REF] Kimball | Precautionary Savings in the Small and in the Large[END_REF] 

B n = φ ({1, 2, 3, ...n}) = {1, 3, ...}
that is, with a class of utility functions whose odd and even derivatives are respectively non-negative and non-positive.

The same bringing together is a bit less immediate in the cases of stochastic dominance of degrees 2 and 3, related to monotonous non-decreasing preferences and risk-seeking, from the point of view of expected utility. These dierent cases were usually called inverse stochastic dominance (see, for example, Zaras 1989), and have in common that 2 / ∈ A n . A technical but simple problem of presentation arises from the fact that the corresponding indices of stochastic dominance generally relied on decumulative distribution functions, of type F (x) = ´b x f (y) dy, instead of cumulative functions F (x) = ´x a f (y) dy. The resulting successive integrals were therefore computed on the basis of H 1 ∅,1 (x), instead of H 1 {1},1 (x), although the concerned decision makers were endowed with non-decreasing preferences. Nonetheless, since H 1 ∅,1 (x) = -H 1 {1},1 (x), any higher degree of the intermediary or nal index is such that, assuming that 1 is an element 

of A n , H i An\{1},n (x) = -H i An,n ( 
B 2 = φ ({1}) = {1, 2}
that is, with monotonous non-decreasing preferences and risk-seeking.

TISD1 (third degree type 1 inverse stochastic dominance: Zaras 1989) corresponds to A 3 = {1, 3} and was acknowledged congruent with

B 3 = φ ({1, 3}) = {1, 2}
that is, with monotonous non-decreasing preferences, risk-seeking, positive skewness-aversion and negative skewness-seeking (imprudence).

TISD2 (third degree type 2 inverse stochastic dominance: Goovaerts, De Vylder and Haezendonck 1984) corresponds to A 3 = {1} and was acknowledged congruent with

B 3 = φ ({1}) = {1, 2, 3}
that is, with monotonous non-decreasing preferences, risk-seeking, positive skewness-seeking and negative skewness-aversion (prudence).

However, the three following instances of stochastic dominance are still missing in current literature, and are worth being noted.

1. The rst instance is that of situations in which a decision maker would prefer the distribution whose probability to get at least this income is the smaller that is, the stochastically dominating random variable at degree 1 when A 1 = ∅:

FISD (stochastic dominance inverse for the degree 1). A 1 = ∅. This amounts to congruence with

B 1 = φ (∅) = ∅
that is with non-increasing utility functions. Of course, such situations might seem of little practical interest except in case the purpose were to consider the behavior toward risk of a decision maker whose objective would be to ruin himself or herself. However, it makes clear that, contrary to a hasty conclusion, though preference for distributions which are stochastically directly dominated at degree 1 by other distributions might seem a bit strange, it is by no way constitutively irrational.

2. But it is also obvious that, by contrast to TSD which has been extensively studied after Whitmore's 1970 paper, in relation to the more familiar idea of DARA (decreasing absolute risk aversion), a second type of third stochastic dominance TSD2, homologous to TISD2, doesn't seem to have aroused special interest:

TSD2 (third degree stochastic dominance, type 2) corresponds to A 3 = {1, 2}. According to Proposition 1, granted that third degree conditions on bounds are satised, TSD2 is congruent with

B 3 = φ ({1, 2}) = {1}
that is, with monotonous non-decreasing preferences, risk-aversion, positive skewness-aversion and negative skewness-seeking which amounts to imprudence. After all, we all know people who dislike risk, never buy public lotteries tickets, and nonetheless would reject the idea of insuring their house if they were not legally obliged to subscribe to an insurance contract.

3. Finally, whereas complete direct stochastic dominance of any degree n (NSD, where A n = {1, ..., n}) has been regularly taken up after [START_REF] Fishburn | Continua of Stochastic Dominance Relations for Bounded Probability[END_REF]paper (see, for instance, Levy 2006, pp. 131-132), such was not the case for stochastic dominance direct or indirect at any intermediary degree i or nal degree n, that is, when A n is any element of 2 [n] . Filling this gap was the main purpose of this article.

Remark 4. Stochastic dominance orders and classes of utility functions

According to a well-known sucient rule of stochastic dominance orders, if f stochastically dominates g at degree k, it also dominates g at degrees k + 1, k + 2, ... (see, for instance, Levy 2006, pp. 119-20, for the relations between complete direct dominances of degrees 1, 2 and 3). Typically, this means that risk-averse and risk-seeking decision makers with positive monotone preferences might disagree on the order between random variables not ordered by rst degree direct stochastic dominance, but that they agree on the order of random variables generated by the latter, which is consistent with both direct and inverse stochastic dominance of degree 2. This result can be easily generalized and related to preferences according to expected utility in the following proposition:

Proposition 2. Let m and n be two integers such that m

≤ n. If A m , B m ∈ 2 [m] and A n , B n ∈ 2 [n]
satisfy (a) and (b):

(a) B m = φ (A m ), and

B n = φ (A n ) (b) A m ⊆ A n , [m] A m ⊆ [n] A n or B m ⊆ B n , [m] B m ⊆ [n] B n then: 1. D Am,m ⊆ D An,n 2. U Bn,n ⊆ U Bm,m
(By abuse of notation, D Am,m and D An,n stand for the set-equivalents of the corresponding binary relations).

Proof. First note that, in reason of the denition of φ by (1), the two alternative conditions in (b) a, b] so that its integral, either from a to x, or from x to b, H m+1 (x) ≤ 0, and so on till H n (x). As a result, f D Am,m g ⇒ f D An,n g.

are equivalent: A m ⊆ A n , [m] A m ⊆ [n] A n ⇔ B m ⊆ B n , [m] B m ⊆ [n] B n 1. Obvious, since H m (x) ≤ 0 for each x over [

Observe that

, since B m ⊆ B n and [m] B m ⊆ [n] B n , u ∈ U Bn,n ⇒ u ∈ U Bm,m .
Bringing together the two parts of Proposition 2 shows the structure of the relation between the two partial orders generated either by stochastic dominance, or by expected utility. At the nal stage, Proposition 1 makes clear that when conditions on bounds are satised, they lead to the same result: D Am,m and R Bm,m order the same random variables (that is, D Am,m = R Bm,m ), just like D An,n and R Bn,n (that is, D An,n = R Bn,n ) and it can be concluded from Proposition 2

(1.) that their set is expanding from m to n. However, Proposition 2 (2.) shows that the same conclusion is obtained dierently from the expected utility point of view. Moving from m to n rst generates a contraction: for instance, such utility function, which was included in U Bm,m does not belong any more to U Bn,n , because of the signs of its derivatives from m + 1 to n. But since the resulting partial order R is the intersection between the complete orders underlying each utility functions belonging to U , R depends on less complete orders when moving from m to n. So that it is expanding from R Bm,m to R Bn,n , whereas U is contracting from U Bm,m to U Bn,n .

The aim of this paper was to set out a framework for analyzing the relations between subjective preferences between random variables founded on specic classes of utility functions, and the modelfree, objective proprieties, of the probability distributions of these random variables expressed in corresponding types of stochastic dominance. This framework rst consists in the construction of an index of stochastic dominance, which allows either direct or inverse dominance at any intermediate or nal degree. A proposition is demonstrated which establishes the conditions of congruence (in the sense [START_REF] Fishburn | Continua of Stochastic Dominance Relations for Bounded Probability[END_REF]) between the orderings generated by stochastic dominance and by classes of utility functions, extending the results of the pioneering works of [START_REF] Hadar | Rules for Ordering Uncertain Prospect[END_REF], Henoch and [START_REF] Hanoch | Eciency Analysis of Choices Involving Risk[END_REF], [START_REF] Whitmore | Third-Degree Stochastic Dominance[END_REF], [START_REF] Fishburn | Continua of Stochastic Dominance Relations for Bounded Probability[END_REF], [START_REF] Goovaerts | Insurance Premiums[END_REF] and [START_REF] Zaras | Dominances Stochastiques pour Deux Classes de Fonctions d'Utilité[END_REF]. Comparison with previous contributions also leads to the identication of neglected kinds of stochastic dominance, like a third degree type 2 stochastic dominance (TSD2) and the congruent class of utility functions.

Appendix: Congruence between stochastic dominance and expected utility (Proposition (1))

A Preliminaries concerning the construction of the expression of E u (f )-E u (g)

[At least till equation ( 2), this sub-section can be skipped by the readers familiar with the technique of demonstration already used in most pioneering papers since [START_REF] Hadar | Rules for Ordering Uncertain Prospect[END_REF] or [START_REF] Hanoch | Eciency Analysis of Choices Involving Risk[END_REF]]

The proof of Proposition 1 follows readily from the repeated integration by parts until degree n of E u (f ) -E u (g) = ´b a u (x) (f (x) -g (x)) dx = ´b a u (x) H 0 A,n (x) dx, the non-negativity of E u (f ) -E u (g) for all u ∈ U B,n being equivalent to f R B,n g. The result is quite classical, except that at each step of integration, it has to be given according to the belonging of i to either A or [n] A -which draws on Remark 1 (a)-(e). Starting from the rst degree of integration gives:

• Degree 1:

E u (f ) -E u (g) = ˆb a u (x) H 0 A (x) dx                            1 ∈ A : = u (x) H 1 A (x) b a -´b a u 1 (x) H 1 A (x) dx = -´b a u 1 (x) H 1 A (x) dx 1 ∈ [n] A : = -u (x) H 1 A (x) b a + ´b a u 1 (x) H 1 A (x) dx = ´b a u 1 (x) H 1 A (x) dx.
Note that the sign before the integrals in the right-hand side of the equations is negative when 1 belongs to A, and positive when it does not.

Example 2 .

 2 Usual and neglected types of stochastic dominance in relation to expected utility Such representation of congruence allows nding again the usual formulations of stochastic dominance from the end of the 1960's to the 1980's, and their correspondence with certain classes of utility functions. In return, it also allows nding the neglected or missing categories which can now be put to the fore. This bringing together is obvious in the case of complete direct dominance in the following usual cases, A n and B n denoting elements of the powerset 2 [n] : FSD (rst degree stochastic dominance: Quirk and Saposnik 1962 (discrete case); Hadar and Russell 1969; Hanoch and Levy 1969) corresponds to A 1 = {1}. It was acknowledged congruent with

  's paper, in relation to the positive sign of the third derivative of the utility function. NSD (n-th degree stochastic dominance: Fishburn 1976) corresponds to complete direct stochastic dominance with A n = [n] = {1, 2, 3...n} and was acknowledged congruent with

  x) (see Remark 1 on Denition 1). So that the non-positivity requirement for the index of stochastic dominance was usually replaced by a non-negativity condition insofar as it was applied to inverse dominance at intermediate or nal degree 2. Taking this into account allows establishing the following three correspondences: SISD (second degree inverse stochastic dominance: Goovaerts, De Vylder and Haezendonck 1984) or RSSD (risk-seeking stochastic dominance: Levy 2006) corresponds to A 2 = {1}, and was acknowledged congruent with

For instance, in a pioneering paper where they applied stochastic dominance to the question of of inequality measures,[START_REF] Muliere | A Note on Stochastic Dominance and Inequality Measures[END_REF] named inverse stochastic dominance the integration of dierences between the inverses of cumulative distribution functions, F -1 and G -1 , and not between decumulative functions.

For a systematic account of risk attitudes involved in the signing of the various derivatives of the utility function, see Eeckhout and Schlesinger 2006.

Usual regularities, like absolute continuity on a compact interval of R, are assumed throughout this paper for the sake of simplicity, in order to escape possible complications (requiring the use of Riemann-Stieltjes or Lebesgue-Stieltjes integrals) when Lebesgue's criterion for Riemann integrability does not hold for f and g. See the clarication and restatement of the rst results of[START_REF] Hanoch | Eciency Analysis of Choices Involving Risk[END_REF] and[START_REF] Hadar | Stochastic Dominance and Diversication[END_REF] by[START_REF] Tesfatsion | Stochastic Dominance and the Maximization of Expected Utility[END_REF].

Recall that the indicator function 1 A in Denition 1 is an application from[n] to {0, 1} which, for i ∈ [n], yields 1 if i belongs to A, and 0 if it does not.

• Degree 2:

To sum up, the sign before the integral of u 2 (x) H 2 A (x) in the right-hand side of each equation is positive when 2 is in A and when, at degree 1, the sign before the integral of u 1 (x) H 1 A (x) in the right-hand side is negative; or when 2 is not A and when, at degree 1, the sign before the integral of u 1 (x) H 1 A (x) in the right-hand side is positive. Conversely, it is negative when 2 is not A and when, at degree 1, the sign before the integral of u 1 (x) H 1 A (x) in the right-hand side is negative; or when 2 is in A and when, at degree 1, the sign before the integral of u 1 (x) H 1 A (x) in the right-hand side is positive. On the other hand, the sign before u 1 (γ 2 ) H 2 A (γ 2 ), -where γ 2 equals a or b -still in the right-hand side of each equation, is positive when at degree 1, the sign before the integral of u 1 (x) H 1 A (x) in the right-hand side is itself positive, and it is negative otherwise.

Carrying on till degree n yields:

• Degree n:

where for all i ∈ [n] , sgn (i) = 1 -21 C (i) .

The set C ∈ 2 [n] is the outcome of Procedure AC hereafter, which allocates each i to either C or [n] C and, therefore, determines the values of sgn (n) and sgn (i -1) in (2).

Procedure AC

• For all

In an expected utility framework, f R B,n g is equivalent to the non-negativity of E u (f ) -E u (g) for all u ∈ U B,n , as given in (2).

Note that Procedure AB and Procedure AC above are identical, C in AC standing for B in AB, so that B = C. An immediate consequence is that in (2), the signs of sgn (i -1) and u i-1 (x),

as well as those of sgn (n) and u n (x), are always opposite.

Suciency:

for all i = 2, ...n -1 :

By hypothesis, when n ≥ 3, for all i between 2 and n1, H i A,n (γ i ) ≤ 0 on the right-hand-side of (2). Still by hypothesis, H n A,n (x) ≤ 0 for all x on [a, b] -which also means that at the particular value γ n , H n A,n (γ n ) ≤ 0. Since the signs of sgn (i) and u i (x) are always opposite for all u ∈ U B,n ,

In the same way, sgn (n) ´b a u n (x) H n A,n (x) dx ≥ 0, on the right-hand-side of (2). And since the whole right-hand-side of (2) is non-negative, E u (f ) -E u (g) ≥ 0 for all u ∈ U B,n , which amounts to f R B,n g.

Necessity:

and, if n ≥ 3, for all i = 2, ...n -1 :

Assume there exists y such that H n A,n (y) > 0. As a result, since the signs of sgn (n) and u n (y) are always opposite, if n ∈ B (resp., n ∈ [n] (B)), a suciently high (resp., low) value of u n (y) would allow the right-hand-side of (2) to become negative. And, since E u (f ) -E u (g) would become negative, this would contradict the assumption that f R B,n g. One concludes that such value y does not exist, so that, for all x on [a, b], H n A,n (x) ≤ 0, which means that f D A,n g. Since this non-positivity of H n A,n (x) also holds for the the upper and lower bounds of x, and consequently for γ n , H n A,n (γ n ) ≤ 0 in (2). Let us turn, now, to the left-hand part of the right-hand-side of (2), i.e., n i=2 sgn (i -1) u i-1 (γ i ) H i A,n (γ i ). Note that this left-hand part only exists when n ≥ 2, and that we have just shown that it is non-negative for n = 2, since H n A,n (γ n ) ≤ 0. Focusing on the cases when n ≥ 3, imagine that there exists a value k of i (2 ≤ i ≤ n -1) for which γ k would lead to H k A,n (γ k ) > 0. Here again, a high enough absolute value of u k-1 (γ k )